SPIRE-ABC: An online tool for acoustic-unit boundary correction (ABC) via crowdsourcing

Chiranjeevi Yarra, Kausthubha N K, and Prasanta Kumar Ghosh

SPIRE LAB
Electrical Engineering,
Indian Institute of Science (IISc), Bangalore, India
Introduction

- Need of time-aligned acoustic-unit (AU – Word, Syllable and Phoneme) boundaries\(^1\)
 - Human computer interaction
 - Computer assisted language learning (CALL)

\(^1\) Hönig, Batliner, and Nöth, “Automatic assessment of non-native prosody annotation, modelling and evaluation”, 2012

\(^2\) Franco et al., “Automatic detection of phone-level mispronunciation for language learning”, 1999
Introduction

- Need of time-aligned acoustic-unit (AU – Word, Syllable and Phoneme) boundaries\(^1\)
 - Human computer interaction
 - Computer assisted language learning (CALL)

\(^1\)Hönig, Batliner, and Nöth, “Automatic assessment of non-native prosody annotation, modelling and evaluation”, 2012

\(^2\)Franco et al., “Automatic detection of phone-level mispronunciation for language learning.”, 1999
Introduction

- Need of time-aligned acoustic-unit (AU – Word, Syllable and Phoneme) boundaries\(^1\)
 - Human computer interaction
 - Computer assisted language learning (CALL)
- Typically, these boundaries are estimated using automatic speech recognition (ASR) system\(^2\).

\(^1\) Hönig, Batliner, and Nöth, “Automatic assessment of non-native prosody annotation, modelling and evaluation”, 2012

\(^2\) Franco et al., “Automatic detection of phone-level mispronunciation for language learning”, 1999
Introduction

- Need of time-aligned acoustic-unit (AU – Word, Syllable and Phoneme) boundaries\(^1\)
 - Human computer interaction
 - Computer assisted language learning (CALL)
- Typically, these boundaries are estimated using automatic speech recognition (ASR) system\(^2\).
- However, these boundaries often suffer from errors due to inaccuracies in ASR system.

\(^1\)Hönig, Batliner, and Nöth, “Automatic assessment of non-native prosody annotation, modelling and evaluation”, 2012

\(^2\)Franco et al., “Automatic detection of phone-level mispronunciation for language learning.”, 1999
Introduction

- Need of time-aligned acoustic-unit (AU – Word, Syllable and Phoneme) boundaries
 - Human computer interaction
 - Computer assisted language learning (CALL)
- Typically, these boundaries are estimated using automatic speech recognition (ASR) system.
- However, these boundaries often suffer from errors due to inaccuracies in ASR system.

Goal of SPIRE-ABC

Facilitates the manual correction of AU boundaries (online) with naive annotators for cost-effective solutions

1 Hönig, Batliner, and Nöth, “Automatic assessment of non-native prosody annotation, modelling and evaluation”, 2012
2 Franco et al., “Automatic detection of phone-level mispronunciation for language learning”, 1999
Existing online annotation tool

WaveSurfer is a general purpose JavaScript.

5. Matuszewski, Schnell, and Goldszmidt, “Interactive Audiovisual Rendering of Recorded Audio and Related Data with the WavesJS Building Blocks”, 2016
Existing online annotation tool

WaveSurfer is a general purpose JavaScript. It has been used via crowdsourcing in many applications include – 1) combining audios\(^3\), 2) voice activity detection\(^4\), and 3) audio rendering\(^5\).

\(^3\) Saiz, Matuszewski, and Goldszmidt, “Audio oriented UI components for the web platform”, 2015
\(^4\) Baker et al., “BioAcoustica: a free and open repository and analysis platform for bioacoustics”, 2015
\(^5\) Matuszewski, Schnell, and Goldszmidt, “Interactive Audiovisual Rendering of Recorded Audio and Related Data with the WavesJS Building Blocks”, 2016
\(^6\) Katspaugh, “wavesurfer.js”, 2012
Existing online annotation tool

WaveSurfer is a general purpose JavaScript. It has been used via crowdsourcing in many applications include – 1) combining audios, 2) voice activity detection, and 3) audio rendering.

However, it is not correction friendly.

- Can be used for new annotation but may not be for correction.
- Continuous zoom control.

3 Saiz, Matuszewski, and Goldszmidt, “Audio oriented UI components for the web platform”, 2015
4 Baker et al., “BioAcoustica: a free and open repository and analysis platform for bioacoustics”, 2015
5 Matuszewski, Schnell, and Goldszmidt, “Interactive Audiovisual Rendering of Recorded Audio and Related Data with the WavesJS Building Blocks”, 2016
6 Katspaugh, “wavesurfer.js”, 2012
Functionality of SPIRE-ABC

Two types of regions markings

Reference AU regions

Highlighted region for ABC (HR-ABC)

Controls only specific to HR-ABC

Play the audio segment in HR-ABC

Zoom

Resizing by dragging the boundaries

With save, selected reference regions (SRR-ABC) are updated based on HR-ABC

Figure: Annotation Interface of the SPIRE-ABC with an exemplary speech segment of “she had your dark suit in greasy wash water all the year”.
Functionality of SPIRE-ABC

- Two types of regions markings
 - Reference AU regions
 - Highlighted region for ABC (HR-ABC)

Figure: Annotation Interface of the SPIRE-ABC with an exemplary speech segment of “she had your dark suit in greasy wash water all the year”.
Functionality of SPIRE-ABC

- Two types of regions markings
 - Reference AU regions
 - Highlighted region for ABC (HR-ABC)

- Controls only specific to HR-ABC
 - Play the audio segment in HR-ABC
 - Zoom
 - Resizing by dragging the boundaries

Figure: Annotation Interface of the SPIRE-ABC with an exemplary speech segment of “she had your dark suit in greasy wash water all the year”.

Functionality of SPIRE-ABC

- Two types of regions markings
 - Reference AU regions
 - Highlighted region for ABC (HR-ABC)
- Controls only specific to HR-ABC
 - Play the audio segment in HR-ABC
 - Zoom
 - Resizing by dragging the boundaries
- With save, selected reference regions (SRR-ABC) are updated based on HR-ABC

Figure: Annotation Interface of the SPIRE-ABC with an exemplary speech segment of “she had your dark suit in greasy wash water all the year”.

![Annotation Interface of SPIRE-ABC](image-url)
Proposed additional functionalities

- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
- Modify HR-ABC
- Link the SRR-ABC and HR-ABC
- Control HR-ABC
- Discrete zoom levels – 1x, 1/4x, 1/8x, and 1/16x,
- Update SRR-ABC with save option
Proposed additional functionalities

- Display SRR-ABC with only play option

![Diagram of proposed functionalities]
Proposed additional functionalities

- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
Proposed additional functionalities

- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
- Modify HR-ABC
 - Link the SRR-ABC and HR-ABC
Proposed additional functionalities

- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
- Modify HR-ABC
 - Link the SRR-ABC and HR-ABC
- Control HR-ABC
 - Discrete zoom levels – \(\frac{1}{2}x \), \(\frac{1}{4}x \), \(\frac{1}{8}x \), and \(\frac{1}{16}x \),
 - Update SRR-ABC with save option
Proposed additional functionalities

- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
- Modify HR-ABC
 - Link the SRR-ABC and HR-ABC
- Control HR-ABC
 - Discrete zoom levels – \(\frac{1}{2} \times, \frac{1}{4} \times, \frac{1}{8} \times, \) and \(\frac{1}{16} \times \),
- Update SRR-ABC with save option
Experimental setup

Objective measures

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.
Experimental setup

Objective measures

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.

- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.
Experimental setup

Objective measures

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.

- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.
- AU segments – syllable and words, obtained with fisher English and TIMIT data. Total: FE_S; TIMIT_S; FE_W; TIMIT_W.
Experimental setup

Objective measures

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.

- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.
- AU segments – syllable and words, obtained with fisher English and TIMIT data. Total: FE_S; TIMIT_S; FE_W; TIMIT_W.
- Annotators – Experienced (EA), Inexperienced (IEA), naive (NA).
Experimental setup

Objective measures

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.

- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.
- AU segments – syllable and words, obtained with fisher English and TIMIT data. Total: FE_S; TIMIT_S; FE_W; TIMIT_W.
- Annotators – Experienced (EA), Inexperienced (IEA), naive (NA).

<table>
<thead>
<tr>
<th></th>
<th>FE_S</th>
<th>FE_W</th>
<th>TIMIT_S</th>
<th>TIMIT_W</th>
<th>Common</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA#1, IEA#1, NA#1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>EA#2, IEA#2, NA#2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>EA#3, IEA#3, NA#3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>52</td>
</tr>
</tbody>
</table>
Results

After manual correction, all the three type annotators have shown improved performance. The performance measures obtained by NAs are not significantly different from those by EAs and IEAs.

<table>
<thead>
<tr>
<th></th>
<th>FE_S</th>
<th>FE_W</th>
<th>TIMIT_S</th>
<th>TIMIT_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR</td>
<td>83.02</td>
<td>78.92</td>
<td>86.72</td>
<td>82.35</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0465</td>
<td>0.0518</td>
<td>0.0352</td>
<td>0.0394</td>
</tr>
<tr>
<td>OVR</td>
<td>0.7927</td>
<td>0.8120</td>
<td>0.8257</td>
<td>0.8398</td>
</tr>
</tbody>
</table>
After manual correction, all the three type annotators has shown improved performance.
After manual correction, all the three type annotators has shown improved performance.

The performance measures obtained by NAs are not significantly different from those by EAs and IEAs.
Results

- NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.
Results

- NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.
NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.

On the common set, EA#1 shows better performance across all performance measures over IEAs and NAs.
NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.

On the common set, EA#1 shows better performance across all performance measures over IEAs and NAs.

However, interestingly, the EA#3 has lower performance among all EAs and across both the IEAs and NAs.
Conclusion

- This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.
Conclusion

- This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.
- This is developed by creating additional functional modules as well as modifying the existing functional modules in the WaveSurfer.
Conclusion

- This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.
- This is developed by creating additional functional modules as well as modifying the existing functional modules in the WaveSurfer.
- Experiments on TIMIT corpus have shown improvements in the AU boundaries after manual correction irrespective of annotators type.
Conclusion

- This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.
- This is developed by creating additional functional modules as well as modifying the existing functional modules in the WaveSurfer.
- Experiments on TIMIT corpus have shown improvements in the AU boundaries after manual correction irrespective of annotators type.
- Further works are required for adding all reference acoustic-unit transcriptions.
THANK YOU
For more info:
http://spire.ee.iisc.ernet.in/spire-abc/