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Abstract
We explore language-agnostic deep text embeddings for sever-
ity classification of dysarthria in Amyotrophic Lateral Scle-
rosis (ALS). Speech recordings are transcribed by human
and ASR and embeddings of the transcripts are considered.
Though speech recognition accuracy has been studied for grad-
ing dysarthria severity, no effort has yet been made to utilize
text embeddings of the transcripts. We perform severity clas-
sification at different granularity (2, 3, and 5-class) using data
obtained from 47 ALS subjects. Experiments with dense neu-
ral network based classifiers suggest that, though text features
achieve nearly equal performances as baseline speech features,
like statistics of mel frequency cepstral coefficients (MFCC),
for 2-class classification, speech features outperform for higher
number of classes. Concatenation of text embeddings and
MFCC statistics attains the best performances with mean F1
scores of 88%, 68%, and 53%, respectively, in 2, 3, and 5-class
classification.
Index Terms: Amyotrophic Lateral Sclerosis, dysarthria,
severity prediction, acoustic features, textual features

1. Introduction
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive
neurodegenerative disease that affects various motor functions
[1]. Speech functionalities, among others, get severely affected
leading to dysarthria. Currently, there are no cures for ALS and
the associated dysarthria. However, early diagnosis, methodi-
cal treatment and personalized disease management strategies
can slow the disease progression and improve the quality of
life of the patients. Regular monitoring of the disease sever-
ity is essential to continuously cater to the therapeutic needs
of the patients. Speech-Language Pathologists (SLPs) typi-
cally examine the dysarthria severity of an ALS patient using
the Frenchay Dysarthria Assessment method [2] and/or the Re-
vised Amyotrophic Lateral Sclerosis Functional Rating Scale
(ALSFRS-R) [3]. These assessments are tedious, time expen-
sive and costly. Moreover, the clinician’s familiarity with the
speaker or the subject matter can influence the judgment [4].
Hence, there is an urgent need for objective and accurate auto-
matic dysarthria severity prediction systems.

Acoustic properties of speech have been commonly ex-
plored in the literature for severity prediction of ALS-induced
dysarthria. Suhas et al. [5] have performed 5-class dysarthria
severity classification for ALS using a 2D Convolutional Neu-
ral Network (CNN) which takes log-mel spectrogram as input.
Vieira et al. [6] have developed a CNN model for predicting

the ALSFRS-R speech score from raw speech signals. Bhat-
tacharjee et al. [7] have leveraged transfer learning approaches,
like fine-tuning from auxiliary tasks and multi-task learning, to
perform 3-class dysarthria severity classification for ALS. They
have used temporal statistics of mel-frequency cepstral coef-
ficients (MFCC) together with dense neural network (DnNN)
based models. Along with acoustic features, articulatory cues
of speech have also been explored by Wisler et al. [8] for esti-
mating the ALSFRS-R bulbar subscore. They have used linear
ridge regression and support vector regression for this purpose.

Researchers have also explored the accuracy of speech
recognition as a potential marker for grading speech intelligibil-
ity and severity of dysarthric speech [9, 10, 11, 12, 13]. Word
error rate (WER) of transcriptions obtained from human listen-
ers (human speech recognition or HSR) as well as off-the-shelf
automatic speech recognition (ASR) systems (such as Google
Cloud ASR API1) have been studied. Since human listeners are
more accustomed to typical speech and off-the-shelf ASR mod-
els are generally trained on only typical speech, the accuracy of
both HSR and ASR degrades as the speech becomes more atypi-
cal or unintelligible with increasing dysarthria severity. Though
significant correlation between ASR performance and speech
intelligibility or impairment severity has been reported in a few
works [10, 11], Gutz et al. [12] claimed WER of Google Cloud
ASR to be insufficient for grading dysarthria severity for ALS.
They found the accuracy and stability of this WER based ap-
proach to be particularly poor for the mildly impaired group.
Apart from the WER-based approaches, Choi et al. [14] have
used pronunciation correctness and structural prosody related
features obtained from ASR transcripts of dysarthric speech
for dysarthria severity prediction in stroke patients. They have
fine-tuned an off-the-shelf Whisper model [15] using dysarthric
speech for performing the ASR.

Though some speech recognition based approaches have
been explored in the literature for dysarthria severity prediction,
no effort has been made till date to utilize textual embeddings
obtained from HSR or ASR transcripts for this purpose. This
paper aims to study that aspect. We explore textual embeddings
of HSR and ASR transcripts obtained using language-agnostic
sentence embedding models, e.g. Language-Agnostic SEntence
Representations (LASER) [16] and Language-agnostic BERT
Sentence Embedding (LaBSE) [17], for performing severity
classification at different granularity. In particular, we aim to
answer the following key questions.

1https://cloud.google.com/speech-to-text/v2/
docs/chirp-model



1. What is the relative performance of textual embeddings ob-
tained from different HSR and ASR configurations?

2. How does the performance of textual features compare to
those of well established acoustic features, like, MFCC,
openSMILE [18] and self-supervised speech representations
obtained using a Wav2Vec2 (W2V2) model [19]?

3. Do the acoustic and textual cues carry complementary infor-
mation such that their fusion can yield better severity classi-
fication performance?

2. Database
Data collection was performed at National Institute of Men-
tal Health and Neurosciences (NIMHANS), Bengaluru, India.
The database contains 2280 audio files obtained from 47 ALS
subjects belonging to 5 native Indian languages, e.g., Bengali,
Hindi, Kannada, Tamil, and Telugu. The male:female ratio in
these languages are 5:4, 2:8, 3:6, 3:6, and 4:6, respectively,
with an average age of 54.51 years across subjects. The au-
dio files contain recordings of ALS subjects describing some
images presented to them. All recordings are done in the sub-
jects’ respective native languages. The recordings have an av-
erage length of 5.54 sec with a standard deviation (SD) of 2.92
sec. Dysarthria severity of each subject is rated by 3 SLPs from
NIMHANS on a scale of 0-4 (0: Loss of useful speech, and
4: Normal speech). The mode of the 3 ratings is considered as
the final severity. The priors of the 5 severity classes are: [0:
13.03%, 1: 15.88%, 2: 21.49%, 3: 21.49%, 4: 28.11%]. Table
1 reports the details of the database. More information about
the data collection protocol can be found in [20].

Table 1: Language and severity-wise distribution of the number
of subjects/utterances
Severity 0 1 2 3 4 Total
Bengali 2/80 2/102 1/51 2/113 2/113 9/459
Hindi 2/40 2/50 1/66 3/149 2/98 10/403
Kannada 1/42 2/103 2/102 1/51 3/161 9/459
Tamil 1/44 2/56 2/119 1/75 3/155 9/449
Telugu 2/91 1/51 3/152 2/102 2/114 10/510
Total 8/297 9/362 9/490 9/490 12/641 47/2280

3. Severity classification
As illustrated in Figure 1, the severity classification is done
by extracting speech features from the raw speech signals and
text features from the corresponding transcripts (obtained using
ASR and HSR). We use three different feature-level configura-
tions for performing the severity classification - (1) using speech
features alone, (2) using text features alone (obtained from HSR
or ASR), and (3) using a multi-modal representation created by
concatenating speech and text features together. In all cases,
DnNN based models are used as the classifier. In this study,
three types of dysarthria severity classification experiments are
conducted: (1) 2-class: [High: 0,1, Low: 2,3,4], (2) 3-class:
[High: 0,1, Mild: 2,3, Normal: 4], and (3) 5-class: [Highest: 0,
High: 1, Mild: 2, Low: 3, Normal: 4].

3.1. Speech Representations

We obtain speech representations using three approaches: (1) a
feature set based on the mean, SD, and median of the MFCC
coefficients (MFCC Stat), (2) functional features from openS-
MILE - emobase [18], and (3) self-supervised learning (SSL)
representations from the W2V2-base-960h model [19]. Since

these SSL representations are at the frame level, we compute
their average across frames.

3.2. Speech-To-Text

3.2.1. Automatic Speech Recognition

We use off-the-shelf language-specific W2V2-based high-
performant ASR models, available on the Huggingface plat-
form. Each ASR model is fine-tuned separately for each indi-
vidual target language. In particular, we use Indic ASR (iASR),
Google ASR (gASR) and Vakyansh (vASR). Each audio file
in our database is transcribed using each of the three models,
thereby generating 3 ASR transcripts for each audio.

3.2.2. Human Speech Recognition

Six different human transcribers transcribe each audio, thereby
generating 6 HSR transcripts for each audio. The native lan-
guage of the transcribers is the same as the language of the
audio. The transcribers are college or university students and
do not have any hearing impairment. They are asked to write
the most likely valid words for whatever they hear in their na-
tive language script. They mark filled pauses, long silences
and unintelligible speech regions by the keywords <PAUSE>,
<LONGSIL>, and <GARBAGE>, respectively. Click sounds
originating from the recording setup are transcribed by the key-
word <CLICK>. All the four keywords are written in English
inside < and > symbols. Three among the six transcribers are
shown the image which is being described by the speaker in the
audio. This is referred to as ‘with image’ (WI) scenario. This is
done to understand if knowing the image helps in understand-
ing the speech content as that image itself is being described
in the speech. The other three transcribers transcribe without
the image information. This is referred to as ‘without image’
(WOI) scenario. We also consider WI and WOI transcripts to-
gether which is referred to as WOI+WI scenario. Within each
scenario, the keywords are treated in 3 different ways - (1) all
keywords are considered as it is for text embedding extraction
(WK), (2) all keywords are removed from the transcripts be-
fore text embedding extraction (WoK), and (3) the keywords
are transliterated to the corresponding language script before
text embedding extraction (TrK).

3.3. Text Representation

This study examines speech data in 5 different Indian lan-
guages. To generate multilingual sentence representations,
language-agnostic sentence embedding models, such as LASER
and LaBSE, which support 112 and 147 languages, respectively,
are utilized. These models map natural language data from dif-
ferent languages to a common embedding space. The embed-
ding vectors from this space are then utilized for severity classi-
fication. We extract a sentence embedding from each transcript
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Figure 1: Dysarthria severity classification framework



produced by each human transcriber or ASR model. For each of
WK, WoK, and TrK settings, there are multiple HSR transcripts,
and hence multiple text embeddings, obtained for each audio in
each of WOI, WI, and WOI+WI scenarios. Hence, we compute
the average of all embeddings corresponding to a particular sce-
nario to obtain a final representative embedding. Similarly, for
ASR, we compute the average of the embeddings of the three
transcripts of an audio obtained from the three ASR models to
obtain a combined ASR-based embedding (CombASR).

3.4. Classifier

DnNN-based classifiers are used in this work. The DnNN mod-
els consist of 5 fully connected layers with 64, 32, 16, and 4
hidden units, along with Rectified Linear Unit (ReLU) [21] as
activation function. The number of output units corresponds
to the number of classes. The models are trained using cross-
entropy loss function and Adam optimizer [22], with a learning
rate of 0.001 and a batch size of 32. Training is conducted for
a maximum of 200 epochs with early stopping (patience = 5
epochs) based on validation loss to prevent overfitting. Dropout
regularization is applied after the first two layers with probabil-
ities of 0.3 and 0.2, respectively. Batch normalization is also
used after the first two layers to stabilize training2.

4. Experimental setup
The performance of the dysarthria severity classification task
is evaluated across different text and acoustic-based feature
sets. Specifically, text features from LaBSE (768-dim), LASER
(1024-dim), and acoustic features from statistical features of
MFCC (108-dim), openSMILE (feature set = emobase, feature
level = functionals, 988-dim), and W2V2-base-960h (768-dim)
model are considered. MFCC features are computed with 20ms
frame length and 10ms frame shift. Feature vectors are nor-
malized using the mean and SD calculated from the training
set to ensure uniformity across the train and test sets. We con-
duct experiments using a 5-fold cross-validation setup. Each
fold contains nearly equal number of unique subjects from each
severity class. Similar distributions of age, gender and language
are maintained across the folds. We compute the F1 score,
precision and recall on the test fold in each iteration of cross-
validation. The mean and SD of these measures over the five
folds are reported as the performance metrics.

5. Results and Discussion
5.1. Analysis on HSR-based Text Representations

We perform multiple experiments on HSR transcripts to study
the influence of (a) keywords in transcription, and (b) prior
knowledge regarding the image being described in the audio
while doing the transcription, on the classification performance.
The results of these experiments are presented in Table 2. From
the experiments, it can be observed that LaBSE performs simi-
lar to or better than LASER in all cases except a few for 3-class
classification. Hence, in the subsequent discussions, we con-
sider the experiments based on LaBSE embeddings only.

5.1.1. Influence of Keywords

To study the influence of keywords in HSR transcripts on clas-
sification performance, text classification is performed in WK,

2https://github.com/UpendraVishwanathYS/
Dysarthria-Severity-Classification-in-ALS

WoK, and TrK settings. We observe from Table 2 that the WoK
transcripts achieve the highest mean accuracies in most cases,
but WK and TrK performances are also not significantly infe-
rior. Thus the keywords do not seem to carry extra cues about
the speech intelligibility. The classification seems to happen
mostly based on the linguistic parts of the transcripts which are
common to all of WK, WoK and TrK. Hence, for all further
analyses, we focus on WoK setting only.

5.1.2. Influence of Image Information

To study the influence of the image information provided to hu-
man transcribers on the classification performance, experiments
are done on (a) transcripts from WI group, (b) transcripts from
WOI group, and (c) both groups combined. As discussed in
previous subsections, focusing on WoK transcripts and LaBSE
embedding, we observe that WI results in similar or lower F1
scores than WOI and WOI + WI. Moreover, WOI achieves sim-
ilar or higher F1 scores than WOI + WI in these cases. Having
the image information might provide the transcriber cues about
the content being spoken and help in better transcribing the au-
dios. Thus the decline in speech intelligibility with severity
might be less reflected in the WI transcripts, leading to lower
performance than WOI cases. Hence, we consider only WOI
(WoK) with LaBSE embeddings for all further comparisons.

5.2. Analysis on ASR-based Text Representations

From the experiments on different ASRs i.e., iASR, gASR and
vASR, as shown in Table 3, we can observe that the classifica-
tion performance order is gASR > vASR > iASR. Performance
on gASR is significantly higher, regardless of the feature ex-
traction method used. Furthermore, utilizing the transcripts of
all three ASRs (referred as combASR) slightly improved clas-
sification performance as shown in Table 3. Furthermore, ex-
perimental results consistently show that LaBSE outperforms
LASER embeddings across all experiments.

5.3. HSR vs. ASR

The classification performance obtained on ASR transcripts is
similar to that of HSR transcripts, except in the 3-class exper-
iments, where CombASR outperforms all HSR experiments.
The combined experiment using HSR (WOI, WoK) and ASR
(CombASR) yields performance similar to, though slightly
lower than, that of CombASR alone.

5.4. Comparison of speech and textual features

As summarized in Table 4, deep speech features extracted using
the W2V2-base model outperform openSMILE-emobase fea-
tures, achieving improvements of 10%, 7%, and 9% on the F1
score for classification tasks of five classes, three classes, and
two classes, respectively. However, among all speech feature
extraction methods, the statistical features of MFCC signifi-
cantly outperform both W2V2-base and openSMILE-emobase.
The speech based experiments i.e, MFCC stat and W2V2-base
demonstrate superior results, outperform best text experiments
(ASR:CombASR - Table 3, HSR:WOI+WoK - Table 2) in terms
of average F1-score. The best speech experiments (MFCC stats)
outperform the best text experiments by (7%, 7%), (9%, 6%)
and (3%, 1%) for five, two and three class problems respec-
tively. This suggests that the text information does not fully
capture the characteristics of dysarthria. It is evident that for
more granular classification tasks, such as the 5-class and 3-
class problems, speech representations provide more insights



Table 2: Mean ± SD of performance metrics obtained using different HSR configurations; here, bold entries indicate best performances
with respect to mean F1 score in WOI, WI, and WOI+WI settings for each of 5-class, 3-class, and 2-class classification.

Classification
Setting Feature

WOI WI WOI + WI
F1 Score

(%)
Precision

(%)
Recall
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

5-Class

WK LaBSE 36.35 ± 5.76 36.15 ± 4.54 42.91 ± 4.34 35.21 ± 4.94 38.05 ± 7.12 39.81 ± 4.72 38.87 ± 7.41 38.02 ± 8.10 45.36 ± 5.65
LASER 32.36 ± 4.99 34.19 ± 4.36 36.66 ± 5.25 27.65 ± 5.22 25.55 ± 8.52 35.19 ± 3.67 35.12 ± 5.02 36.26 ± 4.51 38.02 ± 4.86

WoK LaBSE 44.03 ± 2.16 45.68 ± 2.52 47.48 ± 2.31 34.25 ± 3.97 36.15 ± 8.21 40.44 ± 2.20 40.77 ± 5.37 40.87 ± 6.09 46.47 ± 4.21
LASER 36.59 ± 5.12 37.18 ± 6.37 39.62 ± 4.52 33.08 ± 3.44 33.85 ± 6.63 37.37 ± 1.20 37.05 ± 7.10 38.51 ± 6.91 43.69 ± 3.60

TrK LaBSE 30.85 ± 4.13 34.36 ± 4.51 40.02 ± 3.06 31.95 ± 4.21 33.68 ± 6.79 36.53 ± 3.49 34.00 ± 5.20 36.86 ± 4.93 40.30 ± 5.38
LASER 22.68 ± 6.90 26.18 ± 7.77 26.02 ± 7.68 24.12 ± 6.87 22.87 ± 9.10 29.84 ± 5.34 26.81 ± 6.89 26.67 ± 8.95 31.94 ± 4.66

3-Class

WK LaBSE 55.49 ± 4.86 65.83 ± 12.93 60.56 ± 3.61 52.93 ± 7.91 55.09 ± 9.63 56.24 ± 6.19 56.71 ± 7.46 55.19 ± 11.68 61.66 ± 5.50
LASER 57.24 ± 6.59 56.41 ± 10.24 61.07 ± 4.62 54.62 ± 6.25 58.74 ± 9.19 56.74 ± 4.61 55.52 ± 7.44 54.18 ± 11.79 60.05 ± 5.59

WoK LaBSE 57.17 ± 5.36 58.09 ± 11.18 61.92 ± 3.79 50.75 ± 4.41 50.96 ± 7.73 54.85 ± 3.16 53.69 ± 2.55 50.73 ± 5.39 60.12 ± 1.49
LASER 54.87 ± 4.12 52.68 ± 7.18 59.33 ± 2.10 51.37 ± 7.13 52.30 ± 10.05 53.82 ± 4.56 58.38 ± 5.11 61.43 ± 8.04 61.20 ± 3.69

TrK LaBSE 55.65 ± 6.56 59.51 ± 14.22 60.52 ± 4.95 48.40 ± 3.48 47.82 ± 5.19 53.31 ± 2.97 56.94 ± 8.44 57.85 ± 12.34 61.73 ± 6.65
LASER 53.29 ± 2.27 52.20 ± 4.35 57.05 ± 1.96 49.91 ± 2.83 52.96 ± 5.28 52.60 ± 1.71 52.97 ± 2.23 53.18 ± 5.17 56.00 ± 3.03

2-Class

WK LaBSE 85.67 ± 3.26 85.66 ± 4.41 86.56 ± 2.80 79.43 ± 4.64 82.43 ± 6.01 77.93 ± 4.34 84.87 ± 5.46 85.00 ± 6.33 85.46 ± 5.17
LASER 84.51 ± 3.57 85.55 ± 5.14 84.14 ± 3.00 79.05 ± 3.65 82.58 ± 5.96 77.40 ± 3.13 83.61 ± 4.06 84.91 ± 5.76 83.08 ± 3.40

WoK LaBSE 85.89 ± 4.09 85.88 ± 4.88 86.33 ± 3.49 79.24 ± 4.72 82.93 ± 5.84 77.47 ± 4.40 85.79 ± 4.95 86.21 ± 6.27 86.12 ± 3.56
LASER 84.64 ± 3.71 84.84 ± 4.68 84.95 ± 3.13 78.01 ± 4.82 80.88 ± 6.56 76.52 ± 4.57 85.25 ± 5.37 86.02 ± 6.82 85.01 ± 4.13

TrK LaBSE 84.46 ± 4.78 84.52 ± 5.75 85.36 ± 4.87 78.85 ± 4.65 81.45 ± 5.30 77.56 ± 4.71 84.54 ± 5.14 84.87 ± 6.09 84.81 ± 4.67
LASER 81.91 ± 4.92 82.67 ± 5.54 82.02 ± 5.14 76.57 ± 3.89 79.14 ± 4.04 75.29 ± 4.05 81.91 ± 4.00 83.38 ± 5.78 81.49 ± 3.02

Table 3: Mean ± SD of performance metrics for different ASR
models; here, bold entries indicate best performances with re-
spect to mean F1 score for each of 5-class, 3-class, and 2-class
classification.

Classification
Setting Feature F1 Score

(%)
Precision

(%)
Recall
(%)

5-Class

iASR LaBSE 32.77 ± 11.94 35.26 ± 12.08 41.83 ± 9.32
LASER 28.00 ± 6.56 28.20 ± 5.61 29.97 ± 9.20

gASR LaBSE 42.66 ± 5.24 44.31 ± 3.55 46.62 ± 5.48
LASER 30.21 ± 2.87 28.96 ± 2.82 34.35 ± 5.09

vASR LaBSE 32.46 ± 7.66 37.51 ± 3.18 38.11 ± 7.92
LASER 25.95 ± 3.75 29.57 ± 8.64 30.59 ± 5.90

CombASR LaBSE 43.97 ± 4.13 45.79 ± 3.68 48.45 ± 4.53
LASER 35.38 ± 4.88 38.36 ± 4.86 38.33 ± 5.12

3-Class

iASR LaBSE 53.69 ± 6.27 58.35 ± 13.29 57.78 ± 3.09
LASER 49.50 ± 2.85 50.93 ± 8.36 54.03 ± 2.20

gASR LaBSE 56.86 ± 3.98 65.35 ± 6.14 61.47 ± 1.80
LASER 55.39 ± 3.79 54.37 ± 6.73 58.75 ± 2.45

vASR LaBSE 55.03 ± 9.66 54.90 ± 10.72 59.19 ± 7.18
LASER 52.86 ± 6.20 53.91 ± 10.86 56.81 ± 6.12

CombASR LaBSE 61.48 ± 8.37 67.19 ± 13.41 65.33 ± 5.58
LASER 56.87 ± 5.29 57.81 ± 7.68 60.38 ± 3.63

2-Class

iASR LaBSE 79.56 ± 1.72 80.69 ± 3.57 79.28 ± 1.45
LASER 76.86 ± 4.10 77.39 ± 4.42 77.18 ± 4.71

gASR LaBSE 83.25 ± 4.59 82.75 ± 4.75 83.86 ± 4.33
LASER 80.46 ± 5.81 82.32 ± 5.17 79.28 ± 6.12

vASR LaBSE 80.50 ± 8.33 81.20 ± 8.42 80.91 ± 8.45
LASER 79.13 ± 7.13 79.61 ± 7.51 79.23 ± 6.76

CombASR LaBSE 85.00 ± 5.08 84.91 ± 5.32 86.31 ± 5.00
LASER 82.97 ± 3.69 83.43 ± 4.62 83.74 ± 3.53

Table 4: Mean ± SD of performance metrics obtained using
various speech representations; here, bold entries indicate best
performances with respect to mean F1 score for each of 5-class,
3-class, and 2-class classification.

Classification
Setting Feature F1 Score

(%)
Precision

(%)
Recall
(%)

5-class
MFCC Stat 51.15 ± 6.74 52.59 ± 7.79 53.23 ± 7.83
Opensmile 35.99 ± 7.27 39.67 ± 6.18 39.19 ± 6.98

W2V2 45.80 ± 9.70 52.07 ± 6.92 46.77 ± 10.51

3-class
MFCC Stat 67.58 ± 5.88 68.79 ± 6.20 69.57 ± 4.12
Opensmile 51.32 ± 4.52 55.23 ± 6.10 52.93 ± 4.29

W2V2 58.37 ± 8.44 62.03 ± 8.09 58.50 ± 7.68

2-class
MFCC Stat 87.21 ± 2.42 86.61 ± 2.30 87.93 ± 2.61
Opensmile 71.38 ± 6.47 76.15 ± 7.28 69.84 ± 6.13

W2V2 79.74 ± 5.65 84.93 ± 4.08 77.90 ± 6.75

into the characteristics of dysarthria in ALS.

5.5. Multi-modal representation

We investigate the performance of multimodal representations
by concatenating the best-performing speech representation and
text embeddings. In this study, we choose the MFCC stats and
LaBSE embeddings of CombASR and HSR (WOI, WoK) for

Table 5: Mean ± SD of performance metrics obtained using
multi-modal feature representation; here, bold entries indicate
best performances with respect to mean F1 score for each of
5-class, 3-class, and 2-class classification.

Classification
Setting Feature F1 Score

(%)
Precision

(%)
Recall
(%)

5-Class
MFCC Stat

+ ASR 53.25 ± 5.74 54.86 ± 5.00 55.97 ± 4.65

MFCC Stat
+ HSR 52.7 ± 4.22 53.1 ± 5.52 54.98 ± 4.85

3-Class
MFCC Stat

+ ASR 67.57 ± 7.05 69.96 ± 7.59 69.75 ± 5.75

MFCC Stat
+ HSR 68.3 ± 7.3 69.74± 7.7 69.39 ± 5.12

2-Class
MFCC Stat

+ ASR 88.25 ± 2.44 87.18 ± 2.79 90.13 ± 2.41

MFCC Stat
+ HSR 88.06 ± 3.81 87.63 ± 5.2 89.32 ± 2.56

speech and text features respectively. As shown in Table 5,
we observe that combining text and speech features has en-
hanced classification performance slightly, outperforming mod-
els trained on individual modalities, in all cases except for 3-
class classification where the MFCC Stat+ASR representation
performs similar to the MFCC stat case.

6. Conclusions
The paper describes the efforts taken to categorize the severity
of dysarthria in ALS patients by using the text embeddings of
their speech transcripts. The study suggests that the text infor-
mation carries similar discriminative information as speech cues
for 2-class classification, though speech cues outperform for 3-
class and 5-class dysarthria severity classification. Among the
text representations, we observe that the LaBSE outperformed
LASER embeddings in the majority of the experiments. The
learning also revealed that in HSR, there is no significant role
of the keywords and with image information. In this analysis, it
is disclosed that the speech and textual cues carry complemen-
tary information and, when combined together, can outperform
the individual modalities in most of the cases. Further investi-
gations can be done for better modeling that utilizes both text
and speech which can complement each other.
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