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ABSTRACT

Source filter interaction (SFI) explains the drop in pitch caused due
to the constriction in the vocal tract during voiced consonant produc-
tion in a vowel-consonant-vowel (VCV) sequence. In this work, we
examine how the drop in pitch alters when such a VCV sequence is
spoken at three different speaking rates - slow, normal and fast. In
the absence of electroglottograph (EGG) recording, a high resolu-
tion pitch contour is determined using a glottal closure instant (GCI)
detector. For this, in this work, firstly, five different GCI detector
and pitch estimation techniques are compared against EGG based
pitch estimates on a small dataset where simultaneous EGG record-
ings are available. Yet Another GCI Algorithm (YAGA) is found to
be the best choice among all. For examining the impact of speak-
ing rate on SFI, VCV recordings from six subjects with five vowels
(/a/, /e/, /i/, /o/, /u/) and five consonants (/b/, /d/, /g/, /v/, /z/) at three
speaking rates are used. The study reveals a significant difference
in the pitch drop values between slow and fast rates, with increasing
pitch drop as speaking rate reduces. For slow speaking rate, vowel
/o/ and /u/ tend to show higher pitch drop values compared to re-
maining vowels.

Index Terms— Source filter interaction, Pitch drop, Speaking
rate

1. INTRODUCTION

In human speech production, the characteristics of glottal source
are often affected by the vocal tract, this is known as the source
filter interaction (SFI). The interaction between the glottal source
and vocal tract has been investigated by several researchers in the
past [1–3]. Titze and Palaparthi [4] broadly divide the SFI into two
levels. Level-1 describes the effect of the vocal tract on the glottal
flow features, whereas level-2 describes the effect of the vocal tract
on the pitch1. In this study, we explore the level-2 SFI, where there
is an involuntary change in the pitch due to vocal tract configura-
tions. The involuntary changes in the glottal vibration occurs during
the changes in the “intrinsic pitch” of some high vowels [5, 6]. This
could be caused either by the coupling of the glottis and the vocal
tract [5–7] or could be due to the effect of the tongue-pull [6]. Vowel
formants were also used to examine the effect of coupling between
the oral and the sub-glottal cavities [8]. Stevens [9] carried out the
studies on SFI for the speech sounds, such as fricatives and stops.
It has been shown that, constriction along the vocal tract during the
consonant production in a VCV utterance causes a drop in pitch.
The amount of pitch change depends on the degree and location of
the constriction [10].

This study focuses on the percentage of pitch change in the
voiced consonant region compared to the vowel region in a vowl-
consonant-vowel (VCV) sequence. The study also quantifies the
percentage of pitch change in voiced consonant in a VCV sequence
across three different speaking rates namely, slow, normal and fast.

1By ‘pitch’ in this work, we refer to the fundamental frequency

The study aims to provide a scientific understanding and document
the SFI happening during human speech production. Typically, the
SFI study uses electroglotogram (EGG) signals [11] to estimate the
pitch. But the collection of data with parallel EGG and acoustic sig-
nal can be time consuming and expensive. Hence, we propose to
use a glottal closure instant (GCI) detection algorithm to estimate
pitch. Mittal et al. [10] used zero-frequency filtering (ZFF) [12]
method to extract features of glottal source excitation directly from
the speech signals for the SFI analysis. Recently, there are several
GCI detection methods proposed in the literature. To determine the
best algorithm to quantify the pitch drop, we first compare five-pitch
estimation methods with the pitch estimated from the EGG signal
using a corpus which has both acoustics and EGG signals. We com-
pare four GCI based pitch estimation techniques, namely, Yet An-
other GCI Algorithm (YAGA) [13], glottal closure/opening instant
estimation forward-backward algorithm (GEFBA) [14], ZFF [12],
and Dynamic Programming Phase Slope Algorithm (DYPSA) [15],
and one pitch contour estimation technique without GCI detector,
namely, sawtooth waveform inspired pitch estimator (SWIPE) [16].
We find that the pitch drop in the voiced consonant region estimated
from the YAGA is closest to that estimated from the EGG signals.
Hence, we use the YAGA for all experiments in this study on the
impact of speaking rate on SFI.

Most work on SFI focus on the VCV (or CV) sequence with the
vowel being /a/ spoken at a normal speaking rate (SR). In this work,
we explore the SFI in the context of different SRs. We hypothe-
size that the pitch drop during a voiced consonant in the context
of the different vowels could be different given that the articulatory
shapes for different vowels are different. The speaking rate affects
the movement of the articulators and can have a significant effect on
the pitch drop as well. Hence, we measure the pitch drop during
voiced consonant in the VCV sequence using a dataset containing
six subjects speaking VCV sequences with five vowels (/a/, /e/, /i/,
/o/, and /u/) and five consonants (/b/, /d/, /g/, /v/, and /z/) at three
speaking rates, namely, slow, normal and fast. We find that the pitch
drop increases as the SR reduces with significant difference between
slow and fast speaking rates for all 25 VCV combinations except for
/a/b/a/, /e/g/e/ and /i/b/i/. The pitch drop is found to depend signifi-
cantly on the vowels at slow speaking rate.

2. DATASET

VCV sequence is typically used for SFI study as it is relatively easy
to distinguish the vowels and consonants regions for the analysis if
the vowel is present on both sides of the consonant [10]. In this pre-
liminary study of SFI, there are two parts, first is to find out which
GCI detection algorithm is the best to estimate the pitch from the
acoustic signal particularly in the context of SFI study, and second,
to investigate the pitch drop trend across different vowels and con-
sonant combinations in three different speaking rates. Considering
these factors, two different datasets are considered for this study.
While both datasets have clean speech acoustic recordings of VCV



/b/ /d/ /g/ /v/ /z/

/a/
0.12(0.02) 0.10(0.03) 0.10(0.03) 0.14(0.07) 0.16 (0.06)
0.09(0.01) 0.05(0.01) 0.06(0.01) 0.06(0.01) 0.07 (0.01)
0.05(0.02) 0.04(0.01) 0.04(0.01) 0.04(0.01) 0.05 (0.01)

/e/
0.13(0.03) 0.11(0.03) 0.12(0.04) 0.17(0.08) 0.18(0.07)
0.08(0.01) 0.08(0.02) 0.08(0.03) 0.08(0.03) 0.10(0.03)
0.05(0.01) 0.04(0.01) 0.04(0.01) 0.04(0.01) 0.06(0.01)

/i/
0.14(0.05) 0.14(0.09) 0.16(0.12) 0.18(0.11) 0.19(0.11)
0.09(0.02) 0.08(0.02) 0.10(0.04) 0.07(0.03) 0.10(0.04)
0.06(0.01) 0.06(0.01) 0.04(0.02) 0.04(0.01) 0.06(0.01)

/o/
0.18(0.10) 0.17(0.12) 0.20(0.15) 0.17(0.10) 0.19(0.10)
0.10(0.02) 0.09(0.05) 0.10(0.04) 0.10(0.03) 0.12(0.05)
0.07(0.01) 0.05(0.02) 0.06(0.02) 0.06(0.01) 0.06(0.01)

/u/
0.13(0.04) 0.14(0.07) 0.16(0.09) 0.18(0.09) 0.16(0.05)
0.08(0.01) 0.07(0.01) 0.10(0.02) 0.10(0.03) 0.09(0.02)
0.05(0.01) 0.05(0.01) 0.06(0.02) 0.07(0.02) 0.06(0.01)

Table 1. The average duration of the consonant region (in seconds)
for the VCV combinations in the SPIRE VCV corpus. The 3 rows
in a cell (from top to bottom) corresponds to slow, normal and fast
speaking rates, in blue, green and magenta color respectively. (·)
indicates the standard deviation.

stimuli, the first corpus (EGG corpus) has EGG signal recordings
in parallel to the acoustic recordings at normal speaking rate while
the second corpus (SPIRE VCV corpus) has only acoustic speech
recordings (without any EGG recordings) in three different speaking
rates namely, slow, normal, and fast. Details of these two corpora
are described in the subsections below.

2.1. EGG corpus

The EGG corpus consists of isolated VCV samples for five voiced
consonants, namely /b/, /g/, /j/, /v/, /z/ and vowel /a/. Each VCV
was recorded 7 times each from nine subjects, three females and
six males with their average age being 23 and 25 years, respectively.
None of the subjects were reported to have any speech disorder. A to-
tal of 315 samples (9 subjects × 5 VCVs × 7 repetitions) are present
in this corpus. The data collection was carried out in a soundproof
room in SPIRE Lab at IISc. Simultaneous recordings of the speech
and the EGG signal were obtained for each VCV. Acoustic record-
ing was done using a Sennheizer e822S microphone (Wedemark,
Germany) and EGG signal was obtained using VoceVista(Roden,
The Netherlands). The audio and EGG were recorded at 16 kHz.
The begin and end time-stamps of each VCV recording and the C-
boundaries within every VCV were manually marked by listening as
well as examining the waveform and the spectrogram.

2.2. SPIRE VCV corpus

The SPIRE VCV dataset consists of utterance of the type “speak
VCV today”, having all combinations of five consonants (C) namely
/b/, /d/, /g/, /v/, /z/ and five vowels (V) /a/, /e/, /i/, /o/ and /u/, vowels
being on both the sides of the consonant. Each utterance was col-
lected in three different speaking rates and each VCV sample had 3
repetitions. The data was recorded from six subjects, three females
and three males of the age range 18-22years. Thus, we have a to-
tal of 1350 (=5 consonants × 3 repetitions× 5 vowels × 3 rates× 6
subjects) recordings.

To make sure that each subject controls the speaking rate uni-
formly while speaking, a demo session was taken before the actual
recording, where the speaking rate modulation was practiced. Each
subject was instructed to speech normally in normal speaking rate.
In slow (fast) speaking rate, every subject was asked to speak twice
as slow (fast) as the normal speaking. The average duration of the

consonant region for all 450 samples in slow speaking rate is found
to be 0.15±0.08 seconds. The same for normal and fast rates are
0.08±0.03 seconds, and 0.05±0.01 seconds. These duration val-
ues of consonants across rates suggest that subjects could follow the
given instructions well during recording. Table 1 presents the dura-
tion of consonant for each consonant vowel combinations in three
speaking rates. All recordings were done at the SPIRE Lab’s sound-
proof studio, Indian Institute Science, Bangalore, India. The VCV
boundaries were manually annotated. The boundaries were marked
by observing the spectrogram, the raw waveform, and the glottal
pulses (obtained using Praat [17]) simultaneously using an in-house
built MATLAB based annotation tool.

Fig. 1. The black curve shows the pitch contour trajectory, and the
vertical dotted lines mark the consonant (C) boundaries.

3. PITCH DROP MEASURE IN THE PROPOSED SFI
STUDY

In this work, we compute the measure of SFI using two steps. In the
first step, we compute the pitch contour from the acoustic signal us-
ing a pitch estimation technique. An illustration of pitch contour for
a sample VCV is shown in Fig. 1, where V1 and V2 are the two iden-
tical vowels before and after the consonant. Following this, we com-
pute a measure of SFI as the percentage pitch drop in the C-region

compared to the V1-region as follows: pδ =
(pmed

V 1 −pmin
C )×100

pmed
V 1

,

where pmedV 1 is the median of the pitch in the last 2/3rd of the V1-
region and pminC is the minimum pitch in the C-region as shown in
Fig 1.

4. SELECTION OF THE GCI DETECTOR IN THE
PROPOSED STUDY

4.1. Data preparation

The best GCI detection scheme was determined on the EGG corpus
using four GCI detection and one pitch estimation algorithms. The
EGG was further refined by removing the cases (referred to as out-
liers) where the estimated pitch from different algorithms had errors
on visual inspection. Outliers also included samples where the voic-
ing signature was not observed in the consonant region of the VCV
sequence. The absence of the voicing signature makes it difficult for
the waveform-based GCI detection algorithms to locate the GCIs ac-
curately. An example of such a sample is depicted in Fig. 2(C). A
total of 98 outliers were removed from the corpus. The remaining
217 samples from the EGG corpus were considered for the selection
of best GCI detection algorithm.

4.2. Selection of the best GCI detector

Firstly, five distinct pitch contours were computed, out of which four
were derived from the GCIs using GEFBA, YAGA, ZFF, DYPSA
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Fig. 2. Starred black trajectories depict the ground truth SIGMA
derived pitch contours, the superimposed red and the magenta tra-
jectories (starred) show the pitch contours derived via various pitch
estimation schemes indicated on the Y axis of column (A) subplots.
Red dashed horizontal lines are the consonant boundaries. The plot
(A) and (B) show the efficacy of the YAGA over other schemes.
Plot(C) shows a typical outlier where voicing signature in C region
is missing making it difficult for the pitch estimating algorithms to
locate the GCIs.

and the remaining one was estimated from SWIPE, which directly
estimates the pitch contour from the speech waveform. SIGMA al-
gorithm was used to obtain pitch contour from the recorded EGG
signal. Illustrative examples of these are shown in Fig 2. The im-
plementations of SIGMA and the DYPSA algorithms were taken
from the VOICEBOX Toolbox [18]. For other algorithms such as
GEFBA, YAGA, ZFF, and SWIPE, the implementations were pro-
vided by their respective authors. The derived pitch contour was
then passed through a median filter with a window size of 3 sam-
ples, to remove the noise in the pitch trajectory. A smaller window
size (3 samples) was preferred so as not to smooth out the dip in
pitch contour in the voiced consonant region. Then we compute the
measure of source-filter interaction (SFI), i.e., pδ . pδ computed on
the pitch contour from the SIGMA algorithm was considered as the
ground truth as the GCIs obtained were based on the EGG signals.
Finally, the algorithm which gave the value of pδ closest to that from
the SIGMA scheme was determined to be the best scheme.

Table 2 shows the average pδ along with their standard deviation
(SD) in bracket obtained using SIGMA and all pitch estimation al-
gorithms. The last column shows the p-value from t-test to examine
if there is a significant difference between the pitch drop as observed
in the case of SIGMA and each of the algorithms considered. Con-
sidering the average pδ values, it is clear that the YAGA algorithm
performs closest to the ground truth pδ among all algorithms consid-
ered. This is also clear from Fig 2(A) & (B), which show the pitch
trajectories estimated using five pitch estimation schemes. This re-
sult is similar to the finding of [19], where YAGA performs better

pδ (EGG Corpus) p-value
SIGMA 13.42 (11.98) -
YAGA 12.28 (6.79) 0.30
GEFBA 12.06 (7.71) 0.25
ZFF 11.98 (7.92) 0.23
DYPSA 16.20 (9.96) 0.04
SWIPE 9.86 (9.62) 0.004

Table 2. The average of pδ across all 217 considered samples in
EGG corpus, (·) indicates the standard deviation. Last column shows
p-value from t-test with null hypothesis that pδ from SIGMA and a
pitch estimation algorithm have identical mean.

with clean speech data, as it considers the glottal flow derivatives ob-
tained by inverse filtering the speech signal. The difference between
the average pδ values from SIGMA and YAGA for different VCVs
are follows: /a/b/a/ 0.86; /a/g/a/ 5.9; /a/j/a/ 3.02; /a/v/a/ −0.43 and
/a/z/a/ −2.82. These values show that YAGA performed the best for
consonant /b/ and /v/ followed by /z/, /j/, and /g/. It is interesting
to observe that YAGA was able to perform well for the consonant
sounds with labial constriction. Its performance was found to be the
worst in case of /g/, which has a velar constriction.

5. IMPACT OF RATE ON SFI

5.1. Data preparation

In a manner similar to that for the EGG corpus, the outliers (as de-
picted in Fig. 2(C)) were removed from the SPIRE VCV corpus
by visually inspecting 1350 VCV samples. A total of 220 samples
were detected as outliers (13.6% from slow, 15.5% from normal and
19.8% from fast) and were removed, thus retaining 83.7% of the
samples from the dataset, for the study on impact of rate on SFI. The
number of samples considered for the study for each vowel and con-
sonant combination is shown in Table 3. YAGA algorithm was used
for the pitch estimation and the pitch contours were passed through
a median filter with window size of 3 samples, to reduce the noise in
the contour trajectory.

We compute pδ for all VCVs with three speaking rates, from
the SPIRE VCV corpus. We study the variation in pδ values for
different speaking rates. We perform a t-test between pδ in slow and
fast speaking rate samples [20]. This is also done between normal
and fast speaking rates. We also perform the analysis of variance
(ANOVA) for different vowels and consonants with a given speaking
rate [20].

/b/ /d/ /g/ /v/ /z/
/a/ 45 46 33 49 40
/e/ 43 47 46 49 42
/i/ 50 41 47 47 47
/o/ 41 45 46 42 43
/u/ 50 46 53 47 45

Table 3. Sample distribution in the SPIRE VCV corpus after the
outlier removal; 54 is maximum possible value a cell could have (6
subjects × 3 repetitions × 3 rates.)

5.2. Results and discussion

Fig. 3 shows the pδ for all VCVs and different speaking rates. It is
clear from the figure that the mean and median value of pδ increase
as the speaking rate reduces. It could be because, in case of a slow
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speaking rate, the duration of constriction is longer causing a larger
effect on the vocal fold vibration. The statistical test shows that there
is a significant difference (p <0.05) between pδ in slow and fast
speaking rates in all 25 VCVs except in the cases of /a/b/a/, /e/g/e/
and /i/b/i/. In most VCVs, there is a significant difference (p <0.05)
between fast and normal speaking rates as well. Fig. 4 presents
a comparison of exemplary pitch contours for different consonants
with vowel /u/ at three different speaking rates. It is clear from the
figure that the pitch drop in the voiced consonant region reduces as

speaking rate increases. It is also clear from Fig. 3 that when sam-
ples from all vowels are combined, pδ shows a trend similar to an in-
dividual vowel, and there is a significant difference between pδ from
slow vs. fast and normal vs. fast speaking rates except in the case
of /b/ between normal and fast speaking rates. ANOVA test reveals
that the pitch drops for different consonants within one vowel for
slow rate are significantly different. When all vowels are combined
(last column in Fig. 3), the variance of pδ reduces in the fast/normal
rate compared to the slow rate. The pitch drops for different vowels
within one consonant in slow speed are not found to be significantly
(p-value>0.1) different, but for the normal speed, the difference is
statistically significant (p-value<.02) in all cases except for ‘V’. It
could be because, for slow speed, the constriction reaches a steady-
state in the consonant region irrespective of the vowels. As the speed
increases, the degree of constriction varies depending on the vowel,
and, hence, there is a significant difference in pδ across vowels.

6. CONCLUSION

In this study, we quantify SFI as the percentage of pitch drop in a
voiced consonant compared to the vowel region in a VCV sequence.
First, we use a corpus with parallel acoustic and EGG recordings
to determine YAGA as the best GCI detector cum pitch estimation
scheme for studying SFI. We further estimate the pitch drop using
YAGA on a larger corpus having VCV sequences spoken by six sub-
jects with five vowels (/a/, /e/, /i/, /o/, /u/) and five consonants (/b/,
/d/, /g/, /v/, /z/) at three speaking rates, slow, normal, and fast. When
we examine the impact of speaking rate on SFI on this larger corpus,
it reveals a significant difference in the pitch drop values between
slow and fast rates, with increasing pitch drop as the speaking rate
reduces. For slow speaking rate, all consonants with vowels /o/ and
/u/ tend to show higher pitch drop values than remaining vowels. In
future, we plan to extend this study with larger consonant set under
asymmetric VCV stimuli with different vowels.
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