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Abstract
A major challenge involved in automatic dysarthria severity
classification for patients with Amyotrophic Lateral Sclerosis
(ALS) is the difficulty to build a speech corpus which is large
enough to train accurate and generalizable classifiers. To over-
come this constraint, we employ transfer learning approaches,
specifically, fine-tuning from an auxiliary task and multi-task
learning. Input feature reconstruction and gender classification,
on the same ALS speech dataset or other healthy speech cor-
pora, are explored as the auxiliary tasks. We use temporal statis-
tics of mel-frequency cepstral coefficients as the features and
dense neural networks for performing the primary and auxiliary
tasks. Experiments suggest that transfer learning aids severity
classification with up to 11.03% absolute increase in the av-
erage classification accuracy as compared to direct single task
learning. The improvement is attributed mainly to better classi-
fication of the mild class than severe/normal classes.
Index Terms: Amyotrophic Lateral Sclerosis, dysarthria sever-
ity, transfer learning, fine-tuning, multi-task learning

1. Introduction
Amyotrophic Lateral Sclerosis (ALS) is a progressive neuro-
degenerative disease that impairs muscle movements. Speech
musculature, among others, gets critically affected leading to
dysarthria. Though there is no cure for ALS or the associated
dysarthria, regular therapy and personalized disease manage-
ment strategies can help enhance the quality of life of these pa-
tients. Regular monitoring of the disease condition is essential
for continuously modifying these strategies depending on the
needs of the patients. Clinically, dysarthria severity of an ALS
patient is examined by Speech-Language Pathologists (SLPs) as
per the ALSFRS-R scale [1]. In spite of the merits of ALSFRS-
R, this clinical assessment procedure is tedious and highly time-
consuming. Moreover, subjectivity and perception being in-
volved, the assessments may not always be consistent. Thus,
accurate and consistent automatic dysarthria severity prediction
systems are the need of the hour.

Though several works are present in the literature on
speech-based automatic classification of ALS patients and
Healthy Controls (HC) [2, 3, 4], only a few efforts have been
reported in the domain of speech-based automatic dysarthria
severity prediction for ALS. Suhas et al. [5] have employed a
2D Convolutional Neural Network (CNN) for this purpose and
observed that log-mel spectrogram outperforms Mel-Frequency
Cepstral Coefficients (MFCC) as the input speech representa-
tion for the proposed system. Wisler et al. [6] have utilized
speech along with articulatory data to estimate the ALSFRS-R
bulbar subscore using linear ridge regression and support vector
regression. The primary challenge in developing sophisticated

dysarthria severity prediction models is the scarcity of data re-
sources. Collecting speech data from patients having speech
impairments is a delicate and laborious task. Getting the col-
lected data clinically annotated for dysarthria severity further
adds to the difficulty. Hence, the dysarthria severity prediction
systems to be developed should essentially be data-efficient.

Data scarcity not only reduces the efficiency of the classi-
fiers but also affects their generalizability as the models tend
to overfit to the small amount of training data. In deep learn-
ing practice, transfer learning is used frequently to deal with
these issues. In this method, the learning achieved through
some auxiliary tasks or from some auxiliary datasets is uti-
lized to train the models for the primary task at hand. Trans-
fer learning has already been adopted in various domains of
dysarthric speech research including dysarthric speech recogni-
tion [7, 8, 9, 10, 11], dysarthric speech enhancement [12], ALS
vs. HC classification [13] and Parkinson’s Disease (PD) detec-
tion [13, 14]. Joshy et al. [15] have employed multi-head atten-
tion with multi-task learning for automatic dysarthria severity
classification for patients with Cerebral Palsy. Identification of
gender, age and disorder-type have been explored as the aux-
iliary tasks. Vásquez et al. [16] have proposed a CNN-based
multi-task learning approach for dysarthria severity assessment
of PD patients. Eleven different auxiliary tasks including PD vs.
HC classification and assessments of the degree of impairment
of different articulators like lips, palate, tongue and larynx have
been considered. Soleymanpour et al. [17] have trained a 1D
CNN for dysarthria severity assessment through cross-dataset
transfer learning. All these works have demonstrated supe-
rior severity prediction results while employing transfer learn-
ing methods. However, to the best of our knowledge, no effort
has yet been reported towards employing transfer learning ap-
proaches for dysarthria severity classification specific to ALS.

In this work, we explore the utility of two particular transfer
learning approaches, namely, fine-tuning from an auxiliary task
and multi-task learning, as well as their combinations for devel-
oping dysarthria severity prediction systems for ALS patients.
Our primary task is to perform 3-class dysarthria severity classi-
fication [normal (N) speech, mild (M) dysarthria and severe (S)
dysarthria] using spontaneous speech utterances. We consider
input speech Feature Reconstruction (FR) and Gender Classifi-
cation (GC) as the auxiliary tasks. In one setting, we perform
transfer learning within the same ALS speech dataset which is
used for severity classification by leveraging only the auxiliary
tasks. This approach is expected to benefit the generalizability
of the severity classifier as it regularizes the model training. In
the other setup, we exploit the knowledge gained from some
auxiliary datasets of healthy speech by virtue of the auxiliary
tasks. In all cases, temporal statistics of MFCC are used as the
input speech features and dense neural networks are used for
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Figure 1: Block diagram of different network training protocols used in this work; here, dotted arrows indicate that the weights learned
during pre-training are used as initializations in the next step

carrying out the primary and auxiliary tasks. Experimental val-
idation using 120 ALS patients confirms that transfer learning
indeed aids the dysarthria severity classification systems with
a significant hike of upto 11.03% in the average classification
accuracy as compared to the case with no transfer learning.

2. Method
We pose dysarthria severity prediction as a 3-class classification
problem. According to the speech component of ALSFRS-R
scale, dysarthria severity can be quantized into 5 discrete lev-
els ranging from 0 to 4 where 4 indicates normal speech and 0
denotes complete loss of useful speech. We consider severity
levels 0 and 1 together as the severe class (S), 2 and 3 together
as the mild class (M) and 4 alone as the normal class (N). We
use dense neural networks as the classifiers with temporal statis-
tics of MFCC over an entire utterance as the input features. We
analyze the effect of different transfer learning schemes in im-
proving the classification performance of the network. Figure 1
illustrates different approaches explored in this work.

2.1. Single Task Direct Learning (STDL)

In this approach, a network with an encoder followed by a clas-
sifier module is employed. The encoder module extracts latent
representations from the input features which are then utilized
by the classifier module to predict the severity class. The net-
work weights are initialized randomly and then trained to min-
imize categorical cross-entropy loss for our primary task of 3-
class severity classification.

2.2. Transfer learning protocols

We primarily consider two paradigms of transfer learning, e.g.
fine-tuning and multi-task learning, along with combinations of
the two, to complement the training of the severity classifier.
1. Fine-Tuning (FT): A randomly initialized network with an
encoder module followed by an auxiliary task module is first
pre-trained for an auxiliary task by minimizing the concerned
loss function. The auxiliary task module is then replaced by
the classifier module (as in STDL) without altering the encoder
block. Pre-trained weights from the auxiliary task are used to
initialize the encoder while the classifier weights are initialized
randomly. Finally, this network is fine-tuned for severity classi-
fication by minimizing the cross-entropy loss, as in STDL.
2. Multi-Task Learning (MTL): Here, the latent representa-
tions learned by the encoder module are fed parallelly to the
classifier and the auxiliary task module. Thus, the network can
perform severity classification and the auxiliary task at the same
time. All weights of the network are initialized randomly and

subsequently adapted through joint minimization of loss func-
tions associated with severity classification and the auxiliary
task. Equal weightage is given to both the losses.
3. Multi-Task Learning with Pre-training and Layer Freez-
ing (MTLp): This approach is a combination of the previous
two approaches. The first step, in this case, is same as the pre-
training step of FT. In the second step, a randomly initialized
classifier block is added to the pre-trained network in parallel
to the auxiliary task module, thus making the network architec-
ture same as in the case of MTL. The weights of the auxiliary
task module are freezed at the pre-trained values while the pre-
trained encoder weights and the randomly initialized classifier
weights are fine-tuned by jointly minimizing the loss functions
associated with severity classification and the auxiliary task. In
this case also, equal weightage is given to both the losses.

Auxiliary tasks and losses
In all the above-mentioned schemes, input Feature (i.e. MFCC
statistics) Reconstruction (FR) and 2-class Gender Classifica-
tion (GC) are explored as the auxiliary tasks. The FR task
might help the latent representations learned by the encoder to
retain most of the important information present in the input fea-
tures. On the other hand, dysarthria might cause gender-specific
acoustic changes to the patients’ speech. Thus performing GC
as the auxiliary task might help in efficiently capturing such in-
formation in the learned latent representations. For FR, mean
squared error between the input and reconstructed features is
used as the auxiliary loss function, whereas, for GC, binary
cross-entropy serves as the auxiliary loss.

Learning within and across datasets
All the transfer learning approaches considered in this work can
be implemented with two different setups of data usage. In
the first condition, only the ALS dataset is used for all auxil-
iary tasks as well as the primary task of severity classification.
Thus, in this setup, transfer of knowledge occurs within the
same dataset from one task scenario to the other. This method
attempts to regularize the network by training it for multiple
goals. As a result, the network becomes more generalizable. In
the second condition, some auxiliary datasets of speech record-
ings obtained from HC subjects are employed for transfer learn-
ing purposes. Pre-trainings for auxiliary tasks, as required in the
cases of FT and MTLp, are performed on the auxiliary datasets.
Moreover, during joint learning of primary and auxiliary tasks,
as in the cases of MTL and MTLp, a portion of the auxiliary
dataset is considered along with the ALS dataset. In order to
fit this auxiliary HC data in the framework of severity classifi-
cation, we modify the severity classification task from being 3-
class to 4-class classification problem with the 4th class being
speech from HCs. Equal number of HC subjects as in the ALS
severity class with least subjects are randomly chosen from the



auxiliary dataset for this purpose. However, no auxiliary data
is used during the testing phase. The ALS utterances which are
predicted as healthy (i.e. the 4th class) during testing are rela-
beled as normal (N) speech class of ALS. In case of MTLp, two
further sub-conditions are considered while using the auxiliary
datasets. In MTLp1, the pre-training is done using auxiliary
datasets but the network adaptation through multi-task learning
is performed using only the ALS data, whereas, in MTLp2, aux-
iliary data are used in both pre-training and network adaptation.

3. Dataset
ALS dataset
Spontaneous speech recordings were collected from 120 ALS
subjects at the National Institute of Mental Health and Neuro-
sciences, India. Dysarthria severity of the subjects were an-
notated by three SLPs according to the speech component of
ALSFRS-R scale. The mode of the three ratings was considered
as the final severity score. Demographic details of the subjects
are given in Table 1. The subjects had five different native lan-
guages, namely, Bengali, Hindi, Tamil, Telugu and Kannada,
with approximately equal proportion of subjects belonging to
each language. During data collection, the subjects were asked
to talk about a festival they celebrate and a place that they had
recently visited in their respective native languages for around
one minute each. They were given a few minutes of prepara-
tion time. Further details about the data collection procedure
and the recording setup can be found in [3]. The total durations
of speech data recorded from subjects of each severity level are
mentioned in Table 1. The hospital ethics committee reviewed
and approved the data collection protocol. A consent form was
also signed by each subject prior to data collection.
Auxiliary datasets for transfer learning
Apart from the ALS dataset, three other datasets are used in
this work for the purposes of transfer learning. A spontaneous
speech dataset collected in-house from 88 HC subjects has been
considered. The speech tasks and recording protocols used for
this dataset are identical to those of the ALS dataset. Similar
to the ALS subjects, the HC subjects also had the same five
native languages. Besides this, TIMIT [18] and Indic TIMIT
[19] datasets containing read speech data in American and In-
dian English, resepectively, have also been considered. Further
details about these three datasets are given in Table 2.

4. Experimental setup
Feature extraction
12D MFCC (excluding energy coefficient) with delta and
double-delta measures constituting a 36D vector is computed
from every 20 ms speech frame with 10 ms overlap. Frame-
wise energy-based Voice Activity Detection (VAD) is then
performed to identify and remove the silence frames. Both

Table 1: Severity-wise subject demography and recorded speech
data duration for ALS dataset

Severity
class Severe (S) Mild (M) Normal (N)

ALSFRS-R 0 1 2 3 4
#M:#F 9:13 12:6 15:5 11:9 27:13

Mean (SD)
of age
(years)

58.55
(1.14)

56.63
(1.20)

51.10
(1.08)

54.45
(1.04)

52.28
(0.76)

Speech
duration

(min)
32.04 36.58 41.96 39.60 86.04

these steps are performed using the KALDI speech recogni-
tion toolkit [20]. During VAD, frames having log mel energy
higher than the threshold of [τ1 + τ2∗(mean log mel energy of
the utterance)] are marked as speech and the rest as silence. We
set τ1 = 5 and τ2 = 0.5 which are the default values used
in KALDI. Temporal statistics vectors, namely, mean, median,
Root Mean Square (RMS) value and Standard Deviation (SD),
of MFCC are then computed over all speech frames of an ut-
terance. These statistics vectors are concatenated leading to a
144-D feature vector for each utterance. Lastly, z-score normal-
ization is applied individually on each dimension of the feature
vector using the mean and SD obtained from the train set.

Model description
All neural network blocks used in this work are dense networks.
The architectures of these blocks are as follows.
1. Encoder: It is a 2-layer dense network with each layer hav-
ing 128 neurons and ReLU activation function. It takes the 144-
D feature vectors of MFCC statistics as input and generates 128-
D latent representations. Batch Normalization is performed on
the output of the first dense layer. Moreover, for the purpose
of regularization, dropout with frequency 0.3 is also added after
batch normalization and the second dense layer.
2. Classifier: This block comprises of a single dense layer with
3 neurons and softmax activation, except in the cases of MTL
and MTLp with auxiliary data where this layer constitutes 4
neurons. It takes the 128-D latent representations as input and
predicts the severity class labels.
3. Auxiliary task module: Two different architectures of this
module are used for the two auxiliary tasks of FR and GC. In
case of FR, this module is designed as a 2-layer dense network
where the first layer has 128 neurons with ReLU activation
and the second layer has 144 neurons with linear activation.
A dropout layer with probability 0.3 is inserted after the first
layer. This module takes the 128-D latent representations ob-
tained by the encoder as input and generates the reconstructed
feature vectors of dimension 144. For the task of GC, a single
dense layer with 2 neurons and softmax activation is employed
as the auxiliary task module. This module also takes the 128-D
latent representations as input and predicts the gender labels.

All networks are trained using Adam optimizer with a
learning rate of 0.001. The batch size is kept at 32. For each
model, training is continued till a maximum of 100 epochs,
while early stopping with a patience of 8 based on validation
loss is imposed to avoid overfitting. All model implementations
are done using Keras v1.0 [21]. An NVIDIA GeForce RTX
2080 GPU is used for training and testing the models.

Evaluation protocol
For all experiments, the ALS dataset is randomly split into train-
ing, validation and test sets containing 60%, 20% and 20% of
the subjects, respectively. This random splitting is done 10
times to facilitate 10-fold validation. The mean and SD of the
balanced classification accuracies for the 3-class severity classi-
fication obtained over this 10-fold validation are reported as the
performance metrics. For transfer learning using Indic TIMIT

Table 2: Subject demography and recorded speech data dura-
tion for auxiliary datasets

Dataset HC data Indic TIMIT TIMIT
#M:#F 67:21 39:41 438:192

Mean (SD) of
age (years)

43.02
(9.13)

25.42
(6.05)

29.78
(8.09)

Speech
duration (hours) 2.90 234.47 5.38



Table 3: Mean balanced classification accuracies in % (SD in bracket) obtained over 10-folds of random validation using different
network training schemes; here, * indicates the approaches which outperform STDL at 1% significance level and # indicates that FR
outperforms GC as the auxiliary task at 1% significance level

Auxiliary data Auxiliary task STDL
- - 69.08 (3.66)

FT MTL MTLp1 MTLp2

- FR 77.14 (6.53)* 75.50 (3.91)* 77.66 (3.47)* -
GC 74.30 (5.82) 75.44 (5.46) 73.17 (6.32) -

HC data FR 76.82 (4.98)* 74.88 (5.61) 76.28 (4.47)* 76.56 (6.37)
GC 74.58 (4.39)* 73.70 (3.69)* 74.23 (7.16) 74.41 (4.78)*

Indic TIMIT FR 78.60 (6.52)* 75.88 (4.68)* 77.38 (3.75)* 75.41 (3.96)#*
GC 71.22 (6.59) 75.45 (4.58) 71.56 (4.38) 71.02 (5.79)

TIMIT FR 75.75 (5.34)* 78.72 (6.89)* 75.75 (6.79)* 80.11 (3.80)*
GC 77.19 (4.26)* 77.52 (5.51)* 75.34 (3.66)* 76.60 (5.48)*
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Figure 2: Confusion matrices averaged over 10-folds of random validation for STDL and the best performing configurations of the
transfer learning approaches; here, S: Severe class, M: Mild class, N: Normal class; the entry in the cell (i, j) of each matrix indicates
the % of samples of true class i which are being classified as class j

and HC datasets, random 80% of the subjects are chosen to form
the training set while the rest 20% form the validation set. In
case of TIMIT, the train-test splits given by the dataset authors
are used as the training and validation sets. Thus, the train set
contains 462 subjects whereas the validation set has 168 sub-
jects. No testing is done using these auxiliary datasets. Lastly,
Wilcoxon signed-rank test [22] at 1% significance level is car-
ried out to determine if the balanced classification accuracies
obtained using different approaches are significantly different.

5. Results and Discussion
Table 3 summarizes the dysarthria severity classification perfor-
mances achieved using STDL and different transfer learning ap-
proaches considered in this work. All transfer learning schemes
are observed to achieve higher mean accuracies than STDL. The
improvements are significant at 1% significance level for 13 out
of 15 configurations with FR as the auxiliary task and 7 out of
15 configurations with GC as the auxiliary task. The best aver-
age classification accuracy of 80.11% (11.03% higher than the
accuracy obtained using STDL) is achieved using MTLp2 with
FR as the auxiliary task and TIMIT as the auxiliary dataset.
These observations indicate that transfer learning indeed aids
dysarthria severity classification.

Table 3 also shows that the performances achieved using
the two auxiliary tasks are statistically similar in all cases ex-
cept MTLp2 with Indic TIMIT as the auxiliary dataset. In this
case, FR task outperforms GC at 1% significance level. How-
ever, the average accuracies achieved using FR tasks are higher
than those obtained using GC tasks in all cases except FT ap-
proach with TIMIT as the auxiliary dataset. Another observa-
tion evident from Table 3 is that, while using transfer learning,
the performances obtained with or without employing the aux-
iliary datasets are statistically similar. Though the HC data is
matched to the ALS data in terms of the speech task and lan-
guages, TIMIT and Indic TIMIT are essentially different. These
datasets have read speech in American and Indian English as
opposed to spontaneous speech in multiple Indian languages as

present in the ALS dataset. Thus, languages and speech tasks
do not appear to be a barrier while performing transfer learn-
ing. Moreover, for a particular configuration of auxiliary task
and dataset, the performances of all the four transfer learning
approaches are found to be statistically similar.

Figure 2 illustrates the average confusion matrices obtained
using STDL and the best performing configurations of FT,
MTL, MTLp1 and MTLp2 approaches. Correctly classifying
the utterances belonging to the mild class appears to be the pri-
mary challenge in the case of STDL. 72.02% utterances of this
class are mis-classified as the other two classes. The transfer
learning configurations significantly improve the performance
on the mild class, thereby driving the confusion matrices to-
wards being more diagonally dominant. While doing so, the
performances on the severe and normal classes degrade in a few
cases. However, the decline is not significant.

6. Conclusion
This paper empirically confirms the suitability of transfer learn-
ing approaches to circumvent the low data availability con-
straint encountered in developing dysarthria severity classifica-
tion systems for patients with ALS. The primary benefit is found
to be obtained in terms of better classification of utterances be-
longing to the mild dysarthric class. Moreover, on average, FR
tends to perform better than GC as the auxiliary task. No sig-
nificant effect of having language or speech task mismatches
between the ALS data and the auxiliary datasets is observed.
As our future work, we plan to explore wider varieties of auxil-
iary tasks and more complex architectures of the networks. We
also plan to perform 5-class dysarthria severity classification,
thereby directly predicting the ALSFRS-R speech subscore.
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