A Comparative Study on the Effect of Different Codecs on Speech Recognition Accuracy Using Various Acoustic Modeling Techniques

Srinivasa Raghavan¹, Nisha Meenakshi G¹, Sanjeev Kumar Mittal¹, Chiranjeevi Yarra¹, Anupam Mandal², K.R. Prasanna Kumar², Prasanta Kumar Ghosh¹

¹SPIRE LAB, Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India,
²Center for AI and Robotics, Bangalore, Karnataka, India

Section 1

- Introduction
- 2 Previous Works
- 3 Experiments
- 4 Results
- 5 Conclusion

Focus

A Comparative Study on the Effect of Different **Codecs** on **Speech Recognition** Accuracy Using Various Acoustic Modeling Techniques.

Speech Coding

Speech Coding

Speech Recognition

Speech Coding

ASR with Codec Distorted Input

Speech Coding

ASR with Codec Distorted Input

Note

- 1 The Channel Effect is not considered.
- **2** Effect of **Language Model** is not considered.

Common Speech Coders

Common Speech Coders

Codec	Туре	Band- width	Bit- rate (kbps)
G.711A	Waveform	Narrow	64
MELP	Parametric	Narrow	2.4
AMR- NB	Hybrid	Narrow	4.40
AMR- WB	Hybrid	Wide	23.85
G.728	Hybrid	Narrow	16
G.729A	Hybrid	Narrow	8
G.729B	Hybrid	Narrow	8
PCM	Waveform	Narrow	128
ADPCM	Waveform	Wide	32
GSM- 8k	Hybrid	Narrow	13
SPEEX	Hybrid	Wide	27.8

Common Speech Coding Strategies

Single Encoding-Decoding

Common Speech Coding Strategies

Single Encoding-Decoding

Tandem Encoding-Decoding

Problem statement

What is that **specific codec trained acoustic model**, that performs well for different types of input speech (coded or clean PCM) across different AMTs? **Robust to codec induced distortions.**

Single Encoding-Decoding

Single Encoding-Decoding

Tandem Encoding-Decoding

${\sf Key \ Finding} \ 1$

Single Encoding-Decoding

Tandem Encoding-Decoding

${\sf Key \ Finding \ 1}$

Single Encoding-Decoding

Tandem Encoding-Decoding

${\sf Key \ Finding \ 2}$

Tandem Encoding-Decoding

${\sf Key \ Finding \ 2}$

Tandem Encoding-Decoding

Cocktail Acoustic Model

Section 2

- Introduction
- 2 Previous Works
- **3** Experiments
- 4 Results
- 5 Conclusion

Existing Literature

Single Encoding-Decoding

- Lower recognition for low bit-rate codecs [Euler et al. (1994), Lilly et al. (1996)].
- 2 Study of speech recognition with **GSM codecs** [Kim et al. (2000), H.-G. Hirsch (2002)].
- 3 ASR under noisy conditions using G.729, G.723.1 and GSM codecs [Grande et al. (2001)]

Tandem Encoding-Decoding

- 1 Impact on ASR performance more for low bit-rate codecs [Lilly et al. (1996)].
- 2 Study of ASR performance under unkown Tandem scenario [Salonidis et al. (1998)].

Compensation Strategies

- **I** Enhancement of the decoded speech, robust feature extraction [Dufour et al. (1996)]
- 2 Adaptation of acoustic models [Mokbel et al.. (1997), Salonidis et al. (1998), Srinivasamurthy et al. (2001)]

Section 3

- Introduction
- 2 Previous Works
- 3 Experiments
- 4 Results
- 5 Conclusion

AMTs and Codecs

Acoustic Modeling Techniques (AMT)

- Monophone based GMM-HMM (MONO)
- Context-dependent triphone based GMM-HMM (CD-TRI)
- 3 The Subspace Gaussian models with boosted Maximum Mutual Information (SGMM)
- 4 DNN with DBN Pretraining (DNN-DP)
- 5 DNN with state-level MBR (DNN-DP-sMBR)

Details

- 1 Kaldi toolkit [Povey et al. (2011)].
- 2 ASR metric: Phoneme Error Rate (PER)
- 3 Codecs source: IT-UT standards, SoX, SPEEX.
- 4 0-gram language model.

List of codecs

Codec	Туре	Band- width	Bit- Rate (kbps)
G.711A	Waveform	Narrow	64
MELP	Parametric	Narrow	2.4
AMR- NB	Hybrid	Narrow	4.40
AMR- WB	Hybrid	Wide	23.85
G.728	Hybrid	Narrow	16
G.729A	Hybrid	Narrow	8
G.729B	Hybrid	Narrow	8
PCM	Waveform	Narrow	128
ADPCM	Waveform	Wide	32
GSM- 8k	Hybrid	Narrow	13
SPEEX	Hybrid	Wide	27.8

SPIRE LAB

Datasets

- TIMIT database. Sampling rate: 8kHz.
- Training set: 462 speakers with 3696 utterances.
- Development Set: 50 speakers with 400 utterances.
- Test Set: 24 speakers with 192 utterances.

- TIMIT database. Sampling rate: 8kHz.
- Training set: 462 speakers with 3696 utterances.
- Development Set: 50 speakers with 400 utterances.
- Test Set: 24 speakers with 192 utterances.

- TIMIT database. Sampling rate: 8kHz
- Training set: 462 speakers with 3696 utterances.
- Development Set: 50 speakers with 400 utterances.
- Test Set: 24 speakers with 192 utterances:

8 acoustic models using single encoding-decoding.

Codec	Туре	Band-	Bit-
		width	rate
			(kbps)
G.711A	Waveform	Narrow	64
			• •
MELP	Parametric	Narrow	2.4
AMR-	Hybrid	Narrow	4.40
NB	Ĭ		
AMR-	Hybrid	Wide	23.85
,	TTYDITU	vvide	23.03
WB			
G.728	Hybrid	Narrow	16
G.729A	Hybrid	Narrow	8
G.729B	Hybrid	Narrow	8
PCM	Waveform	Narrow	128
ADPCM	Waveform	Wide	32
GSM-	Hybrid	Narrow	13
8k			
SPEEX	Hybrid	Wide	27.8

- TIMIT database. Sampling rate: 8kHz
- Training set: 462 speakers with 3696 utterances.
- Development Set: 50 speakers with 400 utterances.
- Test Set: 24 speakers with 192 utterances:

8 acoustic models using single encoding-decoding.

Codec	Туре	Band- width	Bit- rate (kbps)
G.711A	Waveform	Narrow	64
MELP	Parametric	Narrow	2.4
AMR- NB	Hybrid	Narrow	4.40
AMR- WB	Hybrid	Wide	23.85
G.728	Hybrid	Narrow	16
G.729A	Hybrid	Narrow	8
G.729B	Hybrid	Narrow	8
PCM	Waveform	Narrow	128
ADPCM	Waveform	Wide	32
GSM- 8k	Hybrid	Narrow	13
SPEEX	Hybrid	Wide	27.8

- TIMIT database. Sampling rate: 8kHz
- Training set: 462 speakers with 3696 utterances.
- Development Set: 50 speakers with 400 utterances.
- Test Set: 24 speakers with 192 utterances:

8 acoustic models using single encoding-decoding.

Codec	Туре	Band- width	Bit- rate (kbps)
G.711A	Waveform	Narrow	64
MELP	Parametric	Narrow	2.4
AMR- NB	Hybrid	Narrow	4.40
AMR- WB	Hybrid	Wide	23.85
G.728	Hybrid	Narrow	16
G.729A	Hybrid	Narrow	8
G.729B	Hybrid	Narrow	8
PCM	Waveform	Narrow	128
ADPCM	Waveform	Wide	32
GSM- 8k	Hybrid	Narrow	13
SPEEX	Hybrid	Wide	27.8

6 Tandem test databases: 1) ADPCM→GSM-8k→SPEEX, 2) ADPCM→SPEEX→GSM-8k, 3) GSM-8k→ADPCM→SPEEX, 4) GSM-8k→SPEEX→ADPCM, 5) SPEEX→ADPCM→GSM-8k, 6) SPEEX→GSM-8k→ADPCM

Overview of Experiments: Single Encoding Decoding

Overview of Experiments: Single Encoding Decoding

G.728 G.729A G.729B AMR-NB MELP

TOP ACOUSTIC MODELS

Overview of Experiments: Single Encoding Decoding

EVALUATE THE PERFORMANCE OF THE SELECTED TOP ACOUSTIC MODELS

Overview of Experiments: Tandem Encoding Decoding

GSM-8K ADPCM SPEEX GSM-8K SPEEX ADPCM ADPCM SPEEX GSM-8K SPEEX ADPCM GSM-8K SPEEX GSM-8K ADPCM

EVALUATE THE PERFORMANCE OF THE SELECTED TOP ACOUSTIC MODELS+COCKTAIL MODEL

Section 4

- Introduction
- 2 Previous Works
- **3** Experiments
- 4 Results
- 5 Conclusion

Single Encoding Decoding

Single Encoding-Decoding

Question

What are the **best acoustic models** across all the AMTs for various coded speech?

- 8 Candidate Models: G.711A, MELP, AMR-NB, AMR-WB, G.728, G.729A, G.729B, PCM.
- 8 development and 8 test datasets.

Single Encoding Decoding: Choice of Top codecs

Single Encoding Decoding: Choice of Top codecs

The average (standard deviation) PER (%) for 8 acoustic models and 5 AMTs across the **development sets**.

Single Encoding Decoding: Choice of Top codecs

The average (standard deviation) PER (%) for 8 acoustic models and 5 AMTs across the **development sets**.

Results

- PER decreases with the improvements in the AMTs.
- Matched condition performs best across all the AMTs.

Histogram of top four ranked codecs across different AMTs.

Histogram of top four ranked codecs across different AMTs.

Results

- Higher bit rate codecs.
- Most of them are narrowband codecs.

Single Encoding Decoding: Performance of top codecs

EVALUATE THE PERFORMANCE OF THE SELECTED TOP ACOUSTIC MODELS

Single Encoding Decoding: Performance of top codecs

The average (standard deviation) PER (%) for the top 5 acoustic models (along with PCM and Mixed) and 5 AMTs across the **test sets**

Single Encoding Decoding: Performance of top codecs

The average (standard deviation) PER (%) for the top 5 acoustic models (along with PCM and Mixed) and 5 AMTs across the **test sets**

Results

- PER decreases with the improvements in the AMTs.
- Least PER for **G.711A** based acoustic model.

SPIRE LAB

Tandem Encoding Decoding

Tandem Encoding-Decoding

Question

How do the **top five acoustic models** perform across all the AMTs for tandem coded speech?

- 6 Candidate models: G.711A, AMR-WB, G.728, G.729A, G.729B, Cocktail.
- 6 blind test sets: Combinations of ADPCM, GSM-8k, SPEEX.

Tandem Encoding Decoding: Performance of top codecs

GSM-8K ADPCM SPEEX GSM-8K SPEEX ADPCM ADPCM SPEEX GSM-8K SPEEX ADPCM GSM-8K SPEEX GSM-8K ADPCM EVALUATE THE PERFORMANCE OF THE SELECTED TOP ACOUSTIC MODELS+COCKTAIL MODEL

Tandem Encoding Decoding: Performance of top codecs

The average (standard deviation) PER (%) for 6 acoustic models and 5 AMTs across six **blind** test sets

Tandem Encoding Decoding: Performance of top codecs

The average (standard deviation) PER (%) for 6 acoustic models and 5 AMTs across six blind test sets

Results

- PER decreases with the improvements in the AMTs.
- Least PER for **G.711A** based acoustic model.
- Cocktail acoustic model is comparable to the matched condition.

Section 5

- Introduction
- 2 Previous Works
- **3** Experiments
- 4 Results
- **5** Conclusion

${\sf Key \ Finding} \ 1$

Single Encoding-Decoding

Tandem Encoding-Decoding

Key Finding 1

Single Encoding-Decoding

G.711A

Narrowband High bit-rate codec

Tandem Encoding-Decoding

${\sf Key \ Finding \ 2}$

Tandem Encoding-Decoding

${\sf Key \ Finding \ 2}$

Tandem Encoding-Decoding

Cocktail Acoustic Model

Conclusions

1 Studied the **codec induced distortion** on the ASR performance.

Conclusions

- **1** Studied the **codec induced distortion** on the ASR performance.
- **Q. G.711A, a narrowband high bit rate codec**, results in the best ASR accuracy.

Conclusions

- Studied the **codec induced distortion** on the ASR performance.
- **Q.711A,** a narrowband high bit rate codec, results in the best ASR accuracy.
- If the pool of tandem topologies are known a priori, cocktail acoustic model could be used.

Conclusions

- Studied the **codec induced distortion** on the ASR performance.
- **Q.711A, a narrowband high bit rate codec**, results in the best ASR accuracy.
- If the pool of tandem topologies are known a priori, cocktail acoustic model could be used.

Future works

Effectiveness of the best performing models along with language models.

Conclusions

- Studied the **codec induced distortion** on the ASR performance.
- **Q.711A, a narrowband high bit rate codec**, results in the best ASR accuracy.
- If the pool of tandem topologies are known a priori, cocktail acoustic model could be used.

Future works

- Effectiveness of the best performing models along with language models.
- **2** Compensation of the codec induced distortions to aid ASR.

THANK YOU