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ABSTRACT

In this work, we focus on estimating articulatory movements from
acoustic features, known as acoustic-to-articulatory inversion (AAI),
for dysarthric patients with amyotrophic lateral sclerosis (ALS). Un-
like healthy subjects, there are two potential challenges involved in
AAI on dysarthric speech. Due to speech impairment, the pronun-
ciation of dysarthric patients is unclear and inaccurate, which could
impact the AAI performance. In addition, acoustic-articulatory
data from dysarthric patients is limited due to the difficulty in the
recording. These challenges motivate us to utilize cross-corpus
acoustic-articulatory data. In this study, we propose an AAI model
by conditioning speaker information using x-vectors at the input,
and multi-target articulatory trajectory outputs for each corpus
separately. Results reveal that the proposed AAI model shows
relative improvements of the Pearson correlation coefficient (CC)
by ~13.16% and ~16.45% over a randomly initialized baseline
AAI model trained with only dysarthric corpus in seen and unseen
conditions, respectively. In the seen conditions, the proposed AAI
model outperforms the three baseline AAI models, that utilize the
cross-corpus, by ~3.49%, ~6.46%, and ~4.03% in terms of CC.

Index Terms— Amyotrophic lateral sclerosis, acoustic-to-
articulatory inversion, transfer learning, x-vectors, BLSTM.

1. INTRODUCTION

Amyotrophic Lateral Sclerosis, abbreviated as ALS, is a nervous
system disease with a progressive increase in severity. The disease
affects the brain and the spinal cord, with an eventual decline in the
electrical signals sent by the brain. This slows down the muscular
responses [1]. The major effects of ALS also include an inability to
speak, lifting of hands, and doing other basic motor actions. Since
a subject suffering from ALS finds it difficult to speak, this leads
to a poor pronunciation alongside a mumbling and an unintelligible
speech, with the condition being termed as dysarthria [2]. Dysarthria
adversely affects the articulators [3] including the lips, jaw, tongue,
and velum, particularly with an increase in the dysarthria severity
level [3, 4]. The symptoms of the disease have no impact on the
comprehension and intellectual aspects of the natural language of a
patient [5].

Dysarthria comes with wide variability in the impediment of
articulation, which varies from patient to patient. Conventionally, to
informally assess the degradation of articulation, speech-language
pathologists (SLPs) resort to different speech stimuli viz. reading
a passage, reading a word, spontaneous speech or rehearsed speech
[6]. To make a critical assessment of the poor articulation of a
dysarthric patient, it is important to analyze the real-time articula-
tory movements, collected using Electromagnetic Articulography
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(EMA). The presence of sensor coils and wires prohibits a long
recording session for each patient, typically leading to a small
amount of articulatory recordings. For example, we, for this work,
could collect roughly 2 to 5 minutes of acoustic-articulatory data
per patient. The scarcity of data motivates us to develop techniques
for estimating articulatory movements from acoustic recordings, or
acoustic-to-articulatory inversion (AAI) [7], for dysarthric patients
in such a low-resource condition.

Deep learning approaches, especially Bidirectional Long-Short
Term Memory (BLSTM) as recurrent neural networks, have been
shown to achieve the state-of-the-art performance for AAI in low-
resource data conditions [8]. However, it demands a significant
amount of acoustic-articulatory data from a subject. As the amount
of data from ALS patients is comparatively less, to train such an AAI
model, in this work, we conduct experiments to study the usage of a
cross-corpus acoustic-articulatory data, comprising data of healthy
control subjects only, for training an AAI model for dysarthric
speech by deploying transfer learning and joint-training techniques.
The objectives of our work are to : 1) study the AAI model’s perfor-
mance on the dysarthric speech when the model is trained in a corpus
dependent manner using a matched low-resource dysarthric corpus
or using a mismatched cross-corpus with rich acoustic-articulatory
data, 2) investigate the benefit of utilizing cross-corpus data using
transfer learning techniques and by joint-training for the articulatory
predictions of healthy control and dysarthric subjects, 3) assess the
variations in the performance of AAI for different speech stimuli
used for informal assessment by SLPs, 4) do articulatory specific
analysis on AAI performance and analysis of the frequency charac-
teristics of the ground truth and predicted articulatory trajectories
for healthy controls and patients. The findings from this investiga-
tion could benefit pathological speech assessment applications like,
developing speech-based assistive tools for SLPs to monitor the de-
cline in articulatory movements directly from the speech acoustics
of dysarthric patients.

2. DATASETS

Experiments were carried out with acoustic-articulatory data which
was recorded using Electromagnetic Articulograph (EMA), AG501
[9]. Using EMA recording setup, synchronous speech acoustics and
articulatory movements were captured. Speech was recorded using
t.bone EM9600 shotgun [10], unidirectional electret condenser mi-
crophone at 44.1 kHz sampling rate. Articulatory movements were
captured using EMA sensors at a 250 Hz sampling rate. We recorded
the movements of six articulators, namely, upper lip (UL), lower lip
(LL), jaw (JAW), tongue tip (TT), tongue body (TB), and tongue dor-
sum (TD). For head movement correction, two sensors were attached
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behind the ears [11]. The sensors on the articulators were glued,
following the guidelines provided in [12]. Articulatory movements
were considered in the horizontal (X) and vertical (Y) directions
in the midsagittal plane from 4 articulators for this work. TB and
TD sensors were ignored since these measurements were not avail-
able for all patients (to minimize discomfort we avoided connecting
these sensors to several patients). This results in 8-dimensional ar-
ticulatory features, which are indicated by UL, ULy, LL., LL,,
JAWy, JAW,, TT,, TT,. The acoustic-articulatory data used in
this work was collected at two places with different stimuli, lan-
guages, and age groups. The details are provided in the following
subsections.

2.1. Cross-corpus

The cross-corpus acoustic-articulatory data were recorded with sub-
jects speaking 460 phonetically balanced English sentences from the
MOCHA-TIMIT [13]. The corpus includes 38 healthy control sub-
jects, which consists of 21 males and 17 females with an age range
between 20-28 years. The data collection was done at SPIRE Lab,
Indian Institute of Science (IISc), Bengaluru, India. The subjects
were students and research scholars at IISc with proficiency in En-
glish. None of the subjects were reported to have any speaking
disorders. After removing silences, the total duration of acoustic-
articulatory data was ~11.4 hours, with an average duration of ~18
minutes/subject.

2.2. Dysarthric corpus

The recording session for the collection of the acoustic-articulatory
data comprising the dysarthric group was conducted at the National
Institute of Mental Health and Neurosciences (NIMHANS), Ben-
galuru, India. The subjects were requested to sign a consent form
before the recording sessions could start. The recording was ap-
proved by the ethics committee of NIMHANS. We also collected
acoustic-articulatory data from a group of healthy control subjects,
to compare with the dysarthric articulation. The healthy controls
and patients were identical with respect to age. We assured that the
speech stimuli were the same for the two groups. Data of 7 healthy
controls (4 males and 3 females) and 13 ALS patients (7 males and
6 females) constitute this corpus, with Kannada, an Indian language,
being their first native language. The healthy control subjects re-
ported to have no speech disorders in the past.

To informally examine the variability and waning of articulation
of ALS patients speaking Kannada, Babu et al. [14] suggested an
articulation test. We accept this test as a base, and employ three
standardized speech stimuli, which include reading a Kannada pas-
sage (T1), rehearsed speech (T2), and spontaneous speech (T3), with
each stimulus being performed by the subject for 2-3 times. T1 dealt
with subjects reading out a passage about history, with the assistance
of a clinician. The main objective of T2 was to request the subjects to
speak, "Nanna hesaru XYZ. Nanu iga Bengaluru nalli iddene. (My
name is XYZ. I am now in Bengaluru)”, with XYZ being the first
name of the subject. In T3, subjects were given the liberty to speak
whatever they wished to, with the majority of them talking about
their home, work, and lifestyle. This task provides an insight into
the natural way of speaking, and the articulation, by a subject. Si-
lences from all collected speech recordings were manually removed.

Table 1 provides the speech stimulus-specific utterance duration
for healthy controls and patients used in this work. Column ”Du-
ration Range” reports the range of utterance duration in seconds,
stimulus wise. Column “Total Duration (Duration/Subject)” indi-
cates the total duration of speech utterances alongside the duration
per subject. Note that not all the subjects were able to perform all the
tasks that have been mentioned above, due to discomfort caused by

Healthy Controls Patients
Tasks Duration Total Duration Duration Total Duration
Range (Duration/Subject) Range (Duration/Subject)
824.23 790.92
Tl 0.524-39.69 a17.7 0.427-34.3 (60.84)
158.37 566.60
T2 0.545-8.713 (22.62) 0.586-24.2 4358)
588.44 1245.07
T3 0.538-62.15 (84.06) 0.468-38.46 ©95.77)

Table 1. Speech stimulus-specific duration (in seconds) for the 7
healthy controls and the 13 ALS patients constituting the dysarthric
corpus.

the sensors. In summary, the average total duration of data collected
is 3.3 minutes/patient, and 3.74 minutes/healthy control.

3. PROPOSED APPROACH

Acoustic-to-articulatory inversion (AAI) is a regression problem.
The relationship between the input speech acoustics and the out-
put articulatory movements is known to be complex and non-linear
[15, 16]. Neural networks have been shown to perform well in
learning complex non-linear functions. In [8, 17], it has been shown
that BLSTM networks provide the state-of-the-art performance for
AAI Hence, in this study, we deploy a BLSTM network with three
hidden layers and time-distributed regression layers for AAL A
BLSTM network demands a large amount of acoustic-articulatory
data due to its network complexity. Thus, the available acoustic-
articulatory data from the dysarthric patients might not be sufficient.
Hence, we utilize the cross-corpus data using transfer learning and
joint-training techniques.

Several techniques have been proposed in the literature to
utilize multi-corpus, multi-speaker, and low-resource acoustic-
articulatory data. To overcome the limitation on the amount of
acoustic-articulatory data from a target subject, a low-resource AAI
model [8] was proposed using transfer learning, where a generic
background AAI model (GBM AAI) was trained by pooling the data
from all speakers, and then the GBM AAI was fine-tuned (GBM-
FT) on the low-resource data from the same corpus. An alternative
approach to GBM-FT was to provide speaker-specific information
as auxiliary features along with the acoustic features for learning the
rich acoustic-to-articulatory mappings of multiple speakers, known
as speaker conditioned AAI [18, 19]. As auxiliary features, one-hot
representation [18] of train subjects or x-vector embeddings [19]
were utilized. On the other hand, across the corpora, the articulatory
measurements differed to a large extent due to the differences in
the placement of sensors and the measurement devices, which limit
most of the previous works on AAI to a single corpus. In [20], a
multi-task learning AAI was trained using three different articulatory
corpora (three sets of target output, one for each corpus).

Multi-corpus BLSTM AAI model
conditioned with x-vectors (xMC)
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Fig. 1. Block diagram of the proposed multi-corpus BLSTM AAI
model conditioned with x-vectors (xMC).

In this work, we propose an AAI model by combining speaker
conditioning [19] and multi-task learning [20] approaches to utilize
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multi-speaker and multi-corpus data. The proposed speaker con-
ditioned multi-corpus AAI model is shown in Fig. 1. The multi-
corpus AAI model is conditioned with x-vectors [21] along with the
acoustic features, which is denoted as xXMC. The extracted x-vector
is replicated for every frame of an utterance, which equals the total
number of acoustic feature vectors. The x-vectors and the acoustic
features are fed as inputs to separate dense layers and then concate-
nated. The concatenated vector is fed to the BLSTM layers with the
output of the last layer being fed to two time-distributed linear re-
gression layers, where, the first eight dimensions correspond to the
articulatory trajectories of the cross-corpus, and the remaining eight
correspond to that of the dysarthric corpus.

4. EXPERIMENTAL SETUP

Pre-processing and extraction of features: The recorded acoustic-
articulatory data is pre-processed for both the corpora considered in
this work. The speech waveforms are down-sampled from 44.1 kHz
to 16 kHz. We use 39-dimensional Mel-Frequency Cepstral Coef-
ficients (MFCCs) as acoustic features, which have been shown to
be optimal for AAI [22, 23]. MFCCs are computed with a window
length of 20 ms and a shift of 10 ms using the Kaldi toolkit [24].
On the other hand, the articulatory trajectories are low-pass filtered
with a 25 Hz cutoff frequency to avoid high-frequency noise incurred
due to measurement error of EMA. The articulatory data is down-
sampled from 250 Hz to 100 Hz to obtain a one-to-one correspon-
dence with MFCC vectors. We further perform utterance level mean
and variance normalization across each dimension for both acoustic
and articulatory features. The Kaldi toolkit [24] is used to com-
pute the x-vector using a pre-trained model trained on the VoxColeb
database [25]. For the experiments, we consider a 5-fold cross-
validation setup in both seen and unseen subject conditions. The
healthy controls and patients from the dysarthric corpus are equally
distributed across the 5 folds. In the unseen condition, 16 subjects
from four groups are considered for training, and the remaining 4
subjects are considered for testing in a round-robin fashion. In the
seen condition, the dysarthric corpus is split into 10 groups covering
each stimulus uniformly. Each fold consists of 8 groups for train-
ing and the remaining 2 groups for testing in a round-robin fashion.
From the cross-corpus, we consider all the 38 subjects for training.

Baseline AAI models: As a baseline, we train an AAI model
using only the dysarthric corpus with randomly initialized weights,
indicated as RI AAI. To analyze the benefits of transfer learning, we
consider the GBM-FT [8], multi-corpus (MC) [20], and xSC [19] as
baseline AAI models to compare the performance of the proposed
xMC AAI model.

Training and network parameters: For GBM AAI training,
the cross-corpus data, with 38 subjects, is divided into the train
(34 subjects) and validation sets (4 subjects). We perform training
of the xSC network, as mentioned in [19], by pooling data from
both cross-corpus and dysarthric corpus. Experiments with the
multi-corpus AAI model (MC) are conducted with 3 BLSTM layers

Number of S RI AAT GBM AAT
een Unseen Healthy .
BLSTM nodes Healthy Controls|Patients/Healthy Controls[Patients|Controls Patients
3 0.42 0.48 0.40 0.42 0.49 0.50
(0.07) (0.06) (0.07) (0.07) | (0.09) | (0.09)
64 0.42 0.49 0.40 0.43 0.50 0.51
(0.08) (0.06) (0.08) (0.07) | (0.09) | (0.08)
128 0.45 0.52 0.42 0.46 0.50 0.51
(0.07) (0.06) (0.08) (0.07) | (0.08) | (0.08)
256 0.43 0.52 0.42 0.46 0.50 0.50
(0.08) (0.06) (0.08) (0.08) | (0.1) | (0.09)

Table 2. Average (standard deviation) of the CC values for the GBM
AAI and RT AAI models on the dysarthric corpus in seen and unseen
conditions.

(256 BLSTM units), and two output layers (separately for cross
and dysarthric corpus), which are time-distributed linear regression
layers (8-dimensions). For the evaluation results of MC and xMC,
the articulatory trajectories obtained corresponding to the dysarthric
corpus, are considered. For training the RI, GBM-FT, and xSC
models, we use the mean-squared error (MSE) as the loss function.
For the MC and xMC models, we use a custom loss function for
training, where the MSE loss computed at the output of the corre-
sponding corpus (to which the utterance belongs) backpropagates
the error to update the weights while masking the other corpus’
output estimates. Network parameters are optimized using Adam
optimizer for all the experiments. We perform early stopping based
on the validation loss. Experiments are done with Keras [26], with
Tensorflow [27] as the backend.

Performance metric: To evaluate the performances of different
AAI models, we use the Pearson Correlation Coefficient (CC) [8, 22]
between the ground-truth and its corresponding predicted articula-
tory trajectories.

5. RESULTS AND DISCUSSION

5.1. Evaluation of corpus dependent AAI models:

Table 2 reports the average (standard deviation) CC values on the
dysarthric data (test set) evaluated on the corpus dependent RI and
GBM AAI models. Unlike the RI AAI model, the GBM AAI model
does not have seen and unseen subject conditions, as the dysarthric
data is completely unseen. Thus, for a fair comparison, we compare
the GBM and RI AAI models’ performance in unseen subject con-
ditions. It is observed that the GBM AAI model (with 256 BLSTM
nodes) performs better than the RI AAI model (with 256 BLSTM
nodes) with a relative improvement of ~19.05% and ~8.7% for
healthy controls and patients, respectively. As the training data for
RI (~1.16 hrs) is less than that for GBM (~11.4 hrs), there is a
chance of over-fitting of the RI AAI model as both model networks
have equal complexity. To investigate this, we experiment with dif-
ferent numbers of BLSTM nodes (hidden units) for the Rl and GBM
AAI models. The performance of the RI AAI model increases as the
number of BLSTM nodes increases from 32 to 128 and saturates at
256, which indicates that the RI AAI model does not overfit to the
training data. It is observed that the GBM AAI model performs bet-
ter than the RI AAI model consistently for all choices of the number
of BLSTM nodes in unseen subject conditions. Thus, the GBM AAI
model which utilizes the cross-corpus data performs better than the
RI AAI model irrespective of the mismatch between the train and
test data related to language, speech stimuli, and age. Hence, using
the rich acoustic-articulatory data from a cross-corpus for training
helps in accurate articulatory movements prediction compared to us-
ing limited training data in Rl AAI model. In the next subsection, we
present the results by utilizing acoustic-articulatory data from both
the corpora.

5.2. Evaluation of AAI models utilizing cross-corpus:

Table 3 reports the average CC (standard deviation) obtained on
the dysarthric data (test set) using the different AAI models ex-
perimented in this work. Compared to the RI model, all the AAI
models utilizing cross-corpus show a significant improvement in
performance in both seen and unseen conditions. Thus, experi-
mental results reveal that utilizing rich acoustic-articulatory data,
from the cross-corpus, to learn an AAI model is beneficial for
low-resource dysarthric corpus. In seen conditions, for patients,
the proposed xXMC AAI model outperforms the RI, GBM-FT, MC,
and xSC AAI models with relative improvements of ~13.16%,
~3.49%, ~6.46%, and ~4.03%, respectively. For healthy controls,
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Seen Unseen
Speech} RI AAI GBM-FT AAI MC AAI xSC AAI xMC AAI RI AAI GBM-FT AAI MC AAI xSC AAI xMC AAI
Stimuli| Healthy [ . Healthy | . Healthy . Healthy | . Healthy | . Healthy . Healthy | . Healthy | . Healthy | . Healthy .
Controls| * " "|Controls| * " "|Controls Patients Controls| * " "|Controls Patients Controls Patients Controls| * " °|Controls| * " "|Controls Patients Controls Patients

Ti 0.472 | 0506 | 0.551 | 0.572 | 0.534 | 0.548 | 0.541 | 0.574 | 0.569 | 0.588 | 0.460 | 0.448 | 0.535 | 0.537 | 0.529 | 0.512 | 0.527 | 0.531 | 0.53 | 0.527
(0.09) | (0.09) | (0.09) | (0.08)| (0.11) | (0.1) | (0.11) | (0.08) | (0.1) | (0.1) | (0.11) | (0.09) | (0.1) | (0.1) | (0.1) | (0.08)| (0.12) | (0.09) | (0.01) | (0.09)
I~ 0.480 | 0.534 | 0.557 | 0.591 | 0.556 | 0.557 | 0.575 | 0.583 | 0.588 | 0.602 | 0.444 | 0.452 | 0.534 | 0.523 | 0.553 | 0.525 | 0.543 | 0.545 | 0.537 | 0.543
(0.09) | (0.06) | (0.09) | (0.06) | (0.09) | (0.07) | (0.09) | (0.08) | (0.09) | (0.06) | (0.09) | (0.09) | (0.12) | (0.07) | (0.09) | (0.07)| (0.11) | (0.11) | (0.12) | (0.08)
T3 0.389 | 0.528 | 0.462 | 0.564 | 0476 | 0.56 | 0.488 | 0.563 | 0.488 | 0.59 | 0.386 | 0.473 | 0.464 | 0.517 | 0.457 | 0.529 | 0.469 | 0.533 | 0.461 | 0.542
) (0.72) | (0.05) | (0.08) | (0.06) | (0.08) | (0.07) | (0.09) | (0.07) | (0.08) | (0.06) | (0.09) | (0.08) | (0.08) | (0.07) | (0.09) | (0.07)| (0.09) | (0.08) | (0.09) | (0.07)
?S\lg 0438 | 0.524 | 0.514 | 0.573 | 0.513 | 0.557 | 0.525 | 0.57 | 0.538 | 0.593 | 0.424 | 0.462 | 0.504 | 0.522 | 0.503 | 0.523 | 0.505 | 0.535 | 0.502 | 0.538
Dev) (0.08) | (0.06) | (0.08) | (0.06) | (0.09) | (0.07) | (0.09) | (0.07) | (0.08) | (0.07) | (0.09) | (0.08) | (0.09) | (0.07) | (0.09) | (0.07) | (0.1) | (0.08) | (0.09) | (0.07)

Table 3. Average (standard deviation) of the CC values for the AAI models using the cross-corpus, on the dysarthric data in seen and unseen

subject conditions.

in the seen conditions, the xMC AAI model performs the best with
a maximum relative improvement of ~22.83% over the RI AAI
model. In unseen conditions, for healthy controls, GBM-FT, MC,
xSC, and xMC AAI models have similar performances, while for the
patients, xSC and xMC show relative improvements of ~2.49% and
~2.86% when compared with GBM-FT and MC, respectively. This
could be due to conditioning with x-vectors at the input, leading
to a better generalization to unseen speakers [19]. Comparing the
performances of the AAI models for different speech stimuli (T1,
T2, and T3), it is observed that the CC value for task T3 is lower
than that of T1 and T2 tasks for healthy control subjects. Unlike
T1 and T2, in the case of T3, a subject can speak at his/her own
pace and the speech content can vary from subject to subject. This
brings higher variability within T3, and also contrasts with T1, T2,
and cross-corpus which are recorded while the subjects read sen-
tences/passage. These factors could lead to a performance drop in
T3 compared to T1 and T2.

5.3. Articulatory specific analysis:

Seen
T = Ty - T T T LY =
09F 77T H el Tl st TTTT T i
<l piE 0% e gp ed €8 g9
gop B Thn [ I
03F 11 i it : Lo g
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oofF iTrr Y:'y; FriTT i T it T-Tre e ]
T EIE R EERE]
R I T ' R
03F o o N R Lo A
ool PR i
07F Tt b
L 1 |

Fig. 2. CC values separately for each articulator predicted using
RI and xMC AAI models in seen and unseen conditions for healthy
controls and patients.

We compare the articulatory specific performances of the xMC
AAI model and RI AAI model. Fig. 2 illustrates the CC values
for the articulatory trajectories predicted from the RI and xXMC AAI
models in seen and unseen conditions for healthy controls and pa-
tients. It is observed that the XMC AAI model performs better than
the RI AAI model for all the articulators in both seen and unseen
conditions. For patients, in the seen conditions, we observe a maxi-
mum relative improvement for JAW,, (21.18%) and L L, (17.69%)
articulators, whereas in the unseen conditions, 7Ty (32.66%) and
JAW,, (26.25%) show maximum relative improvement.

Table 4 reports the cut-off frequencies (f.;) corresponding to
98% of the energy of the original and predicted articulatory trajecto-
ries (Arti Traj) from RI and xMC in seen and unseen conditions for
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Arti | Original Seen Unseen
Traj XMCAAI | RIAAT | xMCAAI | RIAAI
HC [ P |[HC| P |HC| P |HC| P [HC| P
UL, | 11.51|9.24 | 11.66 | 10.68 | 7.56 | 6.41 | 11.93 | 10.45 | 6.41 | 5.68
UL, | 9.76 | 8.88 | 13.59 | 12.36 | 8.61 | 7.87 | 13.46 | 11.83 | 7.72 | 7.29
LL., | 8.64 |7.83| 951 | 800 | 7.94 | 643 | 932 | 7.72 | 6.72 | 5.80
LL, | 942 [ 861 | 1038 | 8.65 | 8.50 | 7.03 | 10.12 | 8.02 | 742 | 637
JAW, | 8.86 | 8.80 | 9.00 | 8.38 | 8.85 | 7.08 | 9.84 | 7.86 | 7.40 | 6.19
JAW, | 8.87 | 847 | 10.07 | 829 | 879 | 7.01 | 9.72 | 7.83 | 7.35 | 6.21
TT, | 9.11 | 8.17] 9.85 | 8.86 | 8.08 | 6.77 | 9.72 | 838 | 6.63 | 6.28
TT, | 9.30 | 850 9.86 | 9.71 | 7.60 | 7.00 | 9.73 | 9.24 | 7.11 | 642

Table 4. Cut-off frequencies (f.) in Hz corresponding to 98% of
the energy of the original and predicted articulatory trajectories from
xMC and RI, in seen and unseen conditions for healthy controls (HC)
and patients (P).

healthy controls and patients. From the f. values of original trajec-
tories, we observe a drop in f. values in the case of patients com-
pared to the healthy controls for all the articulators. A similar trend
is observed for the predicted trajectories from the xXMC AAI model
in both seen and unseen conditions. However, in the case of the RI
AAI model, the f. values are found to be less compared to the orig-
inal articulatory trajectories for both patients and healthy controls
which could be due to the less variability in the dynamics of artic-
ulatory trajectories predicted from RI which leads to low-frequency
characteristics.

The low f. values for the original articulatory trajectories of the
dysarthric speech could be due to a decline in the speaking rate for
dysarthric patients [28]. Also, due to speech impairment, there could
be unclear pronunciation and lack of variability in the speech which
leads to a reduction in acoustic and articulatory space. However,
to understand how these factors could influence the performance of
AAI needs further investigation.

6. CONCLUSIONS

In this work, we performed experiments with different AAI mod-
els on dysarthric speech, by utilizing the cross-corpus data. Exper-
imental results revealed that the cross-corpus acoustic-articulatory
data was beneficial to learn AAI for dysarthric patients even though
both corpora were different in terms of age group, language, and
speech stimuli among subjects. We further studied the benefit of
conditioning the multi-corpus model with x-vectors. Experimental
results revealed that the XMC AAI model performed better than the
baseline RI for dysarthric patients and healthy controls, in seen and
unseen conditions. Further, for dysarthric patients, we showed that
the xMC AAI model performed better than or on par with baseline
AAI models which utilize cross-corpus data. Our future work in-
cludes investigating the role of mismatch in language and speaking
style (reading vs spontaneous) of cross-corpus on the performance
of different AAI models.
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