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Abstract—Automatic phrase boundary detection could be use-
ful in applications, including computer-assisted pronunciation
tutoring, spoken language understanding, and automatic speech
recognition. In this work, we consider the problem of phrase
boundary detection on English utterances spoken by native
American speakers. Most of the existing works on boundary
detection use either knowledge-based features or representations
learnt from a convolutional neural network (CNN) based archi-
tecture, considering word segments. However, we hypothesize that
combining knowledge-based features and learned representations
could improve the boundary detection task’s performance. For
this, we consider a fusion-based model considering deep neural
network (DNN) and CNN, where CNNs are used for learning
representations and DNN is used to combine knowledge-based
features and learned representations. Further, unlike existing
data-driven methods, we consider two CNNs for learning rep-
resentation, one for word segments and another for word-final
syllable segments. Experiments on Boston University radio news
and Switchboard corpora show the benefit of the proposed fusion-
based approach compared to a baseline using knowledge-based
features only and another baseline using feature representations
from CNN only.

Index Terms—Boundary detection, human-computer inter-
action, computer-assisted pronunciation tutoring, CNN based
representation learning

I. INTRODUCTION

Automatic phrasal boundary detection involves identifying
two types of prosodic boundaries that constitute the two
highest perceived strength of disjuncture between the words
[1], [2]. These two types of boundaries have been known
as intermediate, and intonation phrase boundaries [1]. Typi-
cally, in a spoken utterance, a rating representing perceived
strength of disjuncture between a pair of words is represented
using break-index [1], [2]. According to the tone break-index
(ToBI) [3] system, the values of the break-index range from
0 to 4, where 0 and 4 represent the least and the highest
disjuncture, respectively. The break indices 3 and 4 correspond
to intermediate and intonation phrase boundaries. These two
types of boundaries majorly describe the quality of fluency
in native English speakers, often used in computer-assisted

pronunciation tutoring (CAPT) [4], [5]. Also, the automatic
phrase boundary detection could be useful in the applications
of spoken language understanding [6], [7], [8] and automatic
speech recognition [9], [10], [11].

In almost all the existing works, the automatic phrase
boundary detection problem has been formulated as a binary
classification task by assuming the phrase boundary occurs
only at the end of word segments in a given test utterance
[12], [13], [14], [15], [16]. Considering this, features have
been derived for each word in the utterance, and the classifier
has been trained considering word associated boundary labels
indicating the occurrence of phrase boundary at the word’s end
[15], [16], [14]. Classifiers in most of the existing works have
considered that word ends associated with intermediate and
intonation phrase boundaries, i.e., break indices 3 and 4 are
labelled as class-1. The word ends correspond to the remaining
break indices as class-0 [17], [18], [16], [19]. Following these
works, we, in this work, use the same labelling procedure for
formulating phrase boundary detection.

Many existing works on phrase boundary detection have
used acoustic features derived from prosodic variations em-
bedded in frame-level frequency and energy values [12], [20],
[14], [13]. These features are heuristically computed applying
statistics on frequency and energy values within the segments,
including syllables and words, referred to as segment level
knowledge-based features. Considering these features, bound-
ary detection has been addressed using different modeling
techniques include decision trees [12], [13], hidden Markov
model (HMM) [20], [14], Gaussian mixture model (GMM)
[20], neural network [15] conditional random field [16] and
support vector machine (SVM) [21], [19]. In addition to the
acoustic features, few works have considered syntactic and
lexical based information while modelling these features [14],
[21], [17]. However, both the information in those works are
obtained from canonical pronunciation, which the learners
might not follow. Thus, the models constructed using both
the information may not be applicable for all learners in
computer-assisted pronunciation training. In this work, we
perform boundary detection using only frame-level energy and978-1-6654-0522-5/21/$31.00 ©2021 IEEE
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frequency values, referred to as frame-level prosody features,
without considering both the information. Further, we consider
the features derived from first-order (∆) and second-order
(∆∆) differences on frame-level prosody features, which are
found to capture boundary specific prosodic cues much better.

In contrast to the boundary detection methods involving
heuristically computed features at the segment level, few other
works have directly used frame-level features within the seg-
ments [15], [18]. These works have considered convolutional
neural networks (CNNs) for learning high-level representa-
tions from frame-level features. After this, boundaries are
detected using these representations. In these works, frame-
level features include frame-level prosody features and Mel
frequency cepstral coefficients (MFCCs). These methods based
on representations learning have been shown to be effective
compared to the knowledge-based segment level features.
However, we believe that these representations might not
capture all segmental specific information containing boundary
detection cues. One such example could be syllable segment
duration, which varies due to pre-boundary lengthening prop-
erty in the segments (syllable or words). As per this property,
the segments at the boundary have a more considerable dura-
tion than the respective segments at the other locations in an
utterance [22].

Unlike the existing methods, we propose a model to facil-
itate both learned representations and segment level features
obtained from both types of segments – syllable and words.
For this, a combined deep learning architecture comprising
CNN and DNN is considered. In this, CNNs are used for rep-
resentation learning which takes frame-level prosody features
and its ∆ and ∆∆ variations within both syllable and word
segments. DNN is considered for fusing the representations
learnt from CNNs and segmental level features from both syl-
lable and word segments. Experiments performed on Boston
University radio news (BURN) [17] and Switchboard corpus
[23] containing intonation and intermediate phrase boundaries
show that the proposed method is more effective compared to
the top two best performing existing methods one [17] involve
only segment level features and the other [18] uses only CNN
based model.

II. DATABASE

In our work, we use BURN [24] and Switchboard [23]
corpora. Both the corpora have been used for most of the exist-
ing works on boundary detection. The BURN corpus contains
recordings with a sampling frequency of 16kHz of broadcast
news from American native English speakers (three female
and four male speakers). The data also contains the word
and phoneme transcriptions along with their respective time-
aligned boundaries obtained from a forced-alignment process.
From the phoneme transcriptions and the respective time-
alignments, we obtain syllable transcriptions and their time-
aligned boundaries using P2TK syllabifier [25]. In addition
to these, the corpus contains ToBI style boundary (break
index) annotations for a subset containing three male and three
female speakers. The recordings’ total duration has the ToBI

annotations is 2hr 48min, and the total number of words in
those recordings is 28862.

Switchboard corpus contains spontaneous speech record-
ings collected from telephonic conversations recorded with
a sampling frequency of 8kHz. This data was collected
from American native English speakers. In this data, syllable
transcriptions and their time-aligned boundaries are available,
along with word transcriptions and their boundaries. A subset
was provided with ToBI style break index annotations in the
entire data, resulting in 8hr and 10 min of recordings.

III. PROPOSED MODEL

Fig. 1. Block diagram of the proposed model for phrase boundary detection.
In the figure fword, fsyl represent combined frame-level prosody and MFCC
feature of the word and word-final syllable segment, fseg represent Segment
level knowledge of prosody based feature and Rword,Rsyl represent high-
level feature representation of the word and word-final syllable segment

Block diagram in Figure 1 shows four steps involved in
the proposed approach. Those are segment selection, feature
computation, representation learning and fusion. In the seg-
mentation step, we obtain time aligned boundaries of sub-
segments corresponding to words, word-final syllables and
word-final syllable nuclei using time-aligned boundaries of
phonemes, syllables and words. In the computation step, we
obtain frame-level MFCC features and frame and segment-
level prosody based features for word and word-final syllable
sub-segments. The frame-level prosody based features are
the low-level representations of prosodic variations. On the
other hand, the segment level features are computed based
on the knowledge of prosodic properties at the boundary, in
which word-final syllable nuclei sub-segments are used. In
the representation learning step, we learn high-level represen-
tations for word and word-final syllable segments separately
from the combined frame-level prosodic and MFCC features
corresponding to those segments in a data-driven manner using
CNNs. In the fusion step, the high-level representations of the
word and word-final syllable segment belonging to each word
are concatenated with segment level prosodic features to obtain
a 1-d feature vector. Following this, the 1-d feature vector is
considered to detect the phrase boundary using a DNN.
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A. Segment selection

For detecting the phrase boundary, many prior works have
considered the features computed within the three types of
segments – 1) word, 2) syllable, and 3) syllable nucleus by
assuming boundary labels are available with the respective
segments. However, few of the works have considered only
the word segments [13], [15], [18], [16], [12], [14]. On the
other hand, the remaining works have considered only syllable
and its nucleus segments [17], [20], [19], [21]. Further, it is
generally assumed that the phrase boundaries occur only at the
last syllable of a word, referred as word-final syllables [12],
[17], [20], [19], [21]. Considering these, most of these works
have forced the predicted boundary labels associated with the
non word-final syllables as ‘0’ [17], [20]. Unlike the previous
works, we explore the benefit of the features computed from
all the three types of segments by assuming boundary labels
are associated with the words only. For this, without loss of
generality, we consider only the word-final syllable and the
word-final syllable nucleus of a word for feature computation
instead of all the syllables and the syllable nuclei in the word.

B. Feature computation

1) Frame-level features:: It has been observed that the
phrase boundaries are identified based on acoustic cues in-
dicating prosodic properties such as tonal & stress variations
and pre-boundary lengthening [1], [3]. In order to capture these
cues for the task of boundary detection, existing works have
computed a set of segment-level features based on statistical
functions applied on frame-level pitch and energy values [17],
[20], [19], [21], which have been assumed to capture prosodic
properties. However, these statistical functions are derived
heuristically based on knowledge. Unlike these knowledge-
driven approaches, we, in this work, propose to model the
variations in frame-level features representing prosodic prop-
erties, referred to as frame-level prosody based features, in
a data-driven manner. Further, considering these features,
we allow the models to learn the feature representations at
the segment-level. Following the work by Stehwien et al.
[18], in this work, we consider the following frame-level
prosody based features – smoothed frequency, smoothed root
mean square(RMS) energy, harmonic-to-noise ratio, Pulse-
code modulation(PCM) loudness and voicing probability. In
addition to these features, they have also shown the benefit of
MFCC features in the boundary detection task. Thus, we also
consider MFCC features for the boundary detection task.

2) Segment-level features:: On the other hand, we hypoth-
esize that the data-driven modelling of frame-level prosody
and MFCC features might not capture the pre-boundary
lengthening property. This is because it has been shown that
the pre-boundary lengthening could be captured using the
duration of the segments such as syllable and syllable-nuclei
[22], [17], [19]. Thus, in this work, following the work by
Ananthakrishanan et al. [17], we also include the duration
based features – syllable and syllable nuclei duration [17],
referred to as segment-level features.

Fig. 2. Approximate linear curve plot for the (a), (b) Frequency variation
and (c) Energy variation, within the word-final syllable segment of word
‘APPOINTED’, ‘CALLS’ and ‘MEMBER’ respectively.

3) ∆ and ∆∆ frame-level features:: In order to represent
the dynamic variations in the frame-level features, most of
the works have included ∆ and ∆∆ variations to the frame-
level features [26]. In general, pitch and energy variations
are related to the following prosodic properties – tone and
stress. As described in ToBI, most of the boundary tones have
either a linear rising, a linear falling or constant trend in the
pitch values [1]. Similarly, Suni et al. [27] have emphasized
a linear falling trend in the energy values at the boundary.
Thus, we hypothesize that including ∆ and ∆∆ variations of
frame-level prosody features could capture boundary specific
prosodic cues much better by capturing such a linear trend in
the pitch and energy values at the boundaries.

These are illustrated in Figure 2 with exemplary word-final
syllable segments taken from the BURN corpus. Figure 2a and
b show pitch values in the word-final syllables of the words
‘APPOINTED’ and ‘CALLS’, respectively. The annotations
indicate that the pitch values follow rising and falling trends
within these syllables’ respective segments. In order to verify
this, we perform linear regression on the pitch values and plot
the obtained results in red colour for each segment separately.
From the figures, it is observed that the lines follow their
respective ground-truth rising and falling trends as per ToBI
[1] as well as closely follows the pitch values in both the
segments. Considering these, we believe that the pitch values
at the boundary approximately follow a linear trend. Similarly,
in Figure 2c, a falling trend in the energy values can be
observed for the word-final syllable segment of the word
‘MEMBER’.

C. Representation learning

We use CNNs for learning high-level representations from
the frame-level prosody and MFCC features for word and
word-final syllable segments separately. In the literature,
CNNs have been shown to be useful in learning representations
[28]. Typically, CNNs learn representations from the input by
performing convolution using a kernel followed by pooling.
Some of the existing works have used 2-dimensional (2D)
kernels for representation learning to capture temporal and
spatial dependencies in the input [29], [30]. Similarly, few
other works have used 1-dimensional (1D) kernels to obtain
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TABLE I
AVERAGE ACCURACY AND F1 SCORE EVALUATED OVER 10-FOLDS WITH DIFFERENT BASELINES AND PROPOSED MODEL FOR BOTH BURN AND

SWITCHBOARD CORPORA.

BURN corpus Switchboard corpus
Accuracy (std) F1 score (std) Accuracy (std) F1 score (std)

Proposed model 85.53 (0.41) 70.72 (3.26) 81.80 (1.58) 61.55 (3.69)
BL-NN 84.61 – 79.17 (1.70) 52.13 (2.75)

BL-CNN 84.08 (0.54) 68.38 (2.11) 80.87 (1.45) 58.04 (3.78)
Results with variants in proposed model

w/o ∆, ∆∆ 85.53 (0.81) 70.78 (3.49) 81.92 (1.66) 61.19 (2.95)
w/o fseg 85.48 (0.45) 70.96 (2.35) 81.71 (1.49) 61.28 (2.91)
w/o both 85.04 (0.85) 69.41 (3.48) 81.51 (1.66) 58.22 (4.33)

data-driven filtered output from the input [31]. Recently, the
effectiveness of CNN based modelling has been shown in
detecting prosodic events and lexical stress [18], [32]. Consid-
ering these as well as the effectiveness of 2D and 1D kernels of
the CNNs, in this work, we consider a CNN with 2D kernels
(2D-CNN) followed by a CNN with 1D kernels (1D-CNN)
and then average pooling for learning representations.

In the 2D-CNN, we use 100 number of 2D kernels of size
d×6 with a stride value of 4, where d is the total size of frame-
level prosody and MFCC features per frame. In the 1D-CNN,
we use and 100 number of 1D kernels of size 4 with a stride
value of 2. We perform average pooling on the convoluted
output from each kernel obtained after the 1D-CNN.

D. Fusion

We hypothesize that proposed segment-level features and
frame-level features are useful for the boundary detection
task. However, the segment-level features are 1D feature per
segment. Thus, it cannot be directly given as input to CNN.
In order to consider the benefit from both the features, we
use a DNN, which takes the feature vector of size 202 by
concatenating segment-level features (size of 2) with repre-
sentations learnt from CNNs from both word and word-final
syllable segments (size of 100 each). The DNN consists of
one hidden layer of 32 units, followed by a softmax layer. We
use the relu activation function in each hidden unit.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

1) Feature computation: We obtain frame-level prosody
feature using OpenSMILE toolkit [33], and MFCC using Praat
toolkit [34] for both the BURN and Switchboard corpora. In
the MFCC computation, we use a fixed set of filter cut-off
frequencies and band-width as available in the Praat. Thus,
MFCC features’ size depends on the utterances’ sampling
frequency, which results in 26 and 19 MFCC features for
BURN and Switchboard corpora, respectively. Both the frame-
level prosody and MFCC features are computed using a 20ms
window with a 10ms overlap. We perform zero-padding to
ensure fixed input feature dimensions separately for word and
word-final syllable segments.

2) Modeling: We perform experiments using all words
from all the utterances that contain ToBI break index an-
notations separately for both the corpora. A 10-fold cross-
validation setup is considered in the experimentation, where
eight folds are used for training, one for validation and one for
testing. We perform mean and variance normalization only on
segment-level features using mean and variance values com-
puted from the training set. Following the work by Stehwein
et al. [18], we consider the frame-level MFCC and prosody
features without normalization. We implement the model using
Keras [35]. The training is performed with 20 epochs with a
batch size of 10, including early-stopping and model-check-
point. In order to know the effectiveness of the proposed
approach, we consider two baseline schemes – 1) CNN based
work proposed by Stehwein et al. [18], referred to as BL-
CNN, 2) NN based work proposed by Ananthakrishnan et al.
[17], referred to as BL-NN. We conduct the experiments on
Switchboard and BURN corpora.

B. Results & Discussion

Table I shows accuracies and F1-scores (standard deviation
in brackets) averaged across all ten folds obtained with the two
baselines and proposed models for both the corpora. From
the table, it is observed that the proposed model performs
better than both the baselines on both the corpora. This
indicates the effectiveness of the proposed approach, which
benefits from combining the following three contributions –
1) learned representations from word-final syllable segments,
2) ∆ and ∆∆ frame-level prosody features, and 3) fusion of
segment-level features. One baseline (BL-CNN) uses only the
learned representations from the word segments, and the other
baseline (BL-NN) uses only heuristically derived segment-
level features. Further, in order to know the effectiveness of the
three contributions, we compute average accuracies and F1-
scores under following conditions – 1) learned representations
without ∆ and ∆∆, but with segment-level features (w/o
∆ and ∆∆ ), 2) learned representations with ∆ and ∆∆,
but without segment-level features (w/o fseg), and 3) learned
representation without both ∆ and ∆∆ and segment-level
features (w/o both).

From the table, it is observed that the accuracies obtained
with the proposed model are higher in most of the cases
than those obtained with three variants in the proposed model
under both the corpora. This indicates the effectiveness of

2021 National Conference on Communications (NCC)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on November 15,2024 at 09:44:32 UTC from IEEE Xplore.  Restrictions apply. 



the combination of all three variants in the proposed model.
Comparing the accuracy and F1 score of the proposed model
only with ∆, ∆∆ and without both the fseg and ∆, ∆∆, the
higher values with ∆, ∆∆ indicates the benefit of the proposed
∆, ∆∆ features. Similarly, the higher accuracy and F1 scores
values with only fseg comparing to those without both the
fseg and ∆, ∆∆ indicate the benefit of the fseg features
which are obtained in a knowledge-driven manner. Further,
comparing the accuracies and F1 scores from the proposed
approach without both the fseg and ∆, ∆∆ with those from
BL-CNN, the higher values indicate the need for using frame-
level features within both the word and word-final syllable
segments.

Fig. 3. Scatter plot of the 2D transformed output from t-SNE on the
representations obtained with the respective model at the input of soft-max
layer for proposed model, BL-CNN and BL-NN. In each case, FDR values
are computed and shown above the respective plots.

Further, we analyze the effectiveness of the proposed ap-
proach considering two-dimensional (2D) transformed output
obtained with t-SNE [36] shown in Figure 3 in comparison to
those obtained for BL-CNN and BL-NN. It has been shown
that the t-SNE method is useful in visualizing data, in which
a non-linear transformation exists between input and output.
In order to obtain 2D output, we use the representations at
the input of the soft-max layer separately for all the three
models on the test set as the input to the t-SNE method.
The dimensions of these representations are 32, 100 and
25 in the proposed model, BL-CNN and BL-NN, respec-
tively. We hypothesize that these representations capture the
effectiveness of both the input frame/segment level features
and the representations learned with the model. We also
compute the Fisher discriminant ratio (FDR) on 2D outputs
to know the discriminability between the 2D representations
between the two classes quantitatively for each model. The
2D representations are more separable from the figure, and the
respective FDR is higher in the case of the proposed approach
than those with BL-CNN and BL-NN. This also suggests the
effectiveness of the learned representations and segment-level
features used in the proposed model for the boundary detection
task.

V. CONCLUSIONS

Unlike the existing works, which consider either knowledge-
based features (duration) or data-driven representations from

frame-level prosody and MFCC features, we consider both
and propose a fusion-based modelling. With this, we could in-
corporate the duration-based features in the modelling, which
the data-driven approaches might not learn. We also consider
frame-level features within word and word-final syllable in
contrast to only word segments as considered in the existing
methods. Experiments on BURN and Switchboard corpora
revealed that the proposed method performs better than the
best of the existing knowledge-based methods and data-driven
methods. Further investigations are required to consider con-
text information for phrase boundary detection. Future works
also include estimated lexical and syntactic features and effects
on the phrase boundary detection.
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