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Abstract
Direct acoustic feature-based speaking rate estimation is useful in applications includ-
ing pronunciation assessment, dysarthria detection and automatic speech recognition.
Most of the existing works on speaking rate estimation have steps which are heuristi-
cally designed. In contrast to the existing works, in this work a data-driven approach
with convolutional neural network-bidirectional long short-term memory (CNN-
BLSTM) network is proposed to jointly optimize all steps in speaking rate estimation
through a single framework. Also, unlike existing deep learning-based methods for
speaking rate estimation, the proposed approach estimates the speaking rate for an
entire speech utterance in one go instead of considering segments of a fixed duration.
We consider the traditional 19 sub-band energy (SBE) contours as the low-level fea-
tures as the input of the proposed CNN-BLSTM network. The state-of-the-art direct
acoustic feature-based speaking rate estimation techniques are developed based on
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19 SBEs as well. Experiments are performed separately using three native English
speech corpora (Switchboard, TIMIT and CTIMIT) and a non-native English speech
corpus (ISLE). Among these, TIMIT and Switchboard are used for training the net-
work. However, testing is carried out on all the four corpora as well as TIMIT and
Switchboard with additive noise, namely white, car, high-frequency-channel, cock-
pit, and babble at 20, 10 and 0dB signal-to-noise ratios. The proposed CNN-BLSTM
approach outperforms the best of the existing techniques in clean as well as noisy
conditions for all four corpora.

Keywords Speaking rate estimation · Acoustic feature-based estimation ·
Convolutional neural network · Bidirectional long short-term memory networks ·
Robust estimation under noise

1 Introduction

In general, speaking rate is measured as the number of speech units per second and
these speech units could be either phones or syllables. In most of the existing works,
syllables have been considered as the speech unit. It has been shown that the number
of syllables per second correlates well with oral fluency in the application of language
assessment [14,16]. Speaking rate could be useful for several applications including
automatic speech recognition (ASR) [49], detection of dysarthria [46], computer-
assisted language learning (CALL) [13] and emotion recognition [62].

Speaking rate is typically estimated in two ways—(1) ASR-based approach and (2)
direct acoustic feature-based approach. In the ASR-based approach, first, the syllable
segments are predicted using phonetic forced-alignment [63] followed by syllabifi-
cation processes [5]. Then, the predicted segments are used to estimate the syllable
rate. However, this approach suffers from several limitations—(1) the speaking rate
can be estimated only when speech with reference transcription is available [60], (2)
in case speaking rate needs to be estimated from speech under different conditions
(e.g., shouted, whispered, dysarthric speech), the ASR system, typically trained on
normal speech, fails to provide correct syllable boundaries [23] and (3) ASR-based
approach is computationally expensive [60]. On the other hand, in the direct acous-
tic feature-based approach, the speaking rate is estimated using the features derived
based on the acoustic properties of the vowels, which, in general, correspond to the
syllable nuclei [54,64]. This approach is computationally less expensive as compared
to the ASR-based approach [50]. In this work, we consider the problem of acoustic
feature-based automatic speaking rate estimation.

1.1 Significance of Speaking Rate

Speaking rate has been shown to be useful in several applications including pronunci-
ation assessment [13], ASR [12,49] and dysarthria [10]. Apart from these, it has also
played a role in problems including perception studies, age estimation etc.
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In the assessment of pronunciation, for Dutch fluency, Cucchiarini et al. had
observed that the speaking rate correlates well with the expert’s rating [13]. Further,
they concluded that the speaking rate was a good predictor of oral fluency. Similarly,
Black et al. found that human evaluators considered speaking rate to be a critical cue in
determining a child’s overall reading ability [8]. In another work, they used speaking
rate for automatic evaluation of non-native English pronunciation [7]. They observed
that the evaluated pronunciation obtained using speaking rate was more accurate than
those using pauses or goodness of pronunciation. Further, it was hypothesized that
direct acoustic feature-based speaking rate estimation could be useful for the applica-
tion of pronunciation assessment [60,61].

Speaking rate is also a critical element in ASR systems [12,49]. Richardson et
al. had found that the sensitivity of ASR to speaking rate limited its potential to be
effectively used for real-time applications [55]. They observed that the recognition
accuracy of an ASR system is affected by the mismatch between the speaking rate in
the training and testing conditions. In order to overcome this drawback and improve
ASR accuracy, they proposed a normalization technique on the phoneme durations in
an utterance for improving fast speech recognition [55]. Similarly, Bartels and Bilmes
incorporated speaking rate in the recognitionmodels [4]. They considered the speaking
rate estimation proposed by Wang et al. [59,60] where direct acoustic feature-based
approach was used. Zheng et al. used a rate specific acoustic model [67] to make their
ASR systems robust to fast speech.

It has been observed that speaking rate is low for people with neurological disorders
that affect speech motor control like Parkinson’s induced hypokinetic dysarthria [10]
or apraxia of speech like stuttering [36]. Jiao et al. proposed a direct acoustic feature-
based speaking rate estimation technique for monitoring the progress of dysarthria
[33]. They observed that the estimated speaking rate followed the deterioration in
speaking ability caused by the disease. Further, it has been shown that speaking rate
depends on various factors including individual character [3,48], age [2], demographic,
cultural, psychological and physiological factors [2]. Thus, direct acoustic feature-
based speaking rate estimation couldbeuseful for automatic predictionof those factors.

1.2 Review of ExistingWorks

In general, acoustic feature-based speaking rate estimation has been addressed in two
ways—(1) knowledge-driven methods and (2) data-driven methods.

In the knowledge-drivenmethods, first, a one-dimensional feature contour is derived
from speech signal such that the peaks in the contour correspond to the syllable nuclei
locations. Then, a peak detection algorithm is used to predict the number of syllables
usingwhich the speaking rate is estimated [61]. In thesemethods, both acoustic feature
computation and peak detection are carried out in a heuristic manner. Pfau and Ruske
used a smoothed modified loudness contour as an acoustic feature and estimated the
peaks using a threshold and frame range-based peak detection strategy [54]. Zhang and
Glass proposed a contour based on Hilbert envelope and used a rhythm guided peak
counting algorithm to estimate the syllable nuclei locations [65]. They improved the
peak counting by removing the peaks falling in the unvoiced regions using voiced and
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unvoiced (VuV) decisions from the estimated pitch values. Jong et al. estimated the
speaking rate using intensity-based envelope with peak counting along with VuV deci-
sions [35]. Similarly, Heinrich and Schiel used the short-time sound pressure energy
as the acoustic feature and obtained the peaks by a simple thresholding mechanism
[25].

In addition to these works, Kitazawa et al. proposed a wide-band spectrum of a
speech signal as an acoustic feature. The speaking rate was estimated bymeasuring the
dominant peaks in the spectrum [39]. However, Morgan and Fosler-Lussier had found
that the wide-band spectrum contained a lot of noise and, therefore, it became difficult
to estimate the speaking rate robustly [50]. Instead, they developed an approach based
on the sub-band energies (SBEs) and performed peak counting on the normalized
product of cross correlation between all pairs of the energies [50]. Further, Wang
and Narayanan improved this work by proposing a feature contour called “Temporal
Correlation Selected Sub-Band Correlation” (TCSSBC) [59,60]. Furthermore, they
used the estimated pitch along with the TCSSBC contour and a peak detection strategy
which involved a threshold for the distance between adjacent peaks.

On the other hand, only a few works exist that consider data-driven approaches,
where statistical learning methods are used either for directly estimating the speaking
rate from the acoustic feature, or to replace heuristic peak detection algorithms with
data-driven approaches. For example, Yarra et al. proposed a mode-shape classifica-
tion technique, wherein the smoothed TCSSBC contour was divided into single peak
segments (modes) and a D-dimensional mode shape vector (MSV) was generated
[61]. TheMSVs were then classified as syllabic or non-syllabic using a support vector
machine. Jiao et al. proposed a recurrent neural network (RNN) model for the estima-
tion of speaking rate over a window of fixed duration of 1s. For this, they computed
the features by using heuristic functions on the envelope modulation spectrum (EMS)
and MFCC of the speech signal [33]. However, this approach has the limitation of
using a fixed window duration of 1s. But, in general, the speaking rate often needs to
be estimated for a given speech utterance of any length.

1.3 Motivation for the Proposed Approach

Generally, in comparison with the knowledge-driven methods, speaking rate estima-
tion accuracy improves by using the data-driven methods [61]. However, existing
works on data-driven approaches for speaking rate estimation are limited to using
peak detection on features obtained heuristically from low-level representations. For
example, the feature contour (TCSSBC) used in the data-driven peak detection pro-
posed by Yarra et al. [61] was derived from 19 short-time SBE contours [59,60].
Similarly, in another work on data-driven peak detection proposed by Jiao et al. [33],
the features were computed from EMS and MFCCs. We hypothesize that such heuris-
tically derived features could degrade the performance of speaking rate estimation
techniques. In order to illustrate this hypothesis, we consider an exemplary utterance
“Don’t ask me to carry an oily rag like that.", taken from the TIMIT corpus in Fig. 1.
For the illustrative example, we consider TCSSBC and the corresponding 19 short-
time SBE contours. TCSSBC is considered to be one of the best features for speaking
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Fig. 1 TCSSBC and the 19 short-time SBE contours of the utterance “Don’t ask me to carry an oily rag
like that." from the TIMIT corpus

rate estimation [15] and it has been widely used in many works [4,61]. TCSSBC uses
a method called spectro-temporal correlation (STC) [51] to obtain a one-dimensional
feature contour, in which correlations are first performed along the temporal axis fol-
lowed by a correlation along the spectral axis. The STC computes both the spectral
and temporal correlations independently.

In Fig. 1, the red vertical lines indicate the ground truth syllable boundaries. The
utterance considered in Fig. 1 has 12 syllables within a duration of 2.62s. Thus, the
ground truth speaking rate is 4.58 syllables/s. However, the estimated speaking rate
is 4.20 syllables/s using both the heuristic approach proposed by Wang et al. [60] and
the data-driven approach proposed by Yarra et al. [61]. This could be because of the
absence of TCSSBC peak in the syllable segment “r iy". However, from Fig. 1b, it is
observed thatwithin the “r iy" syllable segment, there are sub-bandswith high energies.
Wang et al. had observed that consistent higher SBEs in a segment were indicative
of a syllable nucleus [59], and in the computation of TCSSBC, this property was
considered to obtain local peaks around the syllable nuclei [51]. However, the high
energy bands in the syllable segment “r iy" are not successfully transformed into a
strong peak in the TCSSBC contour. This could be because of the heuristic way of
computing the TCSSBCwith independent spectral and temporal correlations. Further,
TCSSBC is computed in amanner agnostic to the peak detection strategy. Considering
both of these, we believe that the performance of the speaking rate estimation could be
improved by an approach that considers feature computation and peak detection jointly
in a single computational framework. In order to achieve this, we propose an approach
by exploring convolutional neural network-long short-term memory (CNN-LSTM)
network-based models.

CNNs consist of a set of filters that are applied on low level features in order to
learn the feature representations. They have been mostly used in the applications of
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image processing [42] and speech processing including speech recognition [11,53],
and emotion recognition[29,45]. In speech recognition, CNNs are used for learning
the feature representations from either the raw speech waveform or low level features
such as MFCC, power spectrum from which the speech is decoded [11,53]. Similarly
in speech emotion recognition, CNNs are used to learn the feature representations
from the speech signal or low level features, which are then classified into different
emotions [29,45]. However, training a model containing only CNNs requires fixed
length sequences in the data set. But, in speaking rate estimation the length of the
utterances is not uniform across the training data.

In order to handle variable length sequences, we propose to append LSTMs to
CNNs. LSTMs are recurrent neural networks which have been used to learn both the
long-term and short-term dependencies in the input sequences [26]. In this case, we
propose to consider the input sequences as the local representations learnt by CNNs.
There exist a few works which show the benefit of CNN-LSTM models for variable
length feature sequences [52,68]. Further, bidirectional LSTMs (BLSTMs), which are
a variant of LSTMs, have been used for learning the temporal dependencies in variable
length sequences by exploring the similarities in forward and backward directions
[22]. Since the task of speaking rate estimation could be similar in both directions, we
propose to consider CNN-BLSTM models, for which there is no existing work to the
best of our knowledge.

In this work, for speaking rate estimation, we build a CNN-BLSTMmodel (code is
available online1) using 19 SBE contours. In addition to the 19 SBE contours, we use
pitch values to suppress unwanted variations of SBEs in the unvoiced segments which
might affect speaking rate estimation. Experiments are performed on four corpora
namely, TIMIT [69], Switchboard [19], CTIMIT [9] and ISLE [47] considering the
Pearson correlation coefficient between the estimated and the ground truth speaking
rate as the performance measure. The performance of the proposed method is found to
be better than the best of the two baseline schemes that do not consider representation
learning, under all four corpora, when the models are trained with both TIMIT and
Switchboard corpora. Also, the proposedmethod is found to be better than the baseline
in noisy conditions under five additive noises at three SNRs of 20dB, 10dB and 0dB,
which shows the robustness of the proposed representations learning for the speaking
rate estimation task.

The rest of the paper is organized as follows: the speech corpora details are described
in Sect. 2, and the proposed approach is discussed in Sect. 3. The experimental results
are analyzed and elaborated in Sect. 4. Finally, conclusions are discussed in Sect. 5.

2 Database

We use ICSI Switchboard [19], TIMIT [69], CTIMIT [9] and ISLE [47] corpora for
all experiments in this work. Switchboard is a spontaneous speech corpus consisting
of sentences spoken by 370 speakers with a wide range of speaking rate, ranging
from 1.26 to 9.2 syllables per second. The audio in Switchboard corpus was col-

1 https://github.com/diviya97/CNN-BLSTM-Speaking-Rate-Estimator.

https://github.com/diviya97/CNN-BLSTM-Speaking-Rate-Estimator
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lected through the telephone channel. A subset of 7300 speech segments (obtained in
a manner similar to that of “spurt" as described in [50]), each of duration greater than
200ms, is used for our experiments. In Switchboard, syllable transcriptions as well
as their time aligned boundaries are available. However, no phonetic transcription is
available. TIMIT is a read speech database, which has phonetically balanced 6300
sentences spoken by 630 speakers with a speaking rate ranging from 1.44 to 8 sylla-
bles per second. All speech utterances of all sentences from TIMIT are used for our
experiments. CTIMIT corpus is similar to TIMIT except that the audio was collected
through the cell phone channel under various noisy conditions. All speech utterances
of all 3370 sentences from CTIMIT corpus, spoken by 630 speakers, are used for our
experiments. The speaking rate in CTIMIT sentences ranges from 1.87 to 8 syllables
per second. ISLE corpus contains utterances from 46 non-native speakers (23 German
(GER) and 23 Italian (ITA)) learning English. Each speaker uttered approximately 160
sentences. All speech utterances of all sentences from ISLE corpus are used for our
experiments. The speaking rate in the ISLE sentences ranges from 0.64 to 7.81 sylla-
bles per second. In TIMIT, CTIMIT and ISLE, only phonetic transcriptions and their
time aligned boundaries are available. Using these, we obtain syllable transcriptions
and the corresponding time aligned boundaries with NIST syllabification software
[17]. Following the work by Wang et al., for the experimentation, silent segments in
the initial and final parts of each sentence of all corpora are removed [60]. We use five
noises, namely white, volvo, hfc, f16 and babble from NOISEX-92 database [58] in
the experiments. Babble noise has the most non-stationary characteristics among all
five noises considered in this work.

3 Proposed Approach

The proposed approach for speaking rate estimation consists of 2 components—
computation of 19 SBE contours and the CNN-BLSTM model. Each of these
components are explained in detail in the following subsections.

3.1 19 SBE Contours

3.1.1 Computation of SBE Contours

Figure 2 shows the block diagram that outlines the steps involved in the computation
of 19 SBE contours following the work by Holmes et al. [27]. In the first step, the
input signal is filtered by 19 second-order Butterworth bandpass filters separately. The
center frequencies and the bandwidths of the bandpass filters are taken from the work
by Holmes et al. [27] and are reported in Table 1. In the second step, the modulus
function is applied on the filtered signals to ensure all the values in the filtered signals
are positive. In the third step, the resultant signals are smoothened using a first-order
Butterworth low-pass filter with cutoff frequency of 50Hz. Finally, in the last step,
energy values are computed in each window having duration of 20ms with a window
shift of 10ms for all 19 smoothened signals separately.
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Fig. 2 Steps involved in the generation of 19 SBE contours

3.1.2 Benefit of SBE Contours

In the computation of SBE contours, Holmes et al. chose the bandpass filters such that
the filter bands closely match the critical bands of human auditory system [27]. They
also emphasized that the SBE contours could capture formant like structures around
the syllable nuclei. Further, they found that the structures corresponding to fricatives
and stops were different from those corresponding to the vowels. They also observed
that when the speech was synthesized from the SBE contours, there was no loss of
intelligibility in the synthesized speech. Considering these, we hypothesize that the
spectral information in the 19 SBE contours could be useful to explore syllable nuclei
locations for speaking rate estimation.We further analyze the variations in the spectral
information using TIMIT corpus with the help of Fig. 3.

Figure 3 shows the average 19 SBE contours for all phonemes (excluding closures
of six stop consonants “/b, d, g, p, t, k/") present in the TIMIT corpus. These are
computed following the steps below:

1. Obtain the SBE contours specific to each phoneme segment using their respective
time aligned boundaries available in the corpus.

2. Resample the SBE contours within every phoneme segment to 10 frames to obtain
uniform length.

3. Average the energy values at every sub-band and frame locations, across all seg-
ments for each phoneme.

From the figure, it is observed that the sub-bands corresponding to higher energies
vary across all phonemes. These sub-bands differ between vowels (which are typically
considered as syllable nuclei [54]) and consonants. For example, in vowel “ae", the
higher energies are observed around the 5th sub-band, whereas, in consonant “ch"
they are around the 19th sub-band. These high energy sub-bands are also found to be
different across different vowels. For example, considering vowels “ae" and “em", it is
observed that, in “em", the higher energies are around the 1st sub-band in contrast to the
higher sub-band energies in “ae". Further, it is interesting to observe that the temporal
variations of the higher energies are not uniform across vowels. For example, in vowel
“ah", higher energies can be seen around 5th sub-band at the frames in the beginning
of the segment. However, at the end those energies are also found in 10th sub-bands. In
contrast, in vowel “aw", at the end of segment high energies can be seen only around
5th sub-band, but, in the beginning, high energies are observed around 5th to 10th
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Fig. 3 Average 19 SBE contours for all phonemes present in TIMIT corpus resampled to 10 frames

sub-bands. These observations suggest that sub-band energies within each phoneme
have spectro-temporal variations. Further, these variations are specific to each vowel
(syllable nuclei) as well as non-vowels (non-syllable nuclei). These variations, in
general, significantly differ between syllable nuclei and non-syllable nuclei. Thus,
capturing the spectro-temporal pattern specific to syllable nuclei could benefit the
speaking rate estimation task. In the literature, the benefits of these spectro-temporal
energy patterns have been explored for speaking rate estimation, for example, using
TCSSBC [59–61].

As explained using Fig. 1, the independent nature of spectro-temporal correlation
used in TCSSBC contour and the independent nature of contour formation and peak
picking are potentially the causes for incorrect estimation of speaking rate values. In
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Fig. 4 Block diagram summarizing the steps of the proposed CNN-BLSTM network

order to jointly learn the peak picking and feature computation strategies, we propose
to estimate the speaking rate directly using the CNN-BLSTM architecture considering
a 20-dimensional feature vector obtained by concatenating the 19 SBEs and the pitch
values. The inclusion of pitch is considered followingmost of the works on speech rate
estimation [59,60,65], where VuV decisions estimated from pitch values have been
used to suppress the unwanted variations of 19 SBEs in the unvoiced segments for
better speech rate estimation. Considering this architecture, the speaking rate is esti-
mated using a single network, which, we believe, learns both the feature contour and
peak detection stages in a data-driven manner. Further, we also hypothesize that a sin-
gle network learns representations constituting both spectral and temporal variations
specific to syllable nuclei jointly in a data-driven manner.

3.2 CNN-BLSTM

This subsection presents a description of the proposed CNN-BLSTM model. In the
proposed model, we use a combination of CNN and BLSTM as shown in Fig. 4. CNNs
[1] are known for capturing local structures in a sequencewhileBLSTMs [44] dealwith
temporal dynamics by storing information from previous time steps in their internal
state. We briefly present a review of CNN and BLSTM from literature, followed by
the proposed approach for speaking rate estimation.

3.2.1 Convolutional Neural Networks (CNNs)

CNNs [1] belong to a class of deep neural networks that have been proven to be very
effective in the field of image recognition and classification [34]. 1D CNNs have been
applied to classify ECG signals [43] and recognize respiration patterns [37] and speech
emotion [66].

1D CNNs [38] are capable of learning relevant features for the task in a data-driven
manner from sequences of one-dimensional data. In this work, 1-d convolution filters
are deployed to extract local temporal patterns similar to 2-d convolution filters in
image processing tasks where filtering is performed in spatial domain. Unlike fully
connected layers, CNNs perform operations by utilizing the temporal structures in the
data to extract local features. This reduces the number of parameters that are required
to be learned, thereby improving the efficiency of feature extraction. Consequently,
it also turns out to be computationally efficient [18]. The feature maps xlj obtained
through convolution operation by the l-th convolutional layer are elaborated below:
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xlj = σ

⎛
⎝∑

iεN j

xl−1
i ⊗ wl

i j + blj

⎞
⎠ (1)

where ⊗ denotes convolution operation and wl
i j and blj represent the weight and

bias of the j th convolutional filter, respectively. N j is the number of input feature
maps and f is the activation function. The features extracted from CNN are further
processed using max-pooling and batch normalization layers [41]. The feature maps
from convolution layer are down-sampled using max-pooling. The features extracted
by 1D CNN layer are normalized using a batch normalization layer before feeding
it to ReLU [28] nonlinearity. Batch normalization makes the optimization landscape
significantly smoother, thus helping inmore stable gradient propagation, faster training
[56], and also acts as a regularizer [31] to reduce over-fitting.

3.2.2 Bidirectional Long Short-TermMemory (BLSTM)

Recurrent neural networks (RNNs) [21] are a class of neural networks designed to
recognize patterns in sequential data. It is a simple feed-forward neural network with a
feedback. They use their internal states (memory) to capture information fromprevious
inputs and use this information to predict the current output. RNNs have been known
for better modeling the temporal structure of sequential data but are not effective
when sequences are very long because the back-propagated error can decay or boost
exponentially with increasing number of time steps resulting in vanishing or exploding
gradient problem [6]. To deal with the vanishing gradient problem of RNNs, LSTM
was proposed in [26].

Compared to the standard RNN, LSTM architecture has an additional state referred
to as cell state (ct ), which is used to preserve long-term information. LSTM also has
three multiplicative gates namely an input gate (it ), an output gate (ot ) and a forget
gate ( ft ) to regulate the flow of information inside the LSTM unit. At time t , let xt
be an M-dimensional input and N be the number of memory cells in an LSTM layer
which outputs hidden state ht ∈ R

N . Then, for each LSTM layer there are different
types of weights, namely input weights V∗ ∈ R

N XM , recurrent weights U∗ ∈ R
N XN

and bias weights b∗ ∈ R
N , where ‘∗’ corresponds to either cell state (c) or one of the

multiplicative gates, i , o, f . The forward operations for an LSTM unit are governed
by the following equations [24]:

ft = σ(V f xt +U f ht−1 + b f )

it = σ(Vi xt +Uiht−1 + bi )

ct = ct−1 � ft + it � tanh(Vcxt +Ucht−1 + bc)

ot = σ(Voxt +Uoht−1 + bo)

ht = tanh(ct ) � ot

(2)

where σ is a point-wise nonlinear activation function and � denotes the element-wise
multiplication of two vectors.
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LSTMs process the input sequence in the forward direction and, thus, only make
use of the past context to predict the current output. Bidirectional LSTMs (BLSTMs)
[32] can access long-range context in both forward and reverse directions. It has
been shown to outperform both unidirectional LSTMs and standard recurrent neural
networks (RNNs) in phoneme classification task [20]. BLSTM uses two different
LSTM layers, namely forward and backward. These two layers connect to the same
output layer to generate the output information. Thus, this network takes into account
both the past and future information of the sequential data to estimate the output
variables.

We approach speaking rate estimation technique as a many-to-one regression prob-
lem, where the target output is a real number for the corresponding sequence of the
frame level input features from a given speech utterance. The output from the BLSTM
layer is fed to a dense layer to obtain the speaking rate as shown in Fig. 4. The target
speaking rate for a speech utterance is computed by dividing the total number of syl-
lable nuclei with the utterance duration. For a given speech utterance, we compute the
frame level input features (19 SBEs plus pitch values) which are fed as inputs to the
1D CNN, in order to derive higher level representations. The output of the CNN layer
is then down-sampled using max-pooling layer and fed to the BLSTM layers to model
the temporal structure of the input sequences. We also use Dropout [40] between these
layers to avoid over-fitting. We pass the output of the BLSTM layer through a dense
layer having a single output neuron with linear activation. The output of the dense
layer is then utilized to estimate the speaking rate for the given speech utterance.

4 Experiments and Results

4.1 Experimental Setup

All experiments are carried out in a fivefold cross-validation setup, where 3 folds are
used for training, 1 fold for validation, and remaining 1 fold for testing. Consequently,
the CNN-BLSTM network is trained, validated and tested with 60%, 20% and 20%
of the data, respectively, in a round-robin fashion. The results are reported in terms
of average (standard deviation) Pearson correlation coefficient between the estimated
and the ground truth speaking rate computed across all 5 testing folds from the test
set considered.

4.1.1 Setup for the Proposed Approach

The 19 SBEs are computed as described in Section 3.1.1 using the speech filing system
tool [30]. The pitch values are estimated using an algorithm based on normalized cross
correlation function and dynamic programming [57] in a sub-routine provided by the
speech filing system tool [30]. The obtained pitch values are zero in the regions which
are estimated as unvoiced by the algorithm. In order to avoid discontinuities in the
pitch trajectory between voiced and unvoiced regions, which might not be modeled
well by the BLSTM, the pitch values in the unvoiced regions are obtained by linearly
interpolating the pitch values in the voiced regions followed by applying a 5-point
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moving average filter. Each of the resultant 20 features (from 19 SBEs and pitch)
corresponding to each speech utterance is normalized to have zero mean and unit
standard deviation.

The proposed CNN-BLSTM model consists of a one-dimensional convolutional
layer having 64 filters of length 5 with stride of 1. The representation that is learned
by the convolutional layer is batch normalized and downsampled using a max-pooling
layer with pooling size of 2. This is followed by 2BLSTM layers, each consisting of 64
hidden units. A dropout of 0.2 is applied after each layer. Rectified linear units (ReLU)
and hyperbolic tangent (tanh) are used as activation functions for the convolutional
and BLSTM layers, respectively. The final layer consists of a single neuron with linear
activation to predict the speaking rate. This model architecture is chosen from several
combinations of number of layers, hidden units and filter lengths that resulted in the
highest average correlation coefficient on the validation data. The model is trained
using the Adam optimizer, and the mean squared error is chosen as the loss function.
Further, the model is trained with early stopping criterion, wherein the training is
stopped if the mean squared error on the validation data does not decrease for 3
consecutive epochs.

4.1.2 Setup for Baseline Approaches

The efficacy of the proposed approach is determined by comparing its performance
with that of two baseline approaches. The baseline approaches considered are—(1)
robust speaking rate estimation (RSRE) [60] and (2) online speaking rate estimation
(OSRE) [33]. For the RSRE technique, following the work by Wang et. al. [60], the
TCSSBC is computed using spectro-temporal correlation from 19 SBEs, from which
the speaking rate is estimated. As outlined in the work by Jiao et. al. [33], the OSRE
technique estimates the speaking rate for every 1s window of speech with 0.1s shift.
Each window of speech is represented using a feature that comprises EMS, 13th
order MFCC and their delta and delta-delta derivatives, and six statistical functions
performed on each row of MFCC. The dimension of this feature was then reduced to
200 by principal component analysis (PCA), and we refer to the resultant feature as
OSRE-ftr. A BLSTM model (referred to as OSRE-model) uses OSRE-ftr to predict
the speaking rate. The BLSTM model is similar to the one used in the work by Jiao
et. al. [33]. In general, to achieve a reliable speaking rate measure [50], the speaking
rate is required to be computed for an entire speech utterance. However, the OSRE
technique estimates the speaking rate for a fixed duration of 1s. Thus, in order to
compute speaking rate for the entire utterance, we modify the OSRE technique as
follows. The OSRE-ftr is computed following the work by Jiao et. al. [33] for an
entire speech utterance. The OSRE-model is trained to predict the speaking rate for
each speech utterance considering OSRE-ftr as the input.

4.1.3 Software Setup

For the experimentation, CNN-BLSTMmodels are trained and tested in Python using
Keras 2.3.1 with Tensorflow 1.13.1 backend. For the OSRE technique, the Librosa



6112 Circuits, Systems, and Signal Processing (2021) 40:6098–6120

Table 2 Comparison of the
proposed approach with RSRE
and OSRE techniques

TIMIT Switchboard

Proposed 0.8330 (0.0089) 0.7635 (0.0123)

RSRE 0.6525 (0.0175) 0.6863 (0.0244)

OSRE 0.6677 (0.0217) 0.5094 (0.0126)

Table 3 Comparison of baseline OSRE-ftr and 19 SBEs considering the baseline OSRE-model on TIMIT
and Switchboard corpus

TIMIT Switchboard
OSRE-ftr 19 SBEs OSRE-ftr 19 SBEs

OSRE-model 0.6677 (0.0217) 0.7579 (0.0728) 0.5094 (0.0126) 0.7182 (0.0161)

library is used for computing the MFCC features and the Scikit-learn library is used
for implementing PCA.

4.2 Results and Discussion

4.2.1 Comparison of Different Techniques for Speaking Rate Estimation

Table 2 shows the average (standard deviation) correlation coefficients for TIMIT
and Switchboard corpora obtained using the proposed approach, RSRE and OSRE
techniques. From the table, it is observed that, irrespective of the corpus, the proposed
approach provides a significantly higher (p < 0.01, t-test) correlation coefficient than
both the baseline techniques. A lower correlation coefficient in the case of RSRE could
be because RSRE technique uses TCSSBC and a peak detection algorithm, both of
which involve heuristics. Higher correlation coefficient with the proposed approach
over OSRE indicates that the CNN-BLSTM in the proposed approach captures better
spectro-temporal information from 19 SBEs for speaking rate estimation task than
the spectro-temporal information learnt in OSRE using only BLSTM and heuristic
OSRE-ftr. We further investigate the benefit of the CNN-BLSTM and 19 SBEs in
the proposed approach, respectively, over only BLSTM (OSRE-model) and OSRE-ftr
with the help of Table 3 along with results in Table 2.

Table 3 shows the average (standard deviation) correlation coefficient obtained on
TIMIT and Switchboard corpus using 19 SBEs and OSRE-ftr considering OSRE-
model. It is to be noted that the results using OSRE-model (with OSRE-ftr) in the
table are identical to those in Table 2. From the table, it is observed that the correlation
coefficients obtained with 19 SBEs are significantly higher (p < 0.01, t-test) than
those with OSRE-ftr in both the corpora. This indicates that the 19 SBEs is better
suited than OSRE-ftr for the task of speaking rate estimation. Further, higher correla-
tion coefficients in Table 2 with the proposed approach than those in Table 3 under 19
SBEs indicate the benefit of the CNN layer. This suggests that the CNN considered
in the proposed approach learns better spectro-temporal cues than just the BLSTM
for the task of speaking rate estimation. Furthermore, from Tables2 and 3, it is inter-
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Table 4 Evaluation of the
proposed approach trained on
utterances from one corpus and
tested with those from another

Test corpus
Switchboard

(a)

TIMIT 0.5967 (0.0323)

TIMIT-switchboard 0.7765 (0.0180)

Test corpus
TIMIT

(b)

Switchboard 0.7044 (0.0136)

TIMIT-switchboard 0.8291 (0.0081)

esting to observe that the correlation coefficients for TIMIT are higher than those for
Switchboard when the proposed approach and OSRE as well as OSRE-model with
OSRE-ftr and 19 SBEs are used. This could be because Switchboard has a wider range
of speaking rates than TIMIT. Thus, large variability in speaking rate across the data
might make it more difficult for the data-driven models to estimate the speaking rate
accurately.

4.2.2 Cross Corpus Performance

In order to test the capability of the proposed approach in terms of the range of
estimated speaking rates, the CNN-BLSTM model is trained either on TIMIT or
Switchboard separately or jointly and tested on Switchboard and TIMIT, respectively.
The results obtained for this analysis are provided in Table 4. From the table, it is
observed that when the proposed approach is trained on both TIMIT and Switchboard
and tested on either one of them, the performance is significantly better (p < 0.01,
t-test) than that from the proposed approached trained on either TIMIT or Switchboard
and tested on vice versa. This could be because of more training data. Further, from
Table 4a and b it is also observed that the performance on TIMIT is better than that
on Switchboard when the proposed approach is trained on both corpora jointly. In
addition to more training data, this could also be because, the speaking rate range
in Switchboard encompasses the speaking rate range in TIMIT. This could also be
the reason for the proposed approach trained on Switchboard and tested on TIMIT to
perform better than the vice versa condition. In conclusion, it suggests that the range of
speaking rates estimated by the proposed approach depends on the range of speaking
rates seen in the training stage.

4.2.3 Performance on Noisy Corpora

Table 5 shows the average (standard deviation) correlation coefficient obtained
using the proposed approach trained on TIMIT and Switchboard, respectively, and
tested on noisy condition where noise is added to the TIMIT and Switchboard, respec-
tively. From the table, it is observed that the correlation coefficients obtained with the
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Table 6 Performance of the proposed approach on unseen corpus

Train corpus Unseen test corpus
ISLE CTIMIT

Proposed TIMIT 0.6558 (0.0228) 0.4495 (0.0277)

Switchboard 0.6445 (0.0152) 0.3430 (0.0261)

TIMIT-switchboard 0.7201 (0.0169) 0.4174 (0.0308)

RSRE – 0.6752 0.3466

proposed approach are significantly higher (p < 0.01, t-test) than those obtained with
RSRE technique under all noise and SNR combinations. This indicates the robustness
of the proposed approach over the baseline methods. It is also observed that as the
SNR decreases, the average correlation coefficient also decreases. This is because a
lower SNR causes more distortions in the SBE features. Comparing the average cor-
relation coefficient across all the noises, it is observed that the best performance is
obtained under AWGN and Volvo. This could be because both the noises are more
stationary than the remaining three noises. Hence, these noises affect the 19 SBEs
uniformly over time and those variations are effectively minimized. Similarly, the
lowest average correlation coefficient is achieved when Babble noise is added. This
could be because Babble noise is the most non-stationary noise among all the noises
considered. It is also interesting to observe that for Switchboard, the least average
correlation coefficient is observed for 0dB AWGN noise condition.

4.2.4 Performance on Unseen Corpus

Table 6 shows the average (standard deviation) correlation coefficient obtained
for ISLE and CTIMIT corpus when the proposed approach has been trained on both
TIMIT and Switchboard separately and jointly. For ISLE,when the proposed approach
is trained on TIMIT and Switchboard separately, it is observed that the average corre-
lation coefficient thus obtained is comparable to that obtained from RSRE. However,
when the proposed approach is trained onbothTIMITandSwitchboard corpora jointly,
it is observed that the average correlation coefficient improves by 0.0449 and it is sig-
nificantly higher (p < 0.01, t-test) than that obtained using RSRE. This might be due
to the training and/or the fact that the range of speaking rate in ISLE corpus is better
represented by both TIMIT and Switchboard data jointly.

ConsideringCTIMIT, it is observed that the average correlation coefficient obtained
with the proposed approach trained on TIMIT is significantly higher (p < 0.01, t-test)
than the correlation coefficient obtained through the RSRE technique. Furthermore,
it is observed that when the proposed approach is trained on Switchboard corpus or
TIMIT and Switchboard corpora, the average correlation coefficient is lesser than
that obtained when the proposed approach is trained on TIMIT corpus alone. This
is because CTIMIT is linguistically similar to the TIMIT corpus and is obtained by
rerecording the utterances in TIMIT under noisy environments.

In general, in all cases, the performance on ISLE is found to be significantly greater
than that on CTIMIT. This could be because the utterances in CTIMIT corpus were
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Fig. 5 Illustration of CNN-BLSTM hidden state representations

recorded in real noisy conditionswhichmight disturb the spectro-temporal information
in 19 SBEs. Overall, the correlation coefficients obtained on both ISLE and CTIMIT
with the proposed approach are higher than those with RSRE technique when the
proposed model is trained with both TIMIT and Switchboard corpora. This indicates
the effectiveness of the proposed method under unseen corpus as well as real noisy
conditions.

4.2.5 Illustration of Learned Representations by CNN-BLSTM

In order to understand the representations learned by the CNN-LSTM model, we
analyze the hidden state outputs of the last BLSTM layer. Figure 5 illustrates the
learned representation from the CNN-BLSTM model for an example utterance. The
reference input SBEs to the CNN-BLSTM model are plotted in the top sub-figure
along with the corresponding vowel boundaries. The hidden state (HS) outputs of the
last BLSTM layer is plotted in the second sub-figure, where color intensity variations
indicate the output values. Since the activation used is tanh, the output values are bound
between +1 and −1. To verify whether the representations learned are similar to the
TCSSBC, we also plotted TCSSBC contour in the last sub-figure along with hidden
state outputs absolute average (HSAA). HSAA is computed by taking the absolute
mean across all the hidden unit outputs. Interestingly, we observe that the peaks of
TCSSBCmatchwith the peaks ofHSAA in amajority of the cases. Further, we observe
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that unlike TCSSBC, the heights of the HSAA peaks are more uniform and invariant
to the values of the input SBEs. This could be due to the nonlinear and long-term
temporal dependency modeling capability of the BLSTM, which, in turn, results in a
better estimation of the speaking rate with the proposed CNN-BLSTM model.

5 Conclusions

The key difference between the proposed data-driven CNN-BLSTM-based speaking
rate estimation technique and the existing knowledge-driven heuristic approaches is
that the CNN-BLSTMnetwork directlymodels the complex relation between the input
19 sub-band energy contours and the speaking rate, unlike feature engineering from 19
sub-band energies and peak picking in a knowledge-driven manner. The 19 sub-band
energy contours are explored to obtain the spatiotemporal information that is indicative
of syllable nuclei which is learnt by the CNN-BLSTMmodel in a data-driven manner.
Experimentswith four corpora, namely Switchboard, TIMIT,CTIMIT and ISLEunder
five additive noise conditions, reveal that speaking rate estimation with the proposed
CNN-BLSTM model is more accurate than the best of the existing methods. Further
investigations are required to study the use of the proposedmethod in the current state-
of-the-art ASR systems under different noise and SNR conditions, and in the speaking
rate estimation of emotional speech utterances. Future works also include developing
models for speaking rate estimation directly from raw speech waveform. Additionally,
transfer learning strategies need to be explored for accurate speaking rate estimation
under mismatched train-test speech conditions, particularly that include native and
non-native accent mismatches.

Declarations

Data availability Data sharing was not applicable to this article as no datasets were generated during the
current study

References

1. S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network, in Inter-
national Conference on Engineering and Technology (ICET) (IEEE, 2017), pp. 1–6

2. J.D. Amerman, M.M. Parnell, Speech timing strategies in elderly adults. J. Phon. 20(1), 65–76 (1992)
3. W. Apple, L.A. Streeter, R.M. Krauss, Effects of pitch and speech rate on personal attributions. J. Pers.

Soc. Psychol. 37(5), 715 (1979)
4. C.D. Bartels, J.A. Bilmes, Use of syllable nuclei locations to improve ASR, in IEEE Workshop on

Automatic Speech Recognition and Understanding (2007), pp. 335–340
5. S. Bartlett, G. Kondrak, C. Cherry, On the syllabification of phonemes, in Annual Conference of the

North American Chapter of the Association for Computational Linguistics (Association for Computa-
tional Linguistics, 2009), pp. 308–316

6. Y. Bengio, P. Simard, P. Frasconi et al., Learning long-term dependencies with gradient descent is
difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

7. M.P. Black, D. Bone, Z.I. Skordilis, R. Gupta, W. Xia, P. Papadopoulos, S.N. Chakravarthula, B. Xiao,
M.V. Segbroeck, J. Kim, et al, Automated evaluation of non-native English pronunciation quality:
Combining knowledge-and data-driven features atmultiple time scales. in SixteenthAnnualConference
of the International Speech Communication Association (2015), pp. 493–497



6118 Circuits, Systems, and Signal Processing (2021) 40:6098–6120

8. M.P. Black, J. Tepperman, S.S. Narayanan, Automatic prediction of childrens reading ability for high-
level literacy assessment. IEEE Trans. Audio Speech Lang. Process. 19(4), 1015–1028 (2011)

9. K.L. Brown, E.B. George, CTIMIT: a speech corpus for the cellular environment with applications
to automatic speech recognition, in IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (1995), pp. 105–108

10. M.P. Caligiuri, The influence of speaking rate on articulatory hypokinesia in Parkinsonian dysarthria.
Brain Lang. 36(3), 493–502 (1989)

11. S.Y. Chang, N. Morgan, Robust CNN-based speech recognition with Gabor filter kernels, in 15th
Annual Conference of the International Speech Communication Association (2014), , pp. 905–909

12. S.M. Chu, D. Povey, Speaking rate adaptation using continuous frame rate normalization, in IEEE
International Conference on Acoustics Speech and Signal Processing (ICASSP) (2010), pp. 4306–
4309

13. C. Cucchiarini, H. Strik, L. Boves, Quantitative assessment of second language learners fluency by
means of automatic speech recognition technology. J. Acoust. Soc. Am. 107(2), 989–999 (2000)

14. N.H. De. Jong, R. Groenhout, R. Schoonen, J.H. Hulstijn, Second language fluency: speaking style
or proficiency? Correcting measures of second language fluency for first language behavior. Appl.
Psycholinguist. 36(2), 223–243 (2015)

15. T. Dekens, M. Demol, W. Verhelst, P. Verhoeve, in A comparative study of speech rate estimation
techniques I(nterspeech, 2007), pp. 510–513

16. T.M. Derwing, M.J. Munro, R.I. Thomson, M.J. Rossiter, The relationship between L1 fluency and L2
fluency development. Stud. Second. Lang. Acquis. 31(4), 533–557 (2009)

17. B. Fisher, tsylb2-1.1: syllabification software. National Institute of Standards and Technology, https://
www.nist.gov/itl/iad/mig/tools. Last accessed on 30–05–17 (1996)

18. K.J. Geras, A.R. Mohamed, R. Caruana, G. Urban, S. Wang, O. Aslan, M. Philipose, M. Richardson,
C. Sutton, Blending LSTMs into CNNs, in ICLR Workshop (2016)

19. J.J. Godfrey, E.C. Holliman, J. McDaniel, SWITCHBOARD: telephone speech corpus for research
and development, in IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP) (1992), pp. 517–520

20. A. Graves, S. Fernández, J. Schmidhuber, Bidirectional LSTM networks for improved phoneme clas-
sification and recognition, in International Conference on Artificial Neural Networks (Springer, 2005),
pp. 799–804

21. A. Graves, A.R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013), pp.
6645–6649

22. A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other
neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

23. P. Green, J. Carmichael, A. Hatzis, P. Enderby, M. Hawley, M. Parker, Automatic speech recognition
with sparse training data for dysarthric speakers, in Eight European Conference on Speech Communi-
cation and Technology (2003), pp. 3321–3324

24. K.Greff,R.K. Srivastava, J.Koutník,B.R. Steunebrink, J. Schmidhuber, LSTM: a search space odyssey.
IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)

25. C. Heinrich, F. Schiel, Estimating speaking rate by means of rhythmicity parameters. Interspeech
(2011), pp. 1873–1876

26. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
27. J. Holmes, The JSRU channel vocoder, in IEEE (Communications, Radar and Signal Processing), vol.

127 (IET, 1980), pp. 53–60
28. Z. Hu, Y. Li, Z. Yang, Improving convolutional neural network using pseudo derivative ReLU, in Fifth

International Conference on Systems and Informatics (ICSAI). (IEEE, 2018), pp. 283–287
29. Z. Huang, M. Dong, Q. Mao, Y. Zhan, Speech emotion recognition using CNN, in 22nd ACM Inter-

national Conference on Multimedia (ACM, 2014), pp. 801–804
30. M. Huckvale, Speech filing system: tools for speech research. http://www.phon.ucl.ac.uk/resource/sfs

(2000)
31. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal

covariate shift, in International Conference on Machine Learning (2015), pp. 448–456
32. S.K. Jemni, Y. Kessentini, S. Kanoun, J.M.Ogier, Offline Arabic handwriting recognition using

BLSTMs combination, in 13th IAPR International Workshop on Document Analysis Systems (DAS)
(IEEE, 2018), pp. 31–36

https://www.nist.gov/itl/iad/mig/tools
https://www.nist.gov/itl/iad/mig/tools
http://www.phon.ucl.ac.uk/resource/sfs


Circuits, Systems, and Signal Processing (2021) 40:6098–6120 6119

33. Y. Jiao, M. Tu, V. Berisha, J. Liss, Online speaking rate estimation using recurrent neural networks,
in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp.
5245–5249

34. N. Jmour, S. Zayen, A. Abdelkrim, Convolutional neural networks for image classification, in Inter-
national Conference on Advanced Systems and Electric Technologies (ICASET) (IEEE, 2018), pp.
397–402

35. A. Jongman, R. Wayland, S. Wong, Acoustic characteristics of English fricatives. J. Acoust. Soc. Am.
108(3), 1252–1263 (2000)

36. R.D. Kent, J.C. Rosenbek, Acoustic patterns of apraxia of speech. J. Speech Lang. Hear. Res. 26(2),
231–249 (1983)

37. S.H. Kim, G.T. Han, 1D CNN based human respiration pattern recognition using ultra wideband radar,
in International Conference on Artificial Intelligence in Information and Communication (ICAIIC)
(IEEE, 2019), pp. 411–414

38. S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, M. Gabbouj, 1D Convolutional neural networks for signal
processing applications, in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2019), pp. 8360–8364

39. S. Kitaazawa, H. Ichikawa, S. Kobayashi, Y. Nishinuma, Extraction and representation rhythmic
components of spontaneous speech, in Fifth European Conference on Speech Communication and
Technology (1997), pp. 641–644

40. B. Ko, H.G. Kim, H.J. Choi, Controlled dropout: a different dropout for improving training speed
on deep neural network, in IEEE International Conference on Systems, Man, and Cybernetics (SMC)
(2017), pp. 972–977

41. C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, Y. Bengio, Batch normalized recurrent neural networks. In:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2657–2661
(2016)

42. S. Lawrence, C.L. Giles, A.C. Tsoi, A.D. Back, Face recognition: a convolutional neural–network
approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

43. D. Li, J. Zhang, Q. Zhang, X. Wei, Classification of ECG signals based on 1D convolution neural
network, in IEEE 19th International Conference on e-Health Networking, Applications and Services
(Healthcom) (2017), pp. 1–6

44. J. Li, Y. Shen, Image describing based on bidirectional LSTM and improved sequence sampling, in
IEEE 2nd International Conference on Big Data Analysis (ICBDA) (2017), pp. 735–739

45. Q. Mao, M. Dong, Z. Huang, Y. Zhan, Learning salient features for speech emotion recognition using
convolutional neural networks. IEEE Trans. Multimed. 16(8), 2203–2213 (2014)

46. H.Martens,G.VanNuffelen,M.DeBodt, T.Dekens, L.Latacz,W.Verhelst,Automated assessment and
treatment of speech rate and intonation in dysarthria, in Seventh International Conference on Pervasive
Computing Technologies for Healthcare (ICST, Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering) (2013), pp. 382–384

47. W. Menzel, E. Atwell, P. Bonaventura, D. Herron, P. Howarth, R. Morton, C. Souter, The ISLE corpus
of non-native spoken English, in 2000 Language Resources and Evaluation Conference (European
Language Resources Association, 2000), pp. 957–964

48. N.Miller, G.Maruyama, R.J. Beaber, K. Valone, Speed of speech and persuasion. J. Pers. Soc. Psychol.
34(4), 615 (1976)

49. N. Morgan, E. Fosler, N. Mirghafori, Speech recognition using on-line estimation of speaking rate.
Fifth Eur. Conf. Speech Commu. Technol. 4, 2079–2082 (1997)

50. N. Morgan, E.Fosler-Lussier, Combining multiple estimators of speaking rate, in IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (1998), pp. 729–732

51. S. Nagesh, C. Yarra, O.D. Deshmukh, P.K. Ghosh, A robust speech rate estimation based on the
activation profile from the selected acoustic unit dictionary, in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 5400–5404

52. S.L. Oh, E.Y. Ng, R. San Tan, U.R. Acharya, Automated diagnosis of Arrhythmia using combination
of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 102, 278–287
(2018)

53. D. Palaz, M.M. Doss, R. Collobert, Convolutional neural networks-based continuous speech recog-
nition using raw speech signal, in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2015), pp. 4295–4299



6120 Circuits, Systems, and Signal Processing (2021) 40:6098–6120

54. T. Pfau, G. Ruske, Estimating the speaking rate by vowel detection, in IEEE International Conference
on Acoustics, Speech, and Signal Proessing (ICASSP) (1998), pp. 945–948

55. M. Richardson, M. Hwang, A. Acero, X. Huang, Improvements on speech recognition for fast talkers,
in Sixth European Conference on Speech Communication and Technology (1999), pp. 411–414

56. S. Santurkar, D. Tsipras, A. Ilyas, A. Madry, How does batch normalization help optimization? in
Advances in Neural Information Processing Systems (2018), pp. 2483–2493

57. D. Talkin, A robust algorithm for pitch tracking (RAPT). Speech Coding Synth. 495, 518 (1995)
58. A. Varga, H.J. Steeneken, Assessment for automatic speech recognition: II. NOISEX-92: a database

and an experiment to study the effect of additive noise on speech recognition systems. SpeechCommun.
12(3), 247–251 (1993)

59. D.Wang, S. Narayanan, Speech rate estimation via temporal correlation and selected sub-band correla-
tion, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2005),
pp. 413–416

60. D. Wang, S.S. Narayanan, Robust speech rate estimation for spontaneous speech. IEEE Trans. Audio
Speech Lang. Process. 15(8), 2190–2201 (2007)

61. C. Yarra, O.D. Deshmukh, P.K. Ghosh, A mode-shape classification technique for robust speech rate
estimation and syllable nuclei detection. Speech Commun. 78, 62–71 (2016)

62. S. Yildirim,M.Bulut, C.M. Lee, A.Kazemzadeh, Z. Deng, S. Lee, S. Narayanan, C. Busso, An acoustic
study of emotions expressed in speech, in Eighth International Conference on Spoken Language
Processing (2004), pp. 2193–2196

63. J. Yuan, W. Lai, C. Cieri, M. Liberman,Using Forced Alignment for Phonetics Research (Text, Speech
and Language Technology. Springer, Chinese Language Resources and Processing, 2018)

64. J. Yuan,M. Liberman, Robust speaking rate estimation using broad phonetic class recognition, in IEEE
International Conference on Acoustics Speech and Signal Processing (ICASSP) (2010), pp. 4222–4225

65. Y.Zhang, J.R.Glass, Speech rhythmguided syllable nuclei detection, in IEEE InternationalConference
on Acoustics, Speech, and Signal Processing (ICASSP) (2009), pp. 3797–3800

66. J. Zhao, X. Mao, L. Chen, Learning deep features to recognise speech emotion using merged deep
CNN. IET Signal Proc. 12(6), 713–721 (2018)

67. J. Zheng, H. Franco, A. Stolcke, Rate-of-speech modeling for large vocabulary conversational speech
recognition, in ASR2000-Automatic Speech Recognition: Challenges for the new Millenium ISCA
Tutorial and Research Workshop (ITRW) (2000), pp. 145–149

68. M. Zihlmann, D. Perekrestenko, M. Tschannen, Convolutional recurrent neural networks for electro-
cardiogram classification, in 2017 Computing in Cardiology (CinC) (IEEE, 2017), pp. 1–4

69. V. Zue, S. Seneff, J. Glass, Speech database development atMIT: TIMIT and beyond. SpeechCommun.
9(4), 351–356 (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	A Robust Speaking Rate Estimator Using a CNN-BLSTM Network
	Abstract
	1 Introduction
	1.1 Significance of Speaking Rate
	1.2 Review of Existing Works
	1.3 Motivation for the Proposed Approach

	2 Database
	3 Proposed Approach
	3.1 19 SBE Contours
	3.1.1 Computation of SBE Contours
	3.1.2 Benefit of SBE Contours

	3.2 CNN-BLSTM
	3.2.1 Convolutional Neural Networks (CNNs)
	3.2.2 Bidirectional Long Short-Term Memory (BLSTM)


	4 Experiments and Results
	4.1 Experimental Setup
	4.1.1 Setup for the Proposed Approach
	4.1.2 Setup for Baseline Approaches
	4.1.3 Software Setup

	4.2 Results and Discussion
	4.2.1 Comparison of Different Techniques for Speaking Rate Estimation
	4.2.2 Cross Corpus Performance
	4.2.3 Performance on Noisy Corpora
	4.2.4 Performance on Unseen Corpus
	4.2.5 Illustration of Learned Representations by CNN-BLSTM


	5 Conclusions
	References




