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Abstract—Lightweight automatic diagnostic tools for Amy-
otrophic Lateral Sclerosis (ALS) and the associated dysarthria
are essential for deployment in resource-limited platforms like
mobile phones or general purpose computers. This study per-
forms speech-based low-complexity classification of ALS and
healthy subjects by cutting down (1) model complexity and
(2) input feature dimensionality. Low complexity Dense Neural
Network (DNN) models with 2 or less hidden layers are ex-
plored in comparison with the highly complex state-of-the-art
Convolutional Neural Network (CNN) with Bidirectional Long
Short-Term Memory (BiLSTM) architecture. On the other hand,
various temporal statistics (standard deviation, autocorrelation at
varying lags) obtained from the commonly used Mel-Frequency
Cepstral Coefficients (MFCC) or its individual coefficients are
investigated as the low dimensional features. Experiments with
72 ALS and 55 healthy subjects using Spontaneous Speech
(SPON) and Diadochokinetic Rate (DIDK) tasks indicate the
following. Model complexity reduction with DNN architectures
gives comparable, or in some cases better performance, w.r.t.
the CNN-BiLSTM model. DNN architectures, with lag 1 au-
tocorrelation of MFCC (along with its delta and double delta
coefficients) as the input feature vector for SPON task and
standard deviation of the same for DIDK task, can respectively
achieve 5.67% and 6.59% higher mean classification accuracies
than the CNN-BiLSTM model with entire MFCC sequence as
input while causing 99.99% reduction in the model parameter
count. Moreover, using single dimensional standard deviation
feature of the first delta coefficient for SPON and that of
the second delta coefficient for DIDK, together with the DNN
models, achieve 94.59% further reduction in the model parameter
count while incurring only 1.76% and 5.17% further decrease,
respectively, in the classification performance.

I. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a neurodegener-
ative disorder characterized by the progressive degeneration
of motor neurons in the brain and spinal cord, leading to
muscle weakness, atrophy, and eventual paralysis. In almost
30% of patients with ALS, one of the early signs experienced
is dysarthria - a motor speech disorder resulting from the
impaired control of the muscles responsible for speech pro-

duction [1]. As the disease advances, individuals encounter
challenges in producing sounds, modulating pitch, and main-
taining proper vocal quality. ALS has no known cure, and
its diagnosis involves ruling out other similar conditions by
clinical assessments, genetic tests, Electromyography (EMG)
and Magnetic Resonance Imaging (MRI) scanning, making
it tedious and time expensive [2]. Thus, automatic diagnosis
of ALS is the need of the hour, considering the disease’s
progressive nature and the potential of timely intervention to
enhance patients’ lifespan and the quality of life.

Machine learning models, specifically deep learning algo-
rithms, can play a crucial role in the automatic diagnosis
of ALS [3]. Low complexity models ensure accurate results
with minimal computational resources, enabling clinical use on
platforms like a mobile phone or a general-purpose computer.
This is especially useful in remote areas, promoting patient
engagement and autonomy in healthcare management [4].

Recent research has focused on using Convolutional Neural
Network (CNN) with Long Short-Term Memory (LSTM)
architecture for ALS vs healthy control (HC) classification.
The model implemented in [5] outperforms Dense Neural
Networks (DNN) and Support Vector Machines (SVM) in 2-
class (ALS/PD vs HC) and 3-class (ALS vs PD vs HC) clas-
sification. Also, in [6] high accuracy is achieved using CNN
with Bidirectional LSTM (BiLSTM) on raw-speech waveform.
However, these models have high computational complexity
and resource requirement because of the integration of the
recurrent layers.

Mel-Frequency Cepstral Coefficients (MFCCs) have been
widely used as speech representations for different dysarthric
speech applications [5], [7], [8], [9], [10], [11]1. Joshy et
al. [3] reported that MFCC demonstrates low complexity
among various features and classifiers for dysarthia severity

1A few plots depicting the difference in mel-spectrogram for healthy speech
and ALS-induced dysarthic speech is available at https://sites.google.com/
view/anjalijayakumar/publications/als-vs-hc



classification. MFCC and pitch are compared as input features
for low complexity models under noisy conditions for ALS/PD
vs HC classification in [12], and single-dimensional pitch
achieved similar performance to multi-dimensional MFCC
with greater noise robustness. Illa et al. [7] utilize temporal
mean and standard deviation (SD) of MFCC for ALS vs
HC classification, whereas Bhattacharjee et al. [8] incorporate
mean, median, SD, and Root Mean Square value of MFCC
for ALS-induced dysarthria severity classification.

Dimensionality reduction of MFCC has also been studied
for other speech applications. According to Shahamiri et al.
[13], using 12-D MFCC features alone gives the best accuracy
for Artificial Neural Network based ASR system. Sharma et al.
[14] have performed MFCC feature dimensionality reduction
by exploring individual coefficients of 12-D MFCC for ASR.
In [15], the first 3 MFCC coefficients have been found to
be sufficient for EMG based classification of ALS vs HC.
However, to the best of our knowledge, such an analysis
focusing on the individual components of the MFCC feature
set has not been conducted in the context of speech based ALS
vs HC classification.

This study proposes two distinct methods for achieving low
complexity in ALS and HC classification - by model com-
plexity reduction and by feature dimensionality reduction. A
CNN-BiLSTM model from [6] is used as the reference model,
and three different DNN models of varying complexities as the
low complexity classifiers. DNN models have shown promis-
ing performances in different tasks involving ALS-induced
dysarthic speech, like dysarthria severity prediction [8] and
dysarthric speech recognition [16]. Feature dimensionality
reduction involves analyzing 12-D MFCCs, their derivatives
and individual coefficients as well as their temporal statistics
such as SD and auto-correlation with lag 1 and 2 (AC(1) and
AC(2)) aiming to capture the temporal relationship within the
MFCC frames.

Experiments involving 72 ALS and 55 HC subjects, us-
ing Spontaneous Speech (SPON) and Diadochokinetic Rate
(DIDK) tasks, demonstrate that reducing model complexity
with DNN architectures yields comparable, and in certain
instances, better performance than the CNN-BiLSTM model,
emphasizing the potential for achieving resource-efficient clas-
sification. Notably, using the entire feature set of MFCCs,
deltas and double deltas, we achieve a substantial reduction
of 99.99% in model parameters, corresponding to a 5.67%
increase in mean accuracy for the SPON task using AC(1), and
a 6.59% increase for the DIDK task using SD as the temporal
statistic. Additionally, feature dimensionality reduction to a
single dimensional feature results in an extra 94.59% reduction
in model parameters, leading to a 1.76% decrease in SPON
task performance with the SD of first delta coefficient, and a
5.17% decrease for the DIDK task with the SD of the second
delta coefficient.

II. DATASET

We utilize a dataset including speech samples from 72 (46M
+ 26F) ALS and 55 (40M + 15F) HC subjects, collected from

the National Institute of Mental Health and Neurosciences,
Bengaluru, India. The mean (SD) of age in years was 55.36
(10.80) for the ALS and 46.62 (6.85) for the HC speakers.
The subjects had three different native languages - Bengali,
Kannada, and Telugu. Dysarthria severity of the ALS subjects
were rated by three Speech-Language Pathologists as per the
5-point speech component of ALSFRS-R scale [0 (Loss of
useful speech) to 4 (Normal speech)] [17]. The mode of these
three ratings was regarded as the final dysarthria severity score.
There were 10, 13, 17, 17 and 15 subjects with severity score
0, 1, 2, 3, and 4, respectively. We recorded two different speech
tasks, SPON and DIDK, from each subject. In SPON task, the
subjects were asked to speak about a festival they celebrate
and a place they had recently visited in their respective native
languages for about 1 minute each. The mean (SD) duration of
the recordings in seconds for SPON task was 60.75 (18.15) for
ALS and 59.06 (20.78) for HC. In DIDK task, they were asked
to take a deep breath and rapidly repeat a mono-syllabic or
a tri-syllabic sequence like ‘pa-pa-pa’, ‘ta-ta-ta’, ‘ka-ka-ka’,
‘pataka’ and ‘badaga’ [5]. Upto 3 trials were recorded for
each sequence depending on a subject’s level of comfort. The
mean (SD) duration in seconds, combining the three repetitions
was 15.92 (9.44) for ALS and 18.80 (8.33) for HC. For the
SPON task, recordings of durations 138.7 minutes and 107.28
minutes were obtained from the ALS and the HC classes,
respectively, whereas for the DIDK task, those were 93.65
minutes and 85.85 minutes, respectively. More information on
data collection procedures and recording setting can be found
in [5].

III. METHOD

The overall pipeline of the ALS vs HC classification
methodology used in this study is given in Fig. 1. We extract
the features from the speech recordings, segment them into
2-second chunks with 1-second overlap to maintain fixed
input contexts, and feed these feature chunks or their various
temporal statistics to the classification models. These models
are trained using chunk level features and labels. During
testing, majority voting is performed over the predictions of
all chunks of an utterance to determine the final class label.
Two methods are explored for reducing the complexity of
the classification process - Model complexity reduction and
feature dimensionality reduction.
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Fig. 1: ALS vs HC classification methodology



A. Model complexity reduction

We start with the state-of-the-art CNN-BiLSTM architecture
proposed in [6] and go down to less complex DNN models
with decreasing number of dense layers. While CNN-BiLSTM
captures both spatial and temporal characters of speech and
can perform hierarchical feature extraction, its recurrent layers
increase model complexity in terms of number of parameters
(#params) and number of floating point operations (FLOPs) re-
quired, making it expensive in terms of memory and run-time.
A DNN has a much simpler architecture, and further reducing
the number of dense layers makes it a more concise model
for classification. Our objective is to find a suitable trade-off
between model complexity and classification accuracy.

B. Feature dimensionality reduction

We use MFCCs along with their deltas and double deltas
derived from speech as the input features. MFCCs capture the
spectral characteristics of speech making them suitable for dif-
ferent speech based classification tasks. The delta and double
delta coefficients represent the rate of change and acceleration
of MFCCs over time respectively, thus capturing the dynamic
aspects of speech spectrum along with the static characteristics
[18]. In this work, we explore the potential of reducing the
dimensionality of the MFCC feature set in order to enhance
the simplicity of the ALS vs HC classification by minimizing
unnecessary computational load while retaining the essential
information needed for accurate classification. We analyze the
performance of MFCC, delta and double delta components
separately, as well as their individual coefficients, as compared
to the entire feature set comprising all the three components
together. We extract the temporal statistics, namely, SD, AC1
and AC2, of different components/coefficients of MFCC2.
These statistics enable the models to gain more compact
insights into the feature variability. The SD calculated over
2s frames of speech utterances reflects the fluctuations in the
spectral characteristics and speech dynamics, capturing the
potential difference between ALS and healthy speech. These
statistics are explored as the input feature vectors for the
DNN classifiers, whereas, the MFCC + delta + double delta
feature chunks are fed directly to the baseline CNN-BiLSTM
classifier.

IV. EXPERIMENTAL SETUP

A. Feature extraction

13D MFCCs with their corresponding delta and double delta
measures are used as the reference feature. These are computed
from each 20 ms speech frame with 10 ms overlap using the
Kaldi speech recognition toolkit [19]. The energy coefficients
are removed and a 36D feature vector is obtained. To reduce
the feature dimensionality, each component including MFCCs,
deltas, and double deltas are analyzed individually, and sub-
sequently their individual coefficients are examined. For the
DNN model, we incorporate the temporal statistics SD, AC(1)

2The distribution of the 1D features of the two classes are available at
https://sites.google.com/view/anjalijayakumar/publications/als-vs-hc
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and AC(2) derived from the MFCCs and their deltas, as the
features.

B. Model description

This study explores four distinct models. The reference
model utilizes a CNN-BiLSTM architecture from [6]. DNN-2L
is a DNN model which employs the architecture proposed in
[8]. It has two dense layers of 128 units and ReLU activation
functions, along with batch-normalization and dropout layers
to prevent overfitting, and an output dense layer of 2 units
using softmax activation function. DNN-1L contains a single
dense layer with 128 units and ReLU activation with dropout
layer, and the output dense layer. DNN-0L merely comprises
of the output dense layer. The hyper-parameters are tuned
using the validation accuracy. The model configurations are
given in Fig. 2. The model complexity across various input
features for the four models is given in Table I.

C. Training and Evaluation

For training and evaluating the models, 5-fold cross valida-
tion methodology is used. The dataset is split into five folds,
with 14-15 subjects from ALS class and 10-13 subjects from

TABLE I: Model complexity for different models and feature
dimensions

Model Feature dimension #params FLOPs

CNN-BiLSTM 36 1321832 2400000
12 1307462 2380000

DNN-2L
36 22,018 21500
12 18,946 18430
1 17538 17020

DNN-1L
36 4,994 9730
12 1992 3580
1 514 768

DNN-0L
36 74 9540
12 26 3350
1 4 514



HC class in each fold. The subjects are distributed evenly in
terms of age, gender, language and ALSFRS-R score across
the folds. Out of these, three folds are used for training, one for
validation and one for testing in each iteration. All models are
trained using the Adam optimizer with a learning rate of 0.001
and binary cross entropy loss function. A batch size of 32 is
utilized for training. The CNN-BiLSTM model is trained for a
maximum of 20 epochs following [6], while the DNN model
is trained for a maximum of 100 epochs. Early stopping, based
on validation loss with a patience of 8, is implemented during
training to prevent overfitting. The mean and SD of balanced
accuracy scores obtained on the test sets over the 5 folds are
reported as the performance metrics. We perform Wilcoxon
signed-rank test [20] at 1% significance level to identify if
the classification accuracies obtained for different feature and
model configurations are significantly different across 5 folds.
For this purpose, we randomly divide the test set of each fold
into 3 sub-groups of equal sizes. The 15 accuracy values thus
obtained for each feature and model combination are then used
for the significance test.

V. RESULTS AND DISCUSSION

The classification accuracies of the different models for
different input features are given in Fig. 33. It is evident
from the plots that the DNN models exhibit performances
comparable to the reference CNN-BiLSTM model while uti-
lizing significantly fewer resources. The standard deviation
and auto-correlations give similar performances, providing the
flexibility to choose between them. Reducing the complexity
of the DNN models further aids in less resource utilization
while maintaining the level of performance. DNN-0L, which
merely consist of a softmax function, works as good as the
CNN-BiLSTM for lower delta and double delta coefficients.
Fig. 4 demonstrates the accuracies obtained on the individual
coefficients of MFCCs, deltas and double deltas, compared
to the CNN-BiLSTM performances3. It is noteworthy that the
first delta and double delta coefficients for the SPON task, and
the second delta and double delta coefficients for the DIDK
task, achieve higher performances among other coefficients,
and is close to the CNN-BiLSTM performance.

In general, the SPON task obtains higher mean accuracy
than the DIDK task, with an average difference of 4.84%
in case of all coefficients, and 4.24% in case of individual
coefficients for DNN model, and 0.75% for CNN-BiLSTM
model. For the SPON task, DNN-0L employing AC(1) of the
entire feature set achieves a remarkable reduction in #params
by 99.99% and FLOPs by 99.60% with a 5.67% increase
in accuracy compared to the CNN-BiLSTM model. DNN-
0L employing the SD of the first delta coefficient gives a
further reduction in complexity of 94.59% in terms of #params
and 94.61% in terms of FLOPs, with a mere decrease in
accuracy of 1.76%. For DIDK task, DNN-0L employing SD
over the entire feature set gives 6.69% increase in accuracy as

3The plots for True Positive Rate (TPR), True Negative Rate (TNR), False
Positive Rate (FPR), and False Negative Rate (FNR) are available at https:
//sites.google.com/view/anjalijayakumar/publications/als-vs-hc

compared to CNN-BiLSTM, while DNN-0L employing only
the SD of the second delta coefficient incurs a decrease in
accuracy of only 5.17%. Among the 36 combinations of DNN
models and input features, 16 for SPON and 10 for DIDK are
statistically similar to, while 6 for SPON and 3 for DIDK
outperform the CNN-BiLSTM model at 1% significance level
according to Wilcoxon signed rank test.

The findings suggest that, DNN models prove to be a
promising alternative to the reference CNN-BiLSTM model
for ALS vs HC classification when computational resource
management is a concern. Further, the lower coefficients of
delta and double delta seem to contain the most discriminative
features for the classification enabling a single dimensional
feature to be used for accurate and efficient classification.

VI. CONCLUSION

In this work, we present two approaches for achieving low
complexity classification of ALS and HC speech. DNN models
can replace the reference CNN-BiLSTM model significantly
reducing model complexity. Also, single dimensional feature
vectors can capture the informative characteristics for effective
classification. This is a promising result for low-resource di-
agnostic tools for ALS suitable for practical implementations.
This work lays a foundation for ALS vs HC classification
using single dimensional feature and very low complexity
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models. Future works may include extending the study to var-
ious datasets, and the exploration of additional methodology
to further enhance the accuracy of the classification task.
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