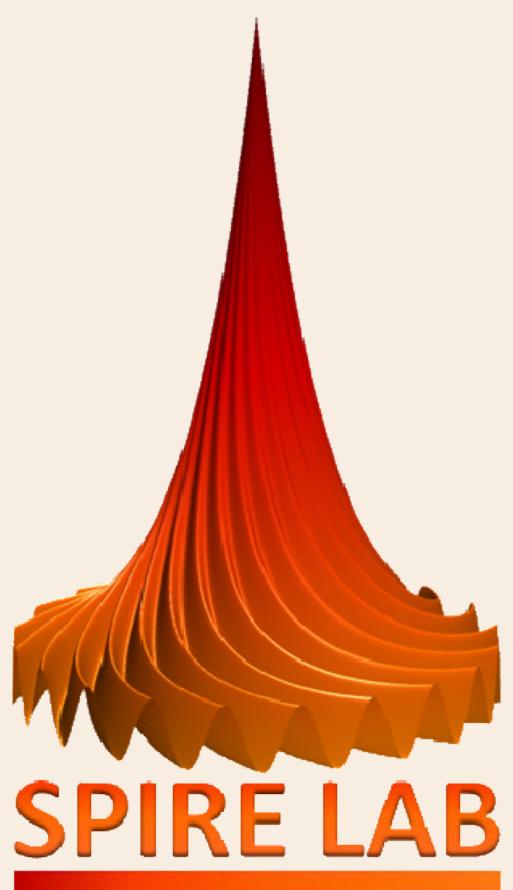


Acoustic-to-articulatory inversion for dysarthric speech by using cross-corpus acoustic-articulatory data



Sarthak Kumar Maharana¹, Aravind Illa¹, Renuka Mannem¹, Yamini Belur², Preetie Shetty², Veeramani Preethish Kumar², Seena Vengalil², Kiran Polavarapu², Nalini Atchayaram², and Prasanta Kumar Ghosh¹

¹SPIRE Lab, Department of Electrical Engineering, Indian Institute of Science (IISc), Bengaluru, India

²Department of Speech Pathology and Audiology, NIMHANS, Bengaluru, India

Introduction

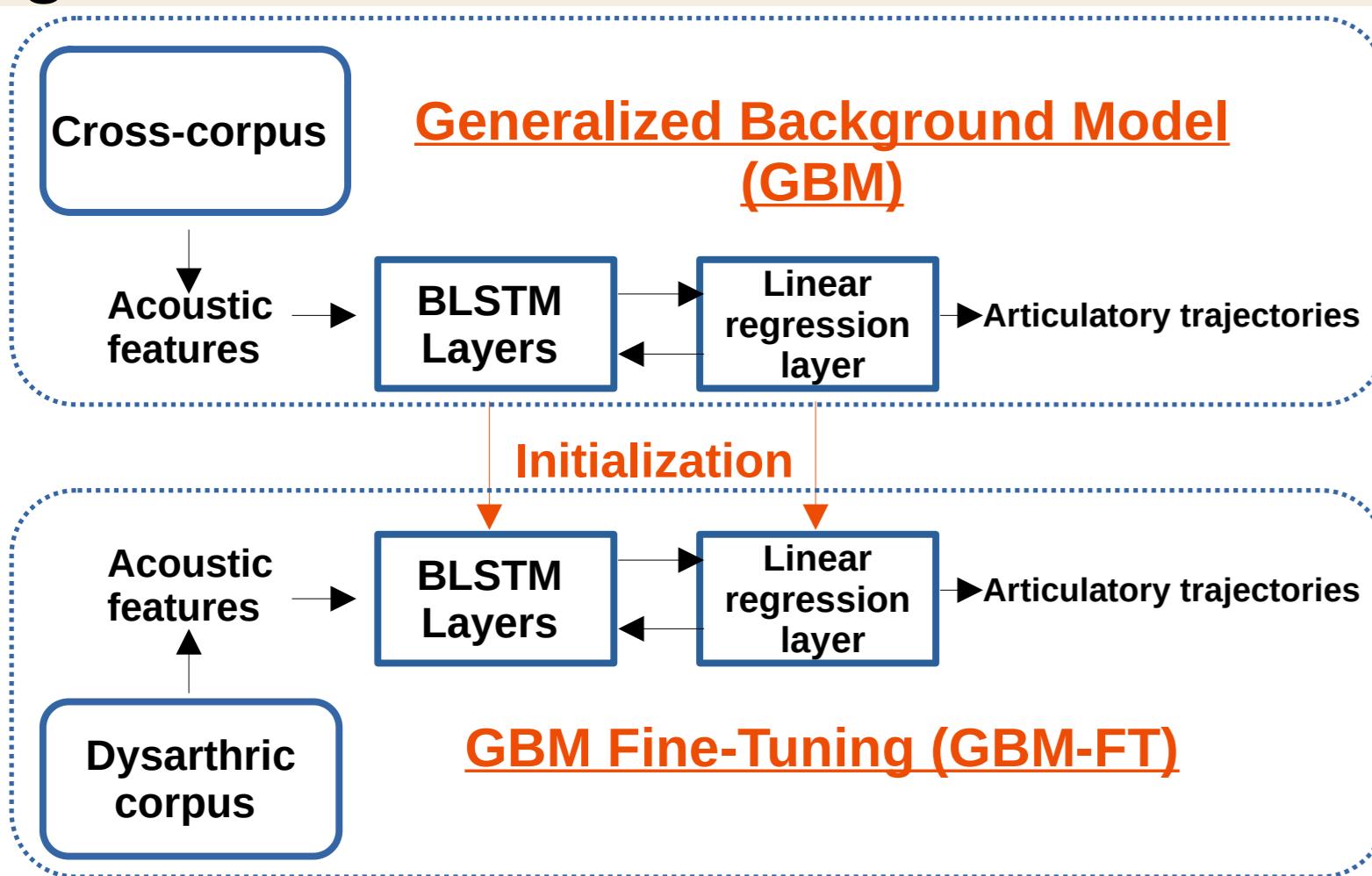
- ▲ **Dysarthria:** Speech disorder causing decline in speech clarity by affecting movements of articulators [1].
- ▲ **AAI:** Estimating articulatory movements from acoustic recordings [2].
- ▲ **Challenge:** Collecting acoustic-articulatory data, from patients with dysarthria, is tedious. BLSTM networks require a large amount of data to train for AAI [3].
- ▲ **Objective:** Perform AAI on dysarthric speech at low-resource conditions, using a rich cross-corpus.

Data

- ▲ **Electromagnetic Articulograph (EMA):** Articulatory movements of four articulators, using EMA AG501 at 100 Hz, are considered.
- ▲ **Cross-corpus:** Data from 38 healthy controls; speech stimuli: 460 sentences from the MOCHA-TIMIT; total data: ~11.4 hours.
- ▲ **Dysarthric corpus:** Data from 7 healthy controls(HC) and 13 patients(P); speech stimuli: reading a Kannada(Indian language) passage, rehearsed speech, and spontaneous speech; total data: ~1.16 hours.

Proposed Approach

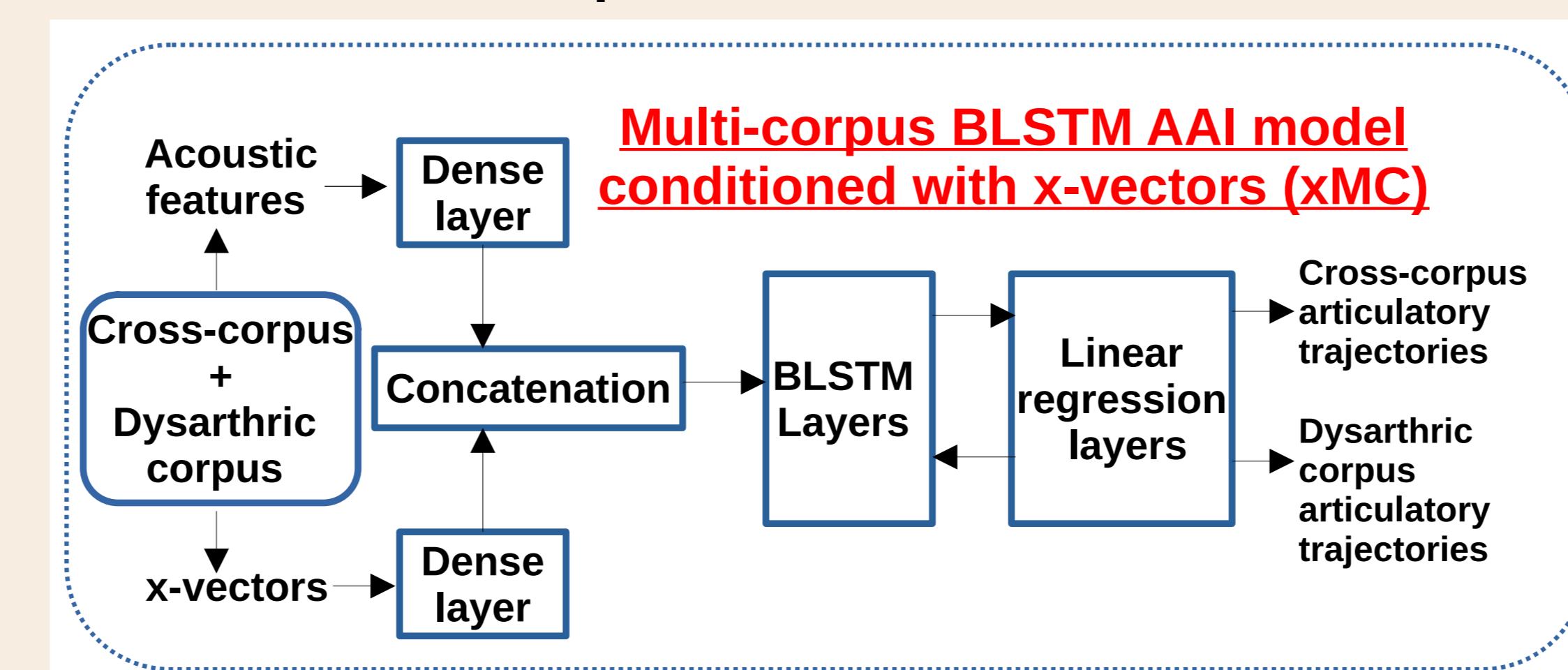
Transfer learning:



- ▲ Following [1], we train a GBM which will serve as an initialization and fine-tune its weights(GBM-FT) on the dysarthric corpus to make it optimized for dysarthric speech.
- ▲ **Joint-training:** Experiments are done to account for multi-learning [5] and speaker conditioning [4], by pooling data from both the corpora.
- ▲ **Experimental Setup:**
 - 39-dims MFCCs(20ms window,10ms shift) as acoustic features.
 - All 38 subjects from the cross-corpus are used for experiments.
 - 5-fold cross validation setup in **seen** and **unseen** subject conditions.

Multi-corpus + Speaker Conditioned AAI (xMC)

Illustration of the multi-corpus AAI model conditioned with x-vectors:



- ▲ Acoustic features and x-vectors [4] are fed into separate dense layers, and further sent to BLSTM layers after concatenation.
- ▲ The last layer of the BLSTM network is fed into two linear regression layers to obtain the first 8-dims of articulatory trajectories corresponding to the cross-corpus and the remaining 8-dims to that of the dysarthric corpus.
- ▲ **AAI models used in this work:**

AAI Model	Choice of hyperparameters
Randomly Initialised (RI) & Generalized Background Model (GBM)	3 BLSTMs (256 nodes), 1 linear regression layer.
Multi-corpus model (MC)	3 BLSTMs (256 nodes), 2 linear regression layers.
Speaker Conditioned (xSC)	3 BLSTMs (256 nodes), 1 linear regression layer.
Multi-corpus + Speaker Conditioned (xMC)	3 BLSTMs (256 nodes), 2 linear regression layers.

- ▲ **Baselines:** RI, GBM-FT, MC, and xSC AAI models.
- ▲ **Evaluation metric:** Pearson correlation coefficient between the ground-truth articulatory trajectories and their corresponding predicted articulatory trajectories.

Conclusions

- ▲ The rich cross-corpus database was beneficial to learn AAI for dysarthric speech, even though they were different in terms of speech stimuli, language, and age groups.
- ▲ The proposed multi-corpus AAI model conditioned with x-vectors(xMC) performed at par or better than the other baseline AAI models that used the cross-corpus.

References

- [1] Aravind Illa, et al., "Comparison of speech tasks for automatic classification of patients with amyotrophic lateral sclerosis and healthy subjects," in *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2018, pp. 6014–6018.
- [2] Korin Richmond, "Estimating articulatory parameters from the acoustic speech signal," Ph.D. dissertation, University of Edinburgh, 2002.
- [3] Aravind Illa, et al., "Low resource acoustic-to-articulatory inversion using bi-directional long short term memory," in *Interspeech*, 2018, pp. 3122–3126.
- [4] Aravind Illa, et al., "Speaker conditioned acoustic-to-articulatory inversion using x-vectors," in *Interspeech*, 2020, pp. 1376–1380.
- [5] Nadee Seneviratne, et al., "Multi-corpus acoustic-to-articulatory speech inversion," in *Interspeech*, 2019, pp. 859–863.

Results & Discussions

Corpus dependent models:

BLSTM nodes	RI		GBM	
	Seen	Unseen	HC	P
256	0.43	0.52	0.42	0.46 0.5 0.5

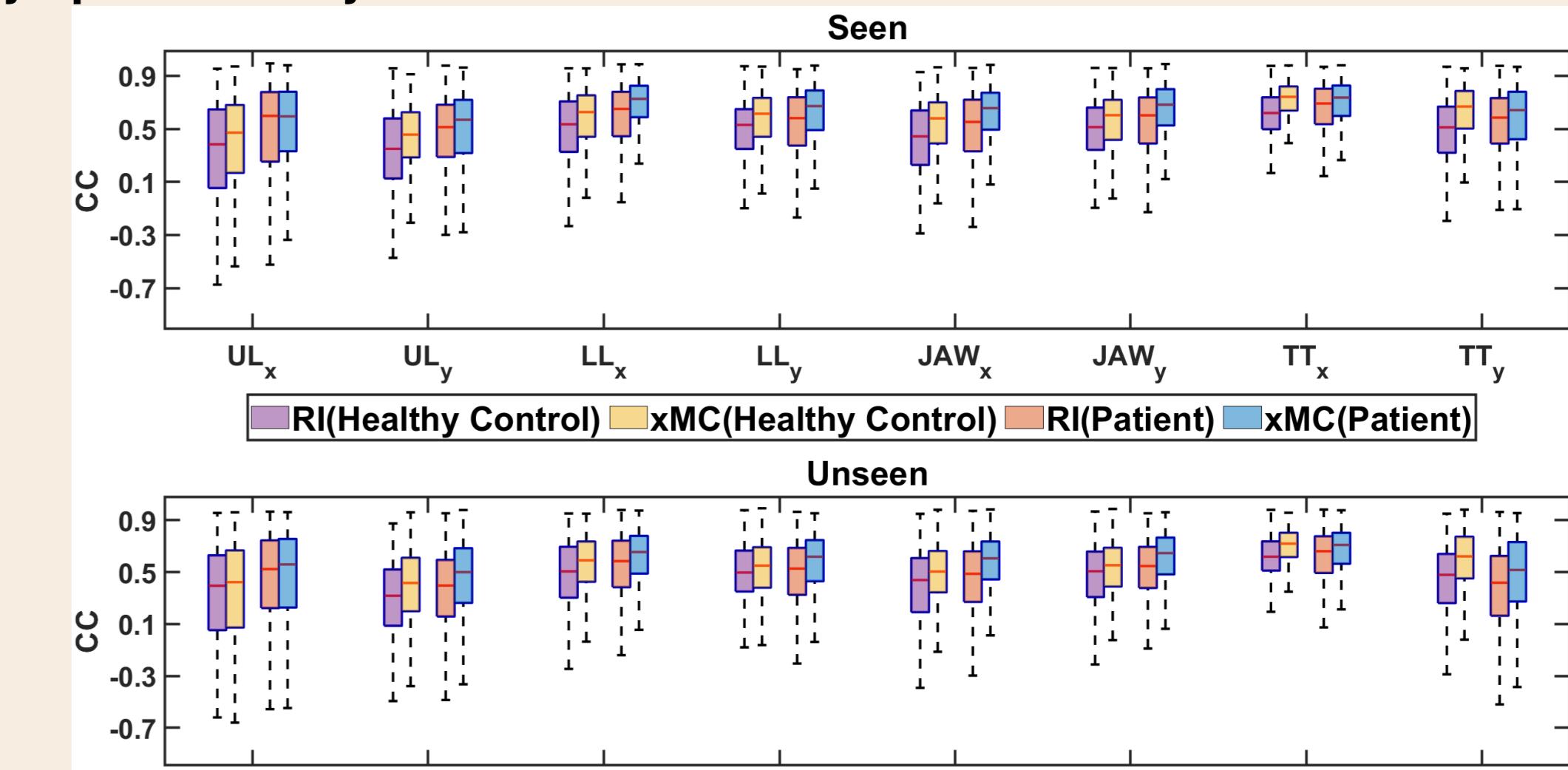
Making use of the cross-corpus was beneficial. Experiments were also done with different BLSTM nodes(32,64,128) to investigate if the RI model would overfit. It reached saturation at 256 BLSTM nodes.

Models using cross-corpus:

	Seen									
	RI		GBM-FT		MC		xSC		xMC	
	HC	P	HC	P	HC	P	HC	P	HC	P
Avg	0.438	0.524	0.514	0.573	0.513	0.557	0.525	0.57	0.538	0.593
(Std dev)	(0.08)	(0.06)	(0.08)	(0.06)	(0.09)	(0.07)	(0.09)	(0.07)	(0.08)	(0.07)
Unseen										
Avg	0.424	0.462	0.504	0.522	0.503	0.523	0.505	0.535	0.502	0.538
(Std dev)	(0.09)	(0.08)	(0.09)	(0.07)	(0.09)	(0.07)	(0.1)	(0.08)	(0.09)	(0.07)

Seen cases: xMC achieved improvements of ~13.16%(RI), ~3.49%(GBM-FT), ~6.46%(MC), and ~4.03%(xSC) for patients; Unseen cases: xMC>MC for patients, since conditioning with x-vectors leads to a better generalization to unseen speakers.

Articulatory specific analysis:



(JAW_x and LL_x) and (TT_y and JAW_x) show maximum improvements for patients(seen, unseen subject conditions respectively).

Frequency characteristics:

Articulatory Trajectories	Original		Seen				Unseen			
			xMC		RI		xMC		RI	
	HC	P	HC	P	HC	P	HC	P	HC	P
UL _x	11.51	9.24	11.66	10.68	7.56	6.41	11.93	10.45	6.41	5.68
UL _y	9.76	8.88	13.59	12.36	8.61	7.87	13.46	11.83	7.72	7.29
LL _x	8.64	7.83	9.51	8.00	7.94	6.43	9.32	7.72	6.72	5.80
LL _y	9.42	8.61	10.38	8.65	8.50	7.03	10.12	8.02	7.42	6.37
JAW _x	8.86	8.80	9.90	8.38	8.85	7.08	9.84	7.86	7.40	6.19
JAW _y	8.87	8.47	10.07	8.29	8.79	7.01	9.72	7.83	7.35	6.21
TT _x	9.11	8.17	9.85	8.86	8.08	6.77	9.72	7.38	6.63	6.28
TT _y	9.30	8.50	9.86	9.71	7.69	7.00	9.73	9.24	7.11	6.42

The table reports cut-off frequencies(Hz) corresponding to 98% of the energy of original and predicted trajectories. Decline in speaking rate contributes to low values for patients.