Source and Vocal Tract Cues for Speech-based Classification of Patients with Parkinson's Disease and Healthy Subjects

Tanuka Bhattacharjee¹, Jhansi Mallela¹, Yamini Belur², Nalini Atchayaram³, Ravi Yadav³, Pradeep Reddy³, Dipanjan Gope⁴, Prasanta Kumar Ghosh¹

¹SPIRE LAB, EE Dept., ⁴ECE Dept., IISC, Bangalore, India ²Dept. of SPA and ³Dept. of NEURO., NIMHANS, Bangalore, India

イロト イヨト イヨト イヨト

INTERSPEECH 2021

Overview

1 Introduction

- 2 Dataset
- 3 PD vs. HC Classification
- 4 Experiments and Results
- 5 Conclusions

3

イロン イボン イヨン イヨン

Source - Filter Model

G. Fant, Acoustic theory of speech production. Walter de Gruyter, no. 2, 1970. 3 SPIRE LAB, IISc, Bangalore

SPIRELAB

Parkinson's Disease (PD)

- Incurable and progressive neuro-degenerative disorder affecting muscle movements¹
 - Dopaminergic neurons degenerate
 - Deficit of neurotransmitter *dopamine* hampers coordinated and smooth muscular control
- Muscles responsible for speech production get affected leading to dysarthria²
 - \blacksquare Experienced by $\sim 90\%$ of the patients from the early stages of $\rm PD^3$

3. G. Moya-Galé and E. S. Levy, "Parkinson's disease-associated dysarthria: prevalence, impact and management strategies," Research and Reviews in Parkinsonism, vol. 9, pp. 9–16, 2019.

^{1.} https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/

^{2.} P. Gómez et al., "Characterization of Parkinson's disease dysarthria in terms of speech articulation kinematics," Biomedical Signal Processing and Control, vol. 52, pp. 312–320, 2019.

Effect of PD on Source and Vocal Tract

PD impairs both **source** and **vocal tract** attributes of speech

- Source Impairment monopitch, monoloudness, low voice intensity, and reduced fundamental frequency range^{1,2}
- Vocal Tract Impairment imprecise articulation, voice nasality, and increased acoustic noise²

2. L. Brabenec et al., "Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation," Journal of neural transmission, vol. 124, no. 3, pp. 303–334, 2017.

^{1.} G. Moya-Galé and E. S. Levy, "Parkinson's disease-associated dysarthria: prevalence, impact and management strategies," Research and Reviews in Parkinsonism, vol. 9, pp. 9–16, 2019.

Our Objective

- ▲ To compare the source and vocal tract characteristics in PD patients and healthy subjects
- ▲ To analyze how the cues related to these components contribute individually and in combination toward automatic classification of individuals with PD and healthy controls (HC)

Literature Review

Objective	Speech Features	Classifier
	MFCC ¹	CNN-LSTM
Classification	1D-CNN based features	
classification	from raw speech ²	DESTIN
	Auto-encoder based features	SVM,
	from spectrogram, scalogram ³	Softmax classifier
Classification &	MFCC, CSD, spectral	
severity prediction	dynamics, fundamental	Random Forest
of PD	frequency variation ⁴	

1. J. Mallela et al., "Voice based classification of patients with Amyotrophic Lateral Sclerosis, Parkinson's Disease and healthy controls with CNN-LSTM using transfer learning," in ICASSP, IEEE, pp. 6784–6788, 2020.

2. J. Mallela et al., "Raw speech waveform based classification of patients with ALS, Parkinson's disease and healthy controls using CNN-BLSTM," in INTERSPEECH, pp. 4586–4590, 2020.

3. B. Karan et al., "Stacked auto-encoder based time-frequency features of speech signal for Parkinson's disease prediction," in AISP, IEEE, pp. 1–4, 2020.

4. T. Khan et al., "Assessing Parkinson's disease severity using speech analysis in non-native speakers," Computer Speech Language, vol. 61, p. 101047, 2020.

Overview

1 Introduction

3 PD vs. HC Classification

4 Experiments and Results

5 Conclusions

3

Dataset Description

All speech data were collected at National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India

Condition	#Male	#Female	#Subjects	Age range (years)
PD	45	14	59	35 - 79
HC	44	16	60	22 - 53
Total	89	30	119	22 - 79

- Subjects had six different native languages Bengali, Hindi, Kannada, Odiya, Tamil, and Telugu
- PD subjects had dysarthria severity in the range of 0 2 as per the UPDRS-III scale¹

^{1.} D. J. Gelb et al., "Diagnostic criteria for Parkinson's disease," Archives of Neurology, vol. 56, no. 1, pp. 33–39, 1999 🔿

Dataset Description

Speech Task	Duration (hours)
Image description (IMAG)	~ 12.83
Diadochokinetic Rate (DIDK)	~ 4.65
Spontaneous speech (SPON)	~ 5.62

- IMAG and SPON tasks were performed in the subjects' native language
- **Audio Recorder:** Zoom H6 with XYH-6 stereo microphone capsule
- **Sampling frequency:** 44.1 kHz (downsampled to 16 kHz)

Overview

1 Introduction

2 Dataset

3 PD vs. HC Classification

4 Experiments and Results

5 Conclusions

æ

イロン 不聞と 不良と 不良と

Source and Vocal Tract Features

Speech Component	Feature
Source	Fundamental frequency (f _o)
Vocal Tract	Voicing-removed MFCC (vrMFCC) [MFCC computed after voicing removal]
Source + Vocal Tract	MFCC

Voicing Removal Procedure

ANALYSIS

Input speech is decomposed into f_o , spectral envelope and aperiodicity using WORLD analyzer

MODIFICATION

1. Obtained f_o estimates are replaced by 0s

2. Aperiodicity values for all frequency bands are made 1s

SYNTHESIS

Speech waveform is re-synthesized by WORLD synthesizer using the *modified* f_o and *aperiodicity* values along with the *unchanged spectral envelope*

M. Morise et al., "WORLD: a vocoder-based high-quality speech synthesis system for real-time applications," IEICE Transactions on Information and Systems, vol. 99, no. 7, pp. 1877–1884, 2016.

Feature Extraction

	f _o	MFCC
Algorithm/Toolkit	SWIPE ¹	KALDI ²
	3	39
Dimension	$(1 f_o + 1 \Delta f_o)$	(13 MFCC $+$ 13 Δ MFCC
	$+ 1 \Delta^2 f_o)$	$+$ 13 Δ^2 MFCC)
Temporal	extracted	20 ms frame length,
Setting	every 10 ms	10 ms overlap

The f_o estimates for unvoiced/silence regions are replaced by 0s
Utterance-level Z-score normalization is applied to each feature dimension independently

^{1.} A. Camacho and J. G. Harris, "A sawtooth waveform inspired pitch estimator for speech and music," The Journal of the Acoustical Society of America, vol. 124, no. 3, pp. 1638–1652, 2008.

^{2.} D. Povey et al., "The Kaldi speech recognition toolkit," in Workshop on automatic speech recognition and understanding, IEEE Signal Processing Society, 2011.

Classification Scheme

PD vs. HC Classification

Classifier Configuration

Feature Set	NF	FS	NC	#param	FLOPs
f _o	18	20	64	55500	175.48k
MFCC / vrMFCC	5	20	64	54979	174.46k
$f_o + MFCC / f_o + vrMFCC$	5	20	64	55279	175.06k

J. Mallela et al., "Voice based classification of patients with Amyotrophic Lateral Sclerosis, Parkinson's Disease and healthy controls with CNN-LSTM using transfer learning," in ICASSP, IEEE, pp. 6784=6788, 2020. $\leq 2 + \sqrt{2} + \sqrt{2}$

Noise Conditions

A Noise:

- Additive White Gaussian Noise (AWGN)
- High-Frequency Channel Noise (HF)¹
- Pink Noise¹
- Babble Noise¹

🛦 SNR:

0, 5, 10 and 20 dB

Train-Test Settings:

- Matched: Noise and SNR of the data used in training and testing the classifier are matched
- Mismatched: Classifier trained with clean data is used to test both clean and noisy test samples

SPIRE LAB, IISc, Bangalore

^{1.} A. Varga and H. J. Steeneken, "Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems," Speech communication, vol. 12, no. 3, pp. 247–251, 1993.

Overview

1 Introduction

2 Dataset

3 PD vs. HC Classification

4 Experiments and Results

5 Conclusions

æ

Evaluation Protocol

Validation Scheme:

- 5-fold cross-validation
 - Each fold contains almost equal number of subjects from PD and HC classes
 - Similar distributions of age, gender, language and dysarthria severity are maintained across folds

Evaluation Metrics:

- Classification accuracy
- Wilcoxon signed rank test¹ at 10% significance level

Source (f_o) or Vocal Tract (vrMFCC)?

Table: Mean classification accuracies in % (SD in bracket); here blue colour indicates superiority at 10% significance level

Eastura Sat	Speech Task				
l'eature Set	IMAG	DIDK	SPON	Overall	
f _o	74.19 (4.67)	75.33 (2.86)	88.12 (4.44)	79.21	
vrMFCC	83.17 (3.56)	76.45 (4.31)	83.26 (3.41)	80.96	

Relative contributions of source and vocal tract cues toward PD vs. HC classification vary with the speech tasks at hand

Are They Complementary?

Table: Mean classification accuracies in % (SD in bracket); # indicates that MFCC outperforms vrMFCC at 10% significance level; * and \triangle indicate that f_o+vrMFCC outperforms f_o & vrMFCC, respectively, at 10% significance level

Feature	Speech Task				
Set	IMAG	DIDK	SPON	Overall	
f _o	74.19 (4.67)	75.33 (2.86)	88.12 (4.44)	79.21	
MFCC	85.30 (4.92)	81.23 (2.40)#	88.04 (2.84)#	84.86	
vrMFCC	83.17 (3.56)	76.45 (4.31)	83.26 (3.41)	80.96	
$f_o + vrMFCC$	84.74 (3.69)*	83.42 (1.29)*△	90.36 (4.03) [△]	86.17	

Source and vocal tract cues complement each other in all tasks

Does Fusion of fo and MFCC Help?

Table: Mean classification accuracies in % (SD in bracket); * and \bigtriangleup indicate that $f_o+MFCC/vrMFCC$ outperforms f_o & MFCC/vrMFCC, respectively, at 10% significance level

Feature	Speech Task				
Set	IMAG	DIDK	SPON	Overall	
fo	74.19 (4.67)	75.33 (2.86)	88.12 (4.44)	79.21	
MFCC	85.30 (4.92)	81.23 (2.40)	88.04 (2.84)	84.86	
f_o+MFCC	88.65 (4.21)*	83.28 (4.09) *	91.91 (1.31) * ∆	87.95	
$f_o{+}vrMFCC$	84.74 (3.69)*	83.42 (1.29)*△	90.36 (4.03) [△]	86.17	

- Source information encoded in MFCC and f_o are different and complementary
- \blacktriangle PD vs. HC classification accuracy benefits from f_o+MFCC fusion
- \downarrow f_o+MFCC outperforms f_o+vrMFCC

イロン 不良 とくほど 不良 とう

Experiments and Results

Effect of Noise: Matched Train - Test

Figure: Mean classification accuracy over AWGN, HF, pink, and babble noise; here • indicates drop in accuracy w.r.t. clean case at 10% significance level and • marks the feature set which outperforms the other two at 10% significance level for a particular SNR

イロン イヨン イヨン イヨン

Source and vocal tract features are complementary in the matched train-test noisy conditions

Experiments and Results

Effect of Noise: Mismatched Train - Test

Figure: Mean classification accuracy over AWGN, HF, pink, and babble noise: here • indicates drop in accuracv w.r.t. clean case at 10% significance level and • marks the feature set which outperforms the other two at 10% significance level for a particular SNR

3

イロン イロン イヨン イヨン

I fo is highly robust against unseen noise and SNR conditions

Overview

1 Introduction

- 2 Dataset
- 3 PD vs. HC Classification
- 4 Experiments and Results

5 Conclusions

э.

Key Takeaways

- Relative merits of source and vocal tract cues vary in different speech tasks
- However, the two components complement each other consistently
- ▲ Among all the feature sets considered, f_o+MFCC is found to attain the highest classification accuracy under both clean and matched train-test conditions
- Robustness against unseen noise is predominantly observed in the case of source features encoded in fo

Future Work

To perform similar analysis using other source cues like glottal flow
To assess the dysarthria severity using source and vocal tract cues

Acknowledgement

Authors thank the Department of Science and Technology, Govt. of India for their support in this work.

THANK YOU

Have Questions/Suggestions? Write to us @ spirelab.ee@iisc.ac.in

æ

ヘロト 不問 トイヨト 不良ト