Comparison of Cough, Wheeze and Sustained Phonations for Automatic Classification between Healthy subjects and Asthmatic patients

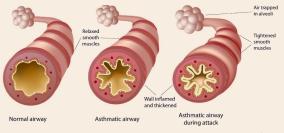
Shivani Yadav, Kausthubha NK, Dipanjan Gope,Uma Maheswari Krishnaswamy, Prasanta Kumar Ghosh

> SPIRE LAB Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India

Table of Contents

1 Introduction

- 2 Motivation
- 3 Dataset
- 4 Proposed Method
- 5 Experimental Setup
- 6 Results
- 7 Conclusion and Future work


э

イロト イヨト イヨト イヨト

What is Asthma??

Asthma is an inflammatory disease of the airways resulting in a number of symptoms including obstruction of the airways, chest discomfort or pain, cough, and wheezes or other peculiar sounds during breathing.

Figure: Healthy and Asthmatic Bronchioles ¹

 $^{1}\ {\tt http://ib.bioninja.com.au/options/option-d-human-physiology/d6-transport-of-respiratory/asthma.html}$

ヘロト 人間ト 人団ト 人団ト

What is Asthma??

- Asthma is an inflammatory disease of the airways resulting in a number of symptoms including obstruction of the airways, chest discomfort or pain, cough, and wheezes or other peculiar sounds during breathing.
- **2** 334 million is global burden of $asthma^2$.

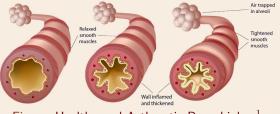


Figure: Healthy and Asthmatic Bronchioles ¹

 $^{1}\ {\tt http://ib.bioninja.com.au/options/option-d-human-physiology/d6-transport-of-respiratory/asthma.html}$

² http://www.globalasthmareport.org/burden/burden.php

SPIRE LAB, IISc, Bangalore

イロト イヨト イヨト

Traditional diagnostic tool: Spirometry

- A lung function test that measures how much and how fast a person can exhale air.
- Helps in diagnosis and monitoring asthma in hospital.
- Drawbacks of spirometry
 - 1 Very strenous
 - 2 More training required
 - 3 More time required to screen large population

Figure: Spirometry ¹

ヘロト 不得入 不良人 不良人

¹http://www.virtualimaging.org/pft.html

Traditional diagnostic tool: Spirometry

- A lung function test that measures how much and how fast a person can exhale air.
- Helps in diagnosis and monitoring asthma in hospital.
- Drawbacks of spirometry
 - 1 Very strenous
 - 2 More training required
 - 3 More time required to screen large population

Is there a simpler approach for asthma diagnosis?

Figure: Spirometry ¹

ヘロト 不得入 不良人 不良人

¹http://www.virtualimaging.org/pft.html

Table of Contents

1 Introduction

- 2 Motivation
- 3 Dataset
- 4 Proposed Method
- 5 Experimental Setup
- 6 Results
- 7 Conclusion and Future work

3

イロン イヨン イヨン イヨン

Voice based analysis

- **1** Less training required.
- 2 Less timing required to screen large population.
- 3 Less strenous.
- 4 Easy for the aged and children.

イロト イヨト イヨト

Voice based analysis

- **1** Less training required.
- 2 Less timing required to screen large population.
- 3 Less strenous.
- 4 Easy for the aged and children.

Does human voice encode cues to detect asthma??

イロン イヨン イヨン

Voice based analysis is possible!

- Key finding: Acoustics are different between healthy and asthmatic subjects¹.
- Stimuli used: Sustained phonations

¹ Batra, Khushboo, Swati Bhasin, and Amandeep Singh. "Acoustic Analysis of voice samples to differentiate Healthy and Asthmatic persons." International Journal of Engineering and Computer Science 4.7 (2015): 13161-13164.

소리가 소리가 소문가 소문가.

Voice based analysis is possible!

- Key finding: Acoustics are different between healthy and asthmatic subjects¹.
- Stimuli used: Sustained phonations
 - /aː/ (as in 'Father')
 /iː/ (as in 'See')
 - /uː/ (as in 'Blue')
 - /oʊ/ (as in 'Go')
 - /ai/ (as in 'Eye').

What are the other possible stimuli?

 1 Batra, Khushboo, Swati Bhasin, and Amandeep Singh. "Acoustic Analysis of voice samples to differentiate Healthy and

Asthmatic persons." International Journal of Engineering and Computer Science 4.7 (2015): 13161-13164.

イロト イポト イヨト イヨト

Cough

イロン イヨン イヨン イヨン

SPIRE LAB, IISc, Bangalore

э

Control

Cough

Wheeze

イロン イヨン イヨン イヨン

SPIRE LAB, IISc, Bangalore

э

Control

Cough

Patient

Patient

Control

イロン イヨン イヨン イヨン

E.

Control

Cough

Patient

How well do the different stimuli encode cues to detect asthma?

Patient

Control

3

Table of Contents

1 Introduction

2 Motivation

3 Dataset

- 4 Proposed Method
- 5 Experimental Setup
- 6 Results
- 7 Conclusion and Future work

3

イロン 不同 とくほう 不良 と

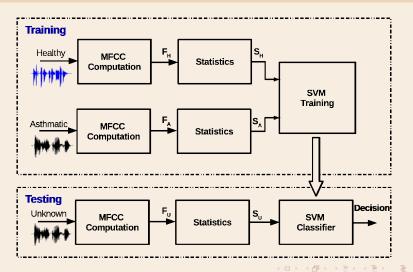
Dataset

- **35 Patients** 18 male, 17 female.
- **36 Controls (healthy)** 18 male, 18 female.
- The age range of controls are between 19-42 years and average age of 24 years. The age range of the patients are 19-78 years with an average age of 43 years.
- Stimuli:
 - 1 Cough
 - 2 Wheeze
 - 3 Sustained phonations: $/\alpha t / (as in 'father')$, /it / (as in 'See'), /ut / (as in 'See')
 - in 'Blue'), /ei/ (as in 'Say'),/o υ / (as in 'Go').
- Average number of recordings per stimuli per subject is 5.

Ξ

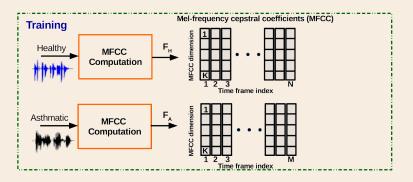
イロン 不良と 不良と 不良と

Table of Contents

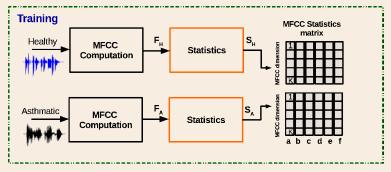


- 1 Introduction
- 2 Motivation
- 3 Dataset
- 4 Proposed Method
- 5 Experimental Setup
- 6 Results
- 7 Conclusion and Future work

3


イロン イヨン イヨン イヨン

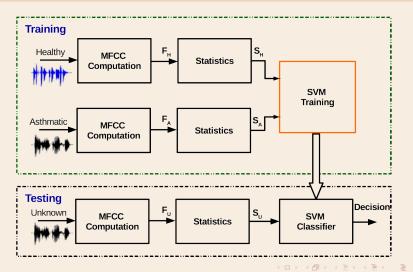
Schematic Diagram



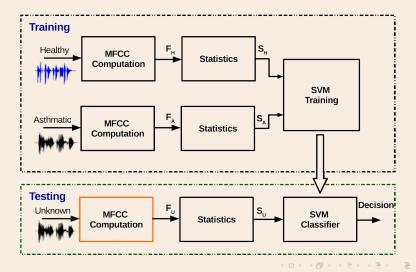
《日》 《圖》 《臣》 《臣》 三臣

SPIRE LAB

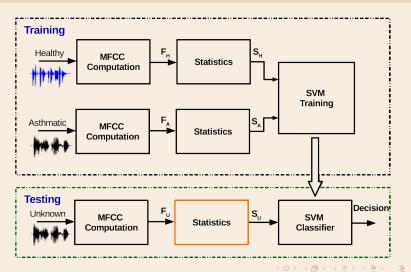
Schematic Diagram



- a. Mean
- b. Median
- c. Mode
- d. Root mean square (RMS)
- e. Variance
- f. Standard Deviation (SD)


イロン イタン イヨン イヨン

Э



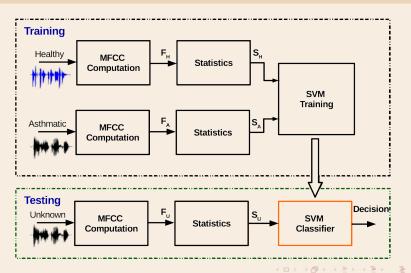

SPIRE LAB

Table of Contents

- 1 Introduction
- 2 Motivation
- 3 Dataset
- 4 Proposed Method
- 5 Experimental Setup
- 6 Results
- 7 Conclusion and Future work

3

イロン イヨン イヨン イヨン

Experimental setup

- \blacksquare Sampling rate of: 48 kHz, analysis window : 20 ms, shift : 10 ms.
- Support vector machine (SVM) used with 4 fold cross-validation setup.
- Evaluation metric
 - Total classification accuracy

$$TCA = \frac{TP + TN}{TP + TN + FP + FN}$$

where, TP (True Positive), TN (True Negatives), FP (False Positives) and FN (False Negatives).

<ロ> (日) (日) (日) (日)

Key questions addressed

- **Which stimuli** (cough, wheeze and sustained phonation) are better for classification?
- 2 What is the effect of including Δ (velocity) and $\Delta\Delta$ (acceleration) coefficients on the classification results?
- **3** To what degree do individual MFCCs encode asthma related information for the best performing stimuli?
- Which among the 6 statistics are more discriminant in the best performing stimuli for the classification task?

イロト 不得入 不良人 不良人

Table of Contents

- 1 Introduction
- 2 Motivation
- 3 Dataset
- 4 Proposed Method
- 5 Experimental Setup
- 6 Results
- 7 Conclusion and Future work

3

イロン 不同 とくほう 不良 と

Classification Results

Table: Mean (Standard deviation) of Total classification accuracy (TCA%) using static, Δ (velocity) and $\Delta\Delta$ (acceleration) coefficients.

Stimuli	Total classification accuracy (TCA) %		
	K = 12	K = 24	K = 36
/aː/	$54.7(\pm 8.8)$	$61.7(\pm 6.9)$	$66.1(\pm 9.0)$
cough	$77.3(\pm 6.1)$	$81.0(\pm 2.5)$	$78.7(\pm 3.7)$
/iː/	$74.3(\pm 3.2)$	$76.8(\pm 9.0)$	$80.8(\pm 7.3)$
/ou/	$72.3(\pm 10.7)$	$75.8(\pm 5.3)$	$75.2(\pm 7.4)$
/uː/	$74.5(\pm 4.3)$	$73.9(\pm 2.2)$	$75.6(\pm 3.9)$
wheeze	$89.8(\pm 8.2)$	$90.5(\pm 6.9)$	$90.2(\pm 5.9)$
/ei/	$69.4(\pm 12.8)$	$74.0(\pm 8.6)$	$73.6(\pm 10.3)$

Which stimuli (cough, wheeze and sustained phonation) are better?

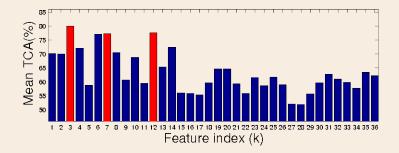
- Wheeze is the best stimuli for classification.
- **Sustained** /I:/ performs the best among all sustained vowels.

イロト イポト イヨト イヨト

Classification Results

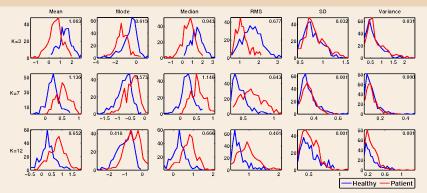
Table: Mean (Standard deviation) of Total classification accuracy (TCA%) using static, Δ (velocity) and $\Delta\Delta$ (acceleration) coefficients.

Stimuli	Total classification accuracy (TCA) %		
	K = 12	K = 24	K = 36
/aː/	$54.7(\pm 8.8)$	$61.7(\pm 6.9)$	$66.1(\pm 9.0)$
cough	$77.3(\pm 6.1)$	$81.0(\pm 2.5)$	$78.7(\pm 3.7)$
/iː/	$74.3(\pm 3.2)$	$76.8(\pm 9.0)$	$80.8(\pm 7.3)$
/ou/	$72.3(\pm 10.7)$	$75.8(\pm 5.3)$	$75.2(\pm 7.4)$
/uː/	$74.5(\pm 4.3)$	$73.9(\pm 2.2)$	$75.6(\pm 3.9)$
wheeze	$89.8(\pm 8.2)$	$90.5(\pm 6.9)$	$90.2(\pm 5.9)$
/ei/	$69.4(\pm 12.8)$	$74.0(\pm 8.6)$	$73.6(\pm 10.3)$


Which stimuli (cough, wheeze and sustained phonation) are better?

- Wheeze is the best stimuli for classification.
- **Sustained** /I:/ performs the best among all sustained vowels.
- **2** What is the effect of including Δ and $\Delta\Delta$?
 - Stimulus dependent.

신다가 사람가 신문가 신문가.


Role of Individual MFCC in Wheeze

- **3** To what degree do individual MFCCs encode asthma related information for the best performing stimuli?
 - **3**^{*rd*}, **7**^{*th*} and **12**^{*th*} **Static** MFCC capture cues of asthma better than Δ and $\Delta\Delta$ coefficients.

SPIRELAR

Role of each statistics in Wheeze

- 4 Which among the 6 statistics are more discriminant in best performing stimuli for classification task?
 - Mean, Median, Mode and RMS.
- Fisher discriminant ratio (FDR) was used.

Ξ

イロン 不良と 不良と 不良と

Table of Contents

- 1 Introduction
- 2 Motivation
- 3 Dataset
- 4 Proposed Method
- 5 Experimental Setup
- 6 Results
- 7 Conclusion and Future work

э

イロト イヨト イヨト イヨト

Wheeze is the best stimuli for classification and **sustained /1**:/ performs the best among all sustained vowels.

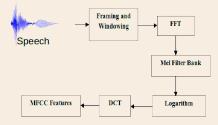
イロト イヨト イヨト イヨト

- **Wheeze is the best stimuli** for classification and **sustained /ı:/** performs the best among all sustained vowels.
- **2 3**^{*rd*}, **7**^{*th*} **and 12**^{*th*} **MFCC of wheeze** signal encodes the asthma specific signature compared to those for velocity and acceleration coefficients.

イロト イポト イヨト イヨト

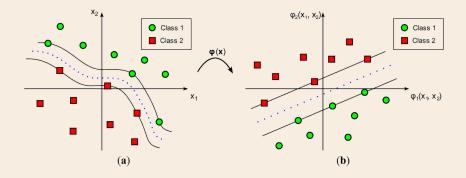
- **Wheeze is the best stimuli** for classification and **sustained /ı:/** performs the best among all sustained vowels.
- **2 3**^{*rd*}, **7**^{*th*} **and 12**^{*th*} **MFCC of wheeze** signal encodes the asthma specific signature compared to those for velocity and acceleration coefficients.
- **S** FDR values shown suggests that the **mean**, **mode**, **median** and **RMS** statistics are relatively more discriminative compared to the variance and SD statistics.

イロト イポト イヨト イヨト


- **Wheeze is the best stimuli** for classification and **sustained /ı:/** performs the best among all sustained vowels.
- **2 3**^{*rd*}, **7**^{*th*} **and 12**^{*th*} **MFCC of wheeze** signal encodes the asthma specific signature compared to those for velocity and acceleration coefficients.
- **S** FDR values shown suggests that the **mean**, **mode**, **median** and **RMS** statistics are relatively more discriminative compared to the variance and SD statistics.
- As the best performing stimuli is wheeze where there is no voicing, future plan includes investigation of **fricatives** as stimuli for asthma classification task.

ヘロト 人間ト 人団ト 人団ト

THANK YOU


Mel-frequency cepstral coefficients(MFCC)

Support vector machine (SVM)

イロン イロン イヨン イヨン 三日