Exploring Syllable Discriminability during Diadochokinetic Task with Increasing Dysarthria Severity for Patients with Amyotrophic Lateral Sclerosis

Neelesh Samptur¹, Tanuka Bhattacharjee², Anirudh Chakravarty K¹, Seena Vengalil³, Yamini Belur³, Atchayaram Nalini³, **Prasanta Kumar Ghosh²**

¹CSE Dept., PES University, Bangalore, India ²SPIRE LAB, EE Dept., Indian Institute of Science, Bangalore, India ³National Institute of Mental Health and Neurosciences, Bangalore, India

INTERSPEECH 2024

Overview

1 Introduction

2 Dataset

3 Method

4 Experimental Results

5 Conclusion

Amyotrophic Lateral Sclerosis (ALS)

- Incurable and progressive neuro-degenerative disease affecting muscle movements¹
- Speech musculature get severely affected leading to Dysarthria
 - Affects articulation, phonation, prosody, respiration and resonance²
 - Can adversely impact the **discriminability** of different sounds
 - Form and extent of different impairments vary with the degree of severity

^{1.} https://www.als.org/understanding-als/what-is-als/

^{2.} Lavoisier Leite and Ana Carolina Constantini, "Dysarthria and quality of life in patients with Amyotrophic Lateral Sclerosis," Revista CEFAC, vol. 19, pp. 664–673, 2017.

Amyotrophic Lateral Sclerosis (ALS)

- Clinically, different speech tasks are used for diagnosis and assessment of dysarthria prevalent in ALS.
 - Sustained phonation
 - Diadochokinetic task
 - Spontaneous speech
 - Read speech
 - Image description

Amyotrophic Lateral Sclerosis (ALS)

Clinically, different speech tasks are used for diagnosis and assessment of dysarthria prevalent in ALS.

- Sustained phonation
- Diadochokinetic task
- Spontaneous speech
- Read speech
- Image description

Diadochokinetic (DDK) Task

Examines how quickly and accurately one can repeat, without any interruption, a series of monosyllabic targets like 'pa-pa-pa' or tri-syllabic targets like 'pataka'¹

^{1.} B. Tomik et al., "Dysarthria in Amyotrophic Lateral Sclerosis: a review," Amyotrophic Lateral Sclerosis, 🔊 ol. 11, no. 1-2, pp 4–15, 2010. 🔊 O. (>)

Effect of ALS on DDK Tasks

Reduced DDK rate¹

 Dysarthria due to ALS restricts the speed of movements of lips, jaw, tongue, and velum.

Compromised syllable discriminability²

- ALS patients often perform incomplete closures while uttering stop consonants.
- Consonant-to-vowel formant transitions get impaired.

2. R. D. Kent et al., "Speech deterioration in Amyotrophic Lateral Sclerosis: A case study," Journal of Speech, Language, and Hearing Research, vol. 34, no. 6, pp. 1269–1275, 1991.

^{1.} B. Yamini et al., "Measures of maximum performance of speech-related tasks in patients with Amyotrophic Lateral Sclerosis," Amyotrophic Lateral Sclerosis, vol. 9, 2008.

Effect of ALS on DDK Tasks

Reduced DDK rate¹

 Dysarthria due to ALS restricts the speed of movements of lips, jaw, tongue, and velum.

▲ Compromised syllable discriminability²

- ALS patients often perform incomplete closures while uttering stop consonants.
- Consonant-to-vowel formant transitions get impaired.

The **extent** to which the syllable discriminability gets compromised at **different dysarthria severity levels** for ALS is **not well understood**.

^{1.} B. Yamini et al., "Measures of maximum performance of speech-related tasks in patients with Amyotrophic Lateral Sclerosis," Amyotrophic Lateral Sclerosis, vol. 9, 2008.

^{2.} R. D. Kent et al., "Speech deterioration in Amyotrophic Lateral Sclerosis: A case study," Journal of Speech, Language, and Hearing Research, vol. 34, no. 6, pp. 1269–1275, 1991.

Our Objective

- ▲ To analyze the degree of discriminability among /pa/, /ta/, and /ka/ syllables produced during the tri-syllabic DDK 'pataka' task, at varied severity levels of ALS-induced dysarthria
- **Task** 3-class classification of /pa/, /ta/ and /ka/ sounds
 - To be done at different dysarthria severity levels
 - Automatic classification performances are to be compared against manual classification accuracies

イロト イポト イヨト イヨト

Literature

- Several studies have been reported on discriminability among certain vowels and fricatives with increasing dysarthria severity for ALS patients.
 - Discriminability of different vowels and different fricatives, as perceived by both human and machine, decline drastically with increasing dysarthria severity.¹
 - Vowel space area reduces making it difficult to discriminate between vowels.²
 - Patients often add unwanted voicing to voiceless fricatives making them sound like their respective voiced counterparts.³

^{1.} C. V. T. Kumar et al., "Classification of multi-class vowels and fricatives from patients having Amyotrophic Lateral Sclerosis with varied levels of dysarthria severity," in Proc. Interspeech, 2023, pp. 146–150.

^{2.} B. Yamini et al., "Vowel space area in patients with Amyotrophic Lateral Sclerosis," Amyotrophic Lateral Sclerosis, vol. 9, no. 1, pp. 118–119, 2008.

^{3.} T. Bhattacharjee et al., "Exploring the role of fricatives in classifying healthy subjects and patients with Amyotrophic Lateral Sclerosis and Parkinson's Disease," in IEEE ICASSP 2023, pp. 1–5.

Literature

- Discriminability among syllables like /pa/, /ta/, and /ka/ remains relatively unexplored.
 - Tao et al.¹ have analysed automatic speech recognition on DDK 'pataka' sequences for patients with traumatic brain injuries and Parkinson's disease, but not for ALS.

^{1.} F. Tao et al., "A portable automatic PA-TA-KA syllable detection system to derive biomarkers for neurological disorders," in Proc. Interspeech, 2016, pp. 362–366.

Overview

1 Introduction

2 Dataset

3 Method

4 Experimental Results

5 Conclusion

Data Collection Details

A Place of data collection:

 National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India

Speech task:

- Take a deep breath and keep repeating the tri-syllabic sequence 'pataka' as fast as possible.
- 1-3 such trials per subject

Dysarthria severity rating:

- As per the 5-point speech component of ALSFRS-R scale
- Mode of the ratings given by 3 Speech-Language Pathologists

No useful Normal speech speech

ALSFRS-R

▶ < ∃ >

Subject Grouping

Group	Description	ALSFRS-R	#Subjects	#Male:#Female	Age range (years)
SV	Severe	0,1	30	18:12	30-73
ML	Mild	2,3	35	24:11	28-70
ND	ALS without dysarthria	4	35	22:13	28-70
NS	Healthy	-	35	18:17	31-55

Subjects had five different native languages - Bengali, Tamil, Telugu, Hindi, and Kannada.

Data Preprocessing - Syllable Segmentation

Two-phase semi-automatic method

A Phase 1 - Automatic

- Dataset

- Obtain the upper peak envelope of the speech waveform.
- Low-pass filter the envelope at 15 Hz cutoff frequency to make it smooth.
- Locate the prominent local minima of the smooth envelope.
- Consider the speech segment between two consecutive minima as one syllable.
- Cyclically label the identified syllables as /pa/, /ta/, and /ka/.

Phase 2 - Manually correct all erroneous segmentations

Figure: Automatic and manually corrected syllable segmentations

< D > < A > <</p>

Syllable Corpus Statistics

Table: Number of utterances of different syllables

Syllable	SV	ML	ND	NS
/pa/	294	730	1417	1349
/ta/	287	621	1323	1215
/ka/	267	716	1405	1346

Table: Mean (SD) of durations (in sec) of utterances of different syllables

Syllable	SV	ML	ND	NS
/pa/	0.33 (0.16)	0.17 (0.06)	0.13 (0.03)	0.11 (0.03)
/ta/	0.32 (0.17)	0.18 (0.08)	0.12 (0.03)	0.11 (0.03)
/ka/	0.38 (0.15)	0.25 (0.12)	0.17 (0.05)	0.15 (0.03)

Overview

1 Introduction

2 Dataset

3 Method

4 Experimental Results

5 Conclusion

Manual Classification

- Listening tests performed through a Web app
- 🛦 Test set -
 - 360 syllable utterances
 (4 severity groups × 15 subjects × 3 syllables
 × 2 utterances)

Classification strategy -

- 3 human listeners classified each utterance as one of /pa/, /ta/, or /ka/, along with a confidence score in the range of [0, 100].
- A response is considered as correct if it matches with the ground truth and the corresponding confidence score is above 40.

Figure: Illustrative screenshot of the interface

イロト イポト イヨト イヨト

Manual Classification

- ▲ Each listener was presented with
 - 90 unique syllable utterances
 - Almost equal number of utterances from each severity group
 - Random 10 repeated utterances (2 or 3 per severity group)
 - Refreshing music after every 5 utterances
 - Access to example healthy utterances at the beginning and throughout the assessment
 - Option to play a test audio as many times as needed before submitting the response

Figure: Illustrative screenshot of the interface

Manual Classification

- **27** listeners participated.
 - 19 Male + 8 Female
 - Age range: 17-54 years
 - Native languages: Hindi, Kannada, Malayalam, Tamil, Tulu, Urdu and Telugu
- ▲ Listener selection criteria
 - **1** Accuracy on healthy utterances $\geq 80\%$
 - **2** Consistency on repeated utterances $\geq 80\%$
- ▲ 12 out of the 27 participating listeners were selected.

Automatic Classification

🛦 Features

		Self-supervised speech representations							
	MFCC	wav2vec 2.0	Hubert	Tera	NPC	Decoar			
Stride (ms)	5	20	20	10	10	10			
Dimension	36	768	768	768	512	2048			

Automatic Classification

L Classifiers

Figure: Architectures of different classifiers

Here, DL: Dense layer, CL: 1D-Convolutional layer, AL: Adaptive average pooling layer, LL: LSTM layer, NU: Number of units in DL, NF: Number of filters, KS: Kernel size, OS: Output size of AL, NC: Number of LSTM cells

Э

★ Ξ ► < Ξ ►</p>

Evaluation Protocol

A Phase - 1:

Evaluation of automatic classifiers through 5-fold cross-validation separately for each severity group

- Subjects of each severity group are equally and randomly distributed among the 5 folds.
- For any severity group, at every iteration,
 - One of the folds acts as the test set.
 - Remaining folds are used together as the train set.
 - Random 4 subjects from the train set are chosen to form the validation set.
- Same fold structure is maintained across all automatic classifiers.

▶ < ∃ ▶</p>

Evaluation Protocol

🔺 Phase - 2:

Evaluation of automatic classifiers on the same dataset as used for the manual listening tests, and comparison with manual classification performance

- For every severity group,
 - Utterances selected for the manual listening task are used as the test set for the automatic classifiers.
 - Remaining subjects are used to form the train set.
 - Random 3 subjects from the train set are used for validation.
- Automatic and manual classification accuracies are compared using the Wilcoxon signed-rank test at 1% significance level.
 - 30 random subsets, each containing 30 utterances, are formed from the test set for every severity group.

イロト イポト イヨト イヨト

э

Overview

1 Introduction

2 Dataset

3 Method

4 Experimental Results

5 Conclusion

Phase - 1: Automatic Classification

Table: Mean classification accuracies in % (SD in bracket) over 5-fold cross-validation obtained using different automatic classification methods for different severity groups

Fosturo	DNN				CNN				LSTM			
reature	NS	ND	ML	SV	NS	ND	ML	SV	NS	ND	ML	SV
MECC	83.69	74.82	61.12	50.27	59.07	50.92	45.38	42.70	76.89	74.74	63.12	48.68
IVIFCC	(5.67)	(11.31)	(11.11)	(6.77)	(6.81)	(10.95)	(6.26)	(6.46)	(13.15)	(11.01)	(7.96)	(7.28)
	45.66	59.97	55.94	48.59	47.79	43.19	38.41	35.19	60.47	60.67	58.80	45.83
NEC	(7.95)	(20.35)	(11.69)	(3.49)	(5.59)	(4.74)	(3.68)	(5.23)	(17.97)	(8.17)	(6.21)	(6.39)
TEDA	83.91	90.10	67.80	61.53	57.57	54.43	55.64	40.65	83.32	90.82	80.64	47.83
TERA	(5.23)	(5.20)	(9.89)	(8.92)	(5.98)	(7.89)	(5.59)	(3.07)	(5.44)	(3.10)	(3.25)	(4.86)
HuB-	99.03	99.46	97.03	79.72	94.06	89.25	78.54	54.12	97.98	98.56	94.52	79.75
ERT	(0.40)	(0.47)	(1.45)	(8.68)	(6.59)	(4.25)	(4.29)	(5.11)	(2.37)	(1.44)	(3.09)	(10.47)
Wav2-	98.13	97.29	91.21	71.14	64.49	61.37	46.31	38.02	96.23	94.40	86.40	68.11
Vec2.0	(0.57)	(1.43)	(6.12)	(6.82)	(14.06)	(7.25)	(5.43)	(1.37)	(1.54)	(1.64)	(4.51)	(14.22)
DeC-	85.53	93.17	74.05	53.01	50.53	49.16	38.84	36.96	85.99	72.07	61.88	48.74
oAR	(7.84)	(3.47)	(5.43)	(6.04)	(2.86)	(3.55)	(3.48)	(3.33)	(10.03)	(19.47)	(4.21)	(5.90)

Classification accuracies generally decline with increasing severity.

イロト イポト イヨト イヨト

Phase - 1: Automatic Classification

Table: Mean classification accuracies in % (SD in bracket) over 5-fold cross-validation obtained using different automatic classification methods for different severity groups

Fosturo	DNN			CNN				LSTM				
reature	NS	ND	ML	SV	NS	ND	ML	SV	NS	ND	ML	SV
MECC	83.69	74.82	61.12	50.27	59.07	50.92	45.38	42.70	76.89	74.74	63.12	48.68
WII CC	(5.67)	(11.31)	(11.11)	(6.77)	(6.81)	(10.95)	(6.26)	(6.46)	(13.15)	(11.01)	(7.96)	(7.28)
NDC	45.66	59.97	55.94	48.59	47.79	43.19	38.41	35.19	60.47	60.67	58.80	45.83
NEC	(7.95)	(20.35)	(11.69)	(3.49)	(5.59)	(4.74)	(3.68)	(5.23)	(17.97)	(8.17)	(6.21)	(6.39)
TEDA	83.91	90.10	67.80	61.53	57.57	54.43	55.64	40.65	83.32	90.82	80.64	47.83
TERA	(5.23)	(5.20)	(9.89)	(8.92)	(5.98)	(7.89)	(5.59)	(3.07)	(5.44)	(3.10)	(3.25)	(4.86)
HuB-	99.03	99.46	97.03	79.72	94.06	89.25	78.54	54.12	97.98	98.56	94.52	79.75
ERT	(0.40)	(0.47)	(1.45)	(8.68)	(6.59)	(4.25)	(4.29)	(5.11)	(2.37)	(1.44)	(3.09)	(10.47)
Wav2-	98.13	97.29	91.21	71.14	64.49	61.37	46.31	38.02	96.23	94.40	86.40	68.11
Vec2.0	(0.57)	(1.43)	(6.12)	(6.82)	(14.06)	(7.25)	(5.43)	(1.37)	(1.54)	(1.64)	(4.51)	(14.22)
DeC-	85.53	93.17	74.05	53.01	50.53	49.16	38.84	36.96	85.99	72.07	61.88	48.74
oAR	(7.84)	(3.47)	(5.43)	(6.04)	(2.86)	(3.55)	(3.48)	(3.33)	(10.03)	(19.47)	(4.21)	(5.90)

HuBERT-based features with DNN classifier achieve the best classification performance for NS, ND, and ML groups.

イロト イポト イヨト イヨト

Phase - 1: Automatic Classification

Table: Mean classification accuracies in % (SD in bracket) over 5-fold cross-validation obtained using different automatic classification methods for different severity groups

Footuro	DNN			CNN				LSTM				
reature	NS	ND	ML	SV	NS	ND	ML	SV	NS	ND	ML	SV
MECC	83.69	74.82	61.12	50.27	59.07	50.92	45.38	42.70	76.89	74.74	63.12	48.68
WI CC	(5.67)	(11.31)	(11.11)	(6.77)	(6.81)	(10.95)	(6.26)	(6.46)	(13.15)	(11.01)	(7.96)	(7.28)
	45.66	59.97	55.94	48.59	47.79	43.19	38.41	35.19	60.47	60.67	58.80	45.83
NFC	(7.95)	(20.35)	(11.69)	(3.49)	(5.59)	(4.74)	(3.68)	(5.23)	(17.97)	(8.17)	(6.21)	(6.39)
TEDA	83.91	90.10	67.80	61.53	57.57	54.43	55.64	40.65	83.32	90.82	80.64	47.83
TENA	(5.23)	(5.20)	(9.89)	(8.92)	(5.98)	(7.89)	(5.59)	(3.07)	(5.44)	(3.10)	(3.25)	(4.86)
HuB-	99.03	99.46	97.03	79.72	94.06	89.25	78.54	54.12	97.98	98.56	94.52	79.75
ERT	(0.40)	(0.47)	(1.45)	(8.68)	(6.59)	(4.25)	(4.29)	(5.11)	(2.37)	(1.44)	(3.09)	(10.47)
Wav2-	98.13	97.29	91.21	71.14	64.49	61.37	46.31	38.02	96.23	94.40	86.40	68.11
Vec2.0	(0.57)	(1.43)	(6.12)	(6.82)	(14.06)	(7.25)	(5.43)	(1.37)	(1.54)	(1.64)	(4.51)	(14.22)
DeC-	85.53	93.17	74.05	53.01	50.53	49.16	38.84	36.96	85.99	72.07	61.88	48.74
oAR	(7.84)	(3.47)	(5.43)	(6.04)	(2.86)	(3.55)	(3.48)	(3.33)	(10.03)	(19.47)	(4.21)	(5.90)

▲ For SV group, HuBERT-based features with LSTM classifier perform the best.

Figure: Mean automatic (using HuBERT features) and manual classification accuracies (SD in error bar) obtained on the manual listening test set for different severity groups; at each severity, * indicates the automatic methods which significantly outperform humans at 1% significance level

DNN and LSTM significantly outperform the manual classification approach at all severity levels.

Figure: Mean automatic (using HuBERT features) and manual classification accuracies (SD in error bar) obtained on the manual listening test set for different severity groups; at each severity, * indicates the automatic methods which significantly outperform humans at 1% significance level

▲ The performance of CNN is significantly better than the manual classification performance only for the SV group.

Figure: Mean automatic (using HuBERT features) and manual classification accuracies (SD in error bar) obtained on the manual listening test set for different severity groups; at each severity, * indicates the automatic methods which significantly outperform humans at 1% significance level

▲ The drops in the mean accuracies from NS to SV are significantly less for automatic DNN (21.11%) and LSTM (28.89%) methods than that for manual classification (56.66%).

Figure: Mean automatic (using HuBERT features) and manual classification accuracies (SD in error bar) obtained on the manual listening test set for different severity groups; at each severity, * indicates the automatic methods which significantly outperform humans at 1% significance level

Though humans may fail to perceive the differences among these syllables with increasing dysarthria severity, distinct cues persist in the syllables which data-driven models can capture.

Phase - 2: Confusion Matrices

	/pa/	/ta/	/ka/	CS < 40		/pa/	/ta/	/ka/
/na/	0.91	0.01	0	0.08	/na/	0.83	0.02	0.01
/pa/	1	0	0	-	/pa/	1	0	0
/to/	0.02	0.84	0.06	0.08	/to/	0.1	0.73	0.04
/1a/	0	1	0	-	/ta/	0	1	0
1	0.12	0.06	0.77	0.06	(h. n. (0.11	0.02	0.66
/ка/	0	0	1	-	/ка/	0	0	1
		(a) N	12			(b) N	D	

	/pa/	/ta/	/ka/	CS < 40		/pa/	/ta/	/ka/	CS < 40
1	0.8	0.03	0	0.17	1	0.36	0.01	0.11	0.52
/pa/	0.97	0.03	0	-	/pa/	0.93	0.03	0.03	-
14-1	0.11	0.52	0.10	0.26	14-01	0.08	0.15	0.16	0.62
/ta/	0	0.97	0.03	-	/ta/	0.13	0.73	0.13	-
1	0.08	0.14	0.6	0.18	(h. n. (0.18	0.08	0.32	0.42
/ка/	0	0	1	-	/ка/	0.2	0.13	0.67	-
							(1)		
		(c) N	/IL				(d) S	i V	

Figure: Confusion matrices obtained on the manual listening test set of different severity groups using manual (in red) and the best-performing automatic (in blue) classification methods; here CS: confidence score

Humans could identify /pa/ the best at all severity levels.

▲ They confused /ka/ the most for NS and ND but /ta/ for ML and SV.

CS < 400 13

0.12

0.20

Phase - 2: Confusion Matrices

	/pa/	/ta/	/ka/	CS < 40	
Incl	0.91	0.01	0	0.08	100
/pa/	1	0	0	-	/pa
14-1	0.02	0.84	0.06	0.08	14-0
/ta/	0	1	0	-	/ta
/h.a./	0.12	0.06	0.77	0.06	/1
/ Ka/	0	0	1	-	/Ка
		(e) N	IS		

	/pa/	/ta/	/ka/	CS < 40
mal	0.83	0.02	0.01	0.13
pa/	1	0	0	
1401	0.1	0.73	0.04	0.12
/ta/	0	1	0	-
(1)	0.11	0.02	0.66	0.20
ка/	0	0	1	-

(f) ND

	/pa/	/ta/	/ka/	CS < 40		/pa/	/ta/	/ka/	CS < 40	
/pa/	0.8	0.03	0	0.17	/pa/	0.36	0.01	0.11	0.52	
	0.97	0.03	0	-		0.93	0.03	0.03	-	
/ta/	0.11	0.52	0.10	0.26	/ta/	0.08	0.15	0.16	0.62	
	0	0.97	0.03	-		0.13	0.73	0.13	-	
/ka/	0.08	0.14	0.6	0.18	/ka/	0.18	0.08	0.32	0.42	
	0	0	1	-		0.2	0.13	0.67	-	
(g) ML						(h) SV				

Figure: Confusion matrices obtained on the manual listening test set of different severity groups using manual (in red) and the best-performing automatic (in blue) classification methods; here CS: confidence score

イロト イポト イヨト イヨト

▲ The best performing automatic method faces the highest confusion in the case of /ka/, followed by /ta/, for SV.

Э

Overview

1 Introduction

2 Dataset

3 Method

4 Experimental Results

5 Conclusion

Key-Takeaways

- ▲ Automatic methods are found to outperform humans in classifying /pa/, /ta/, and /ka/ syllables at all severity levels of ALS-induced dysarthria.
- ▲ The **drop** in the mean classification **accuracy** from NS to SV is significantly **less for automatic methods** than that for humans.
- Discriminative acoustic cues seem to persist among the syllables, which automatic methods capture.
- Thus, these syllables can be explored further as potential choices of voice commands for automatic voice assistants, even for the most severe patients.

Future Work

- ▲ To analyze the discriminability of different voiced stops like /b/, /d/, /g/ with increasing severity of ALS-induced dysarthria
- ▲ To **visualize** the **changes** in the overall **acoustic space** with increasing severity of ALS-induced dysarthria

B ► < B ►

Authors thank the Department of Science and Technology (DST), Govt of India, for their support in this work.

Э

∃ ► < ∃ ►

<<p>< □ > < 向 > <</p>

THANK YOU

Have Questions/Suggestions? Write to us @ spirelab.ee@iisc.ac.in

Э

イロト イポト イヨト イヨト