Classification of multi-class vowels and fricatives from patients having Amyotrophic Lateral Sclerosis with varied levels of dysarthria severity

Chowdam Venkata Thirumala Kumar¹, **Tanuka Bhattacharjee**¹, Yamini Belur², Atchayaram Nalini³, Ravi Yadav³, Prasanta Kumar Ghosh¹

¹SPIRE LAB, EE Dept., IISc, Bangalore, India ²Dept. of SPA and ³Dept. of NEURO., NIMHANS, Bangalore, India

INTERSPEECH 2023

Overview

1 Introduction

2 Dataset

- Classification Method
- 4 Experimental Results

5 Conclusion

Discriminability of Sounds

- Acoustic characteristics of individual speech sounds help in discriminating them from one another.
- ▲ Level of discrimination can change due to
 - Background noise
 - Reverberation
 - Cross-talk
 - Impaired speech production, etc.

Discriminability of Sounds

- Acoustic characteristics of individual speech sounds help in discriminating them from one another.
- Level of discrimination can change due to
 - Background noise
 - Reverberation
 - Cross-talk
 - Impaired speech production -

Dysarthria due to Amyotrophic Lateral Sclerosis (ALS)

э

イロト イポト イヨト イヨト

Amyotrophic Lateral Sclerosis (ALS)

- Incurable and progressive neuro-degenerative disease affecting muscle movements¹
- Speech musculature get severely affected leading to Dysarthria
 - Affects articulation, phonation, prosody, respiration and resonance²
 - Can adversely impact the discriminability of different sounds
 - Form and extent of different impairments vary with the degree of severity

^{1.} https://www.als.org/understanding-als/what-is-als/

^{2.} Lavoisier Leite and Ana Carolina Constantini, "Dysarthria and quality of life in patients with Amyotrophic Lateral Sclerosis," Revista CEFAC, vol. 19, pp. 664–673, 2017.

Our Objective

- ▲ To analyze the discriminability of different vowel and fricative sounds with increasing severity of ALS-induced dysarthria
- ▲ Tasks Classification of
 - 1 4 sustained vowels /a/, /i/, /o/ and /u/
 - 2 3 sustained fricatives /s/, /sh/ and /f/
- **b** Both tasks are to be done **at different dysarthria severity levels**
- Automatic classification performances are to be compared against manual classification accuracies

<ロト <回ト < 三ト < 三ト = 三

Literature

rved
rved
rved
rved
rved
men
/.

^{**} J. Lee et al., "Vowel-specific intelligibility and acoustic patterns in individuals with dysarthria secondary to Amyotrophic Lateral Sclerosis," Journal of Speech, Language, and Hearing Research, vol. 62, no. 1, pp. 34–59, 2019.

Overview

1 Introduction

2 Dataset

- **3** Classification Method
- 4 Experimental Results

5 Conclusion

Data Collection Details

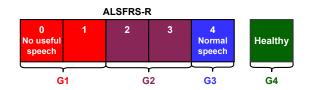
A Place of data collection:

- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Speech task:
 - Sustained utterances of /a/, /i/, /o/, /u/, /s/, /sh/ and /f/
 - 1-3 utterances per phoneme per subject

by Sarthria severity rating:

- As per the 5-point speech component of ALSFRS-R scale
- Mode of the ratings given by 3 Speech-Language Pathologists

1	2	3	4
			Normal speech
	1	1 2	1 2 3


ALSFRS-R

< ∃ >

э

Subject Grouping

Group	Description	ALSFRS-R	#Subjects	#Male:#Female	Age range (years)
G1	Severe	0,1	39	22:17	
G2	Mild	2,3	40	26:14	23-81
G3	ALS without dysarthria	4	40	25:15	20-01
G 4	Healthy	-	40	20:20	22-55

▲ Subjects had **five** different **native languages** - Bengali, Hindi, Tamil, Telugu and Kannada.

Overview

1 Introduction

2 Dataset

3 Classification Method

4 Experimental Results

5 Conclusion

Automatic Classification

b DNN-based classification

Table: Features											
		S	elf-superv	vised spe	ech repr	esenta	ations				
Details	MFCC	Wav2vec	wav2vec 2.0	Hubert	Hubert large	Tera	NPC	Decoar 2.0			
Stride (ms)	10	10	20	20	20	10	10	10			
Dimension	36	512	768	768	1024	768	512	768			
	F	ubnt teatrices	1024 (ReLU) 512 (ReLU) 216 (ReLU)	(So (So		re					

CNN-based classifier with mel-spectrograms as input¹

1. C. K. Dewa, "Javanese vowels sound classification with convolutional neural network," in International Seminar on Intelligent Technology and Its Applications (ISITIA), 2016, pp. 123–128.

Manual Classification

- 🛦 Test set -
 - **320 vowel** utterances (4 severity groups × 4 vowels × 20 subjects)
 - 240 fricative utterances
 (4 severity groups × 3 fricatives × 20 subjects)

Classification strategy -

- 3 human listeners classified each utterance along with a confidence score in the range of [0, 100].
- Final decision -
 - (1) Mode of the 3 decisions, or
 - (2) Decision with high confidence score if all
 - the 3 decisions are different.

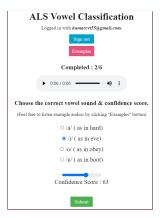


Figure: Illustrative screenshot of the interface

< D > < A > <</p>

Manual Classification

🛦 Each listener was presented with

- 41-52 vowel and 31-40 fricative utterances
- Almost equal number of utterances (9-12) from each severity group
- Random 8 repeated utterances for both vowels and fricatives
- Refreshing music after every 5 utterances
- Access to example healthy utterances at the beginning and throughout the assessment

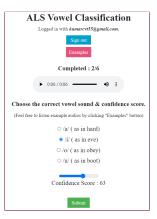


Figure: Illustrative screenshot of the interface

< D > < A > <</p>

Manual Classification

Listener selection criteria

	Accuracy on	Consistency on
	Healthy utterances	repeated utterances
Vowels	$\geq 75\%$	$\geq 75\%$
Fricatives	$\geq 60\%$	$\geq 60\%$

- ▲ 20 out of the 44 participating listeners were selected.
- Listeners had native languages spanning over Bengali, Hindi, Kannada, Malayalam, Tamil, and Telugu.

▶ < ∃ >

Evaluation Protocol

🔺 Phase - 1

 Evaluation of automatic classifiers through 5-fold cross-validation separately for each severity group for both vowels and fricatives

🛦 Phase - 2

• Evaluation of automatic classifiers on the same dataset as used for the manual listening tests, and comparison with manual classification performance

Overview

1 Introduction

2 Dataset

3 Classification Method

4 Experimental Results

5 Conclusion

Phase - 1: Vowels

Table: Mean (SD) of vowel classification accuracies in % over 5-fold cross-validation obtained using different automatic classification methods

	DNN											
	MFCC	wav2vec	wav2vec 2.0	Hubert	Hubert large	Tera	NPC	Decoar 2.0	CNN			
G1	33.82	50.17	49.06	46.34	43.85	34.57	24.8	28.34	55.43			
GI	(5.24)	(1.79)	(7.18)	(12.36)	(6.58)	(3.05)	(4.76)	(4.58)	(14.34)			
G 2	38.67	64.97	64.59	59.56	64.2	43.58	25.44	29.95	66.21			
GZ	(4.54)	(6.38)	(7.41)	(15.19)	(6.25)	(4.71)	(2.67)	(4.68)	(8.01)			
G3	42.58	66.58	69.16	74.21	68.54	54.45	29.52	44.31	70.63			
GO	(6.29)	(5.75)	(6.66)	(5.69)	(6.00)	(5.09)	(4.63)	(3.50)	(6.58)			
CA	41.11	73.44	72.69	78.39	73.43	52.19	29.87	42.58	77.34			
G4	(2.21)	(5.25)	(7.11)	(7.87)	(5.05)	(6.87)	(4.63)	(4.69)	(4.20)			
			01	~	64.11	1.1						

G1:Severe — **G4**:Healthy

Classification performance declines with an increase in severity for most speech representations.

Table: Mean (SD) of fricative classification accuracies in % over 5-fold cross-validation obtained using different automatic classification methods

-	DNN											
	MFCC	wav2vec	wav2vec 2.0	Hubert	Hubert large	Tera	NPC	Decoar 2.0	CNN			
G1	31.75	41.88	34.04	40.53	44.38	37.64	30.11	33.05	32.36			
GI	(6.57)	(7.57)	(13.24)	(5.44)	(11.07)	(6.10)	(7.32)	(2.75)	(6.01)			
<u></u>	36.83	57.81	54.61	46.84	43.26	44.93	33.46	37.87	63.93			
G2	(7.52)	(11.19)	(8.21)	(11.38)	(8.86)	(5.04)	(33.46)	(5.90)	(6.31)			
G3	40.49	67.37	54.49	58.27	48.85	45.19	35.76	48.09	70.36			
GS	(5.71)	(7.75)	(4.20)	(6.17)	(10.27)	(6.72)	(2.95)	(7.12)	(6.65)			
G4	43.86	73.01	55.2	65.33	58.11	41.33	35.4	48.17	73.6			
G 4	(6.36)	(4.65)	(5.55)	(13.42)	(12.42)	(7.90)	(5.29)	(6.26)	(8.12)			

G1:Severe — **G4**:Healthy

Phase - 2: Automatic vs Manual

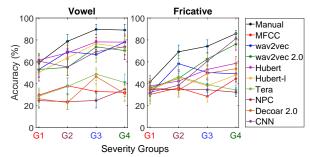


Figure: Mean automatic and manual classification accuracies (SD in error bar) for vowels and fricatives for different severity groups evaluated on the manual test set (G1:Severe — G4:Healthy)

- Manual classification is better than the automatic ones for all severity groups except the highest severity case for vowels.
- ▲ Differences between the automatic and manual classification performances gradually reduce with an increase in severity.

Phase - 2: Confusion Matrices

	G1 (Severe)				G2			G3				G4 (Healthy)				
	/a/	/i/	/0/	/u/	/a/	/i/	/0/	/u/	/a/	/i/	/0/	/u/	/a/	/i/	/0/	/u/
/a/	20,14	0, <mark>0</mark>	0,3	0,3	20,17	0, <mark>0</mark>	0,2	0,1	20,19	0, <mark>0</mark>	0,1	0, <mark>0</mark>	20,19	0, <mark>0</mark>	0, <mark>1</mark>	0, <mark>0</mark>
/i/	7, <mark>1</mark>	9, <mark>10</mark>	0,1	2, <mark>6</mark>	3, <mark>0</mark>	16, <mark>16</mark>	1, <mark>1</mark>	0, <mark>3</mark>	0, <mark>0</mark>	20,19	0, <mark>0</mark>	0, <mark>1</mark>	0, <mark>0</mark>	20,18	0, <mark>0</mark>	0,2
/0/	9, <mark>2</mark>	0, <mark>0</mark>	8,14	3,4	2,2	0, <mark>0</mark>	16,14	1,3	1,3	0, <mark>0</mark>	17,10	2,7	1,1	0, <mark>0</mark>	18,12	1,7
/u/	4, <mark>3</mark>	1, <mark>1</mark>	5, <mark>5</mark>	9, <mark>10</mark>	0, <mark>0</mark>	0,3	9, <mark>8</mark>	11, <mark>9</mark>	0, <mark>0</mark>	0, <mark>0</mark>	5, <mark>5</mark>	15, <mark>15</mark>	0,2	0,4	6, <mark>1</mark>	14,13
	/s/	/sh/	/f/		/s/	/sh/	/ f /		/s/	/sh/	/f/		/s/	/sh/	/ f /	
/s/	16, <mark>5</mark>	2, <mark>8</mark>	1, <mark>6</mark>		17,15	2, 1	1,3		15,15	3, 1	1,3		18, <mark>16</mark>	0,2	1,2	
/sh/	8, <mark>9</mark>	4, <mark>7</mark>	8, <mark>4</mark>		5, <mark>7</mark>	8, <mark>5</mark>	7, <mark>8</mark>		0,9	15,7	5, <mark>4</mark>		0,5	13,14	7, <mark>1</mark>	
/ f /	12, <mark>2</mark>	3, <mark>6</mark>	4,11		3, <mark>2</mark>	1, <mark>3</mark>	16,15		0, <mark>3</mark>	5, <mark>1</mark>	14,15		0,2	0, <mark>0</mark>	29,17	

Figure: Confusion matrices for vowels and fricatives using **manual (in black)** and the **best-performing automatic (in red)** classification

Э

イロト イポト イヨト イヨト

Language-wise Analysis

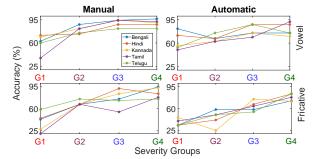


Figure: Language-wise accuracies of automatic and manual classification of vowels and fricatives for different severity groups (G1:Severe — G4:Healthy)

▲ No language-specific pattern is observed.

Э

イロト イポト イヨト イヨト

Overview

1 Introduction

2 Dataset

- **3** Classification Method
- 4 Experimental Results

5 Conclusion

Key-Takeaways

- Both automatic and manual classification performances decline with an increase in severity.
- Manual classification is always better than automatic classification except for the highest severity case of vowels.
- ▲ The performance gap between manual and automatic classification reduces with an increase in severity level.

Future Work

- To analyze the discriminability of different syllables with increasing severity of ALS-induced dysarthria
- ▲ To visualize the changes in the overall acoustic space with increasing severity of ALS-induced dysarthria

3 D 🗸 3 D

Acknowledgement

- Authors thank Seena Vengalil and M S Keertipriya for their valuable assistance during data collection.
- Authors also thank the Department of Science and Technology, Govt. of India for their support in this work.

3 D 🗸 3 D

THANK YOU

Have Questions/Suggestions? Write to us @ spirelab.ee@iisc.ac.in

25

Э

イロト イポト イヨト イヨト