Raw speech waveform based classification of patients with ALS, Parkinson's Disease and healthy controls using CNN-BLSTM

<u>Jhansi Mallela</u>¹, Aravind Illa¹, Yamini Belur², Nalini Atchayaram³, Ravi Yadav³, Prasanta Kumar Ghosh¹

¹SPIRE LAB, EE Dept., IISC, Bangalore, India ²³Dept. of SPA and NEURO., NIMHANS, Bangalore, India

イロト イ母ト イヨト イヨト

Overview

1 [Introduction](#page-1-0)

- 2 [Proposed approach](#page-14-0)
- **3** [Data collection](#page-18-0)
- **4 [Experiments and Results](#page-22-0)**
- **5** [Conclusions](#page-35-0)

 299

 \equiv

 $\mathcal{A} \subseteq \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A}$

Amyotrophic Lateral Sclerosis (ALS)

- A motor neuron disorder
- Occurs due to gradual degeneration of motor neurons
- Neurons provide a communication link between the brain and voluntary muscles
- Due to the degeneration, there is a loss of muscle control

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

 QQQ

The ALS Association,"What is ALS?", May 2019.

Symptoms of ALS

- **Muscle stiffness**
- A hard time in holding items
- Muscle cramps п.
- Swallowing problems
- **Speech difficulties (slurred or slowness)**

Mayo Clinic, 'Amyotrophic Lateral Sclerosis - Symptoms and causes', 6 Aug[ust 2](#page-2-0)0[19](#page-4-0) (\oplus) (\oplus) (\oplus) QQQ

Parkinson's Disease (PD)

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

A progressive brain disorder

- Occurs when Nerve cells / neurons in the brain get impaired and/or die
- **These neurons produce Dopamine**
- Reduced Dopamine levels in brain results in movement issues

 QQ

Symptoms of PD

- Tremors (hands, arms, legs)
- Stiffness in limbs and trunk
- Slowness in movements \mathbf{r}
- Difficulty in swallowing and chewing
- Speech difficulties (slurred or slowness)

Life expectancy with ALS or PD

- ALS affected people^{1,2}
	- \blacksquare 50% people 3 or more years
	- \blacksquare 20% people 5 or more years
	- \blacksquare 10% people 10 or more years
- \blacksquare PD affected people³
	- \blacksquare Has increased from 9.4 (1967) to 14.6 years (2016) after diagnosis

3. Golbe, Lawrence I., and Cristian E. Leyton. "Life expectancy in Parkinson [dis](#page-5-0)e[ase.](#page-7-0)["](#page-5-0) [\(201](#page-6-0)[8](#page-7-0)[\):](#page-0-0) [9](#page-1-0)[91](#page-13-0)[-9](#page-14-0)[92](#page-0-0)[.](#page-1-0) OQC

^{1.} C. Arthur, et al., "Projected increase in Amyotrophic Lateral Sclerosis from 2015 to 2040,"Nature communications, vol. 7, p. 12408, 2016

^{2.} A. Nalini, et al., "Clinical characteristics and survival pattern of 1153 patientswith Amyotrophic Lateral Sclerosis: experience over 30 years fromIndia,"Journal of the Neurological Sciences, vol. 272, no. 1-2, pp. 60–70, 2008.

Diagnosis and Treatment for ALS and PD

- **E** Currently no specific tests can confirm of having ALS or PD¹
- Diagnosis is based on medical history (11 months) and a neurological examination
- No cure for either ALS or PD although there exists some treatment for managing their symptoms $1,2,3$

3. J.-P. Julien, "ALS: Astrocytes move in as deadly neighbors," Nature Neur[osc](#page-6-0)ie[nce](#page-8-0)[, v](#page-6-0)[ol.](#page-7-0) [10](#page-8-0)[,](#page-0-0) [no](#page-1-0)[.](#page-13-0) [5,](#page-14-0) [p](#page-0-0)[p.](#page-1-0) [5](#page-13-0)[35](#page-14-0)[–53](#page-0-0)[7, 20](#page-40-0)07.

^{1.} Veritas Neuro, "ALS vs Parkinson's - How Do These Conditions Differ?" Aug 2019. [Online]. Available: https://alstreatment.com/als-vs-parkinsons/

^{2.} A. N. Lieberman, "Update on Parkinson disease." New York State Journal of Medicine, 1987.

Motivation

- Main Objective : Automated methods for detection of ALS or PD could reduce diagnosis time
- **Plan for the future : To develop a mobile application that helps in** early detection, assists neurologist in diagnosis and to follow the progression of the disease using speech as a biomarker

 $Omega$

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Challenges

- I Identifying speech cues that help in better detection
- Data collection from ALS and PD patients is often tedious making a large corpus development a challenging task - Automated methods require huge amount of data to train a classifier

 QQQ

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Speech waveforms and spectrograms of ALS, PD, and Healthy controls

Figure: Subjects repeating syllable "pa"

 QQQ

 \equiv

Literature Survey

Previous works studied the performance of various speech tasks in automatic classification between ALS and HC using SVM and DNN^1 . As seen, the spectro-temporal characteristics change depending on ALS/HC (and similarly for PD)

^{1.} Suhas B.N., "Comparison of Speech Tasks and Recording Devices for Voice Based Automatic [Cl](#page-13-0)[as](#page-14-0)[si](#page-0-0)[fic](#page-1-0)[at](#page-13-0)[io](#page-14-0)[n of](#page-0-0) [Hea](#page-40-0)lthy Subjects and Patients with Amyotrophic Lateral Sclerosis," in Proc. Interspeech 2[019,](#page-10-0) p[p.](#page-12-0) [45](#page-12-0)[64–](#page-11-0)45[68](#page-0-0)[.](#page-1-0) $2Q$

Literature Survey

Performed classification tasks using MFCCs with $\mathsf{CNN\text{-}LSTMs}^1$. Although MFCCs perform well in speech recognition, speaker verification, and several other speech related problems these hand-crafted features (MFCCs) may not be optimal for classifying ALS, PD and healthy controls.

^{1.} Jhansi M., et al. "Voice based classification of patients with Amyotrophic Lateral S[clero](#page-12-0)[sis](#page-13-0)[,](#page-0-0) [Pa](#page-1-0)[rk](#page-13-0)[in](#page-14-0)[so](#page-0-0)[n'](#page-1-0)[s](#page-13-0) [Di](#page-14-0)[seas](#page-0-0)[e and](#page-40-0)
v controls with CNN-LSTM using transfer learning." in ICASSP 2020. pp. 6784–6788. 同国国国国国国国国国国 healthy controls with CNN-LSTM using transfer learning." in ICASSP 2020, pp. 6[784–](#page-11-0)6[788](#page-13-0)[.](#page-11-0) \Box

Goal of this work

- To study the performance of using raw speech waveform for 3 different classification tasks (ALS vs HC), (PD vs HC), and (ALS vs PD) with 4 different speech tasks
- To study the performance of each classification task in two scenarios:
	- **n** trained and tested in a task-specific manner,
	- **trained on data pooled from all tasks, and test on each task separately**
- To compare the classification performance using MFCCs and the proposed approach using raw speech

 A

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Overview

1 [Introduction](#page-1-0)

- 2 [Proposed approach](#page-14-0)
- **3** [Data collection](#page-18-0)
- **4 [Experiments and Results](#page-22-0)**

5 [Conclusions](#page-35-0)

 \equiv

Learning representations from raw waveform and classification using CNN-BLSTM network

- **The work presented here makes use of learning task-specific features** from the raw waveform using an end-to-end network
- Unlike the handcrafted features (MFCCs) that are computed at frame level, representation learning using 1-D CNN might discriminate speech of ALS and PD from those of the healthy subjects in a better way
- The learned representations are fed to the BLSTM network for classification, since LSTM networks are well-suited to capture the temporal characteristics from the time series data

 OQ

 $\mathcal{A} \subseteq \mathbb{R} \rightarrow \mathcal{A} \oplus \mathbb{R} \rightarrow \mathcal{A} \oplus \mathbb{R} \rightarrow \mathcal{A} \oplus \mathbb{R}$

Representation learning

 QQQ

 \equiv

CNN-BLSTM architecture

 RQ

 \equiv

 $\mathcal{A} \subseteq \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A}$

Overview

1 [Introduction](#page-1-0)

2 [Proposed approach](#page-14-0)

3 [Data collection](#page-18-0)

4 [Experiments and Results](#page-22-0)

5 [Conclusions](#page-35-0)

 \equiv

Data collection

- **Speech recordings collected at the National Institute of Mental Health** and Neurosciences (NIMHANS), Bengaluru, India
- Recorder : Zoom H6 X/Y recorder
- Sampling frequency : 44.1 kHz

 QQQ

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Dataset

Number of subjects used in this work:

- **60 ALS (30 Male, 30 Female)**
- 60 PD (34 Male, 26 Female)
- 60 healthy control (HC) (30 Male, 30 Female)

Table: Subject count and age range for each condition - gender pair モース モンス モンス モース

Dataset

Number of subjects used in this work: 60 ALS, 60 PD, and 60 HC

Speech tasks: considering all subjects

- Spontaneous speech (SPON) 21 hours
- Diadochokinetic rate (DIDK) 22.42 hours
- Sustained phoneme production (PHON) 25.84 hours
- Image Description (IMAG) 25.22 hours

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Overview

1 [Introduction](#page-1-0)

- 2 [Proposed approach](#page-14-0)
- **3** [Data collection](#page-18-0)
- **4** [Experiments and Results](#page-22-0)

5 [Conclusions](#page-35-0)

 \equiv

Experimental setup for proposed approach

- **Proposed approach: CNN-BLSTM network using raw waveform as** input
	- 5 fold cross validation (each fold consists of 12 ALS, 12 PD, 12 HC)
	- Exatures: Raw speech waveform downsampled to 8kHz (framed with window length of 20ms & shift of 10ms).
	- No. conv. filters or 'feature maps' = $256/128/64$ (for which the val. loss is minimal)
	- Activation function : ReLUlog (softmax @ output)
	- **Kernel : A 120** \times **1 (represented by 1D Conv)**
	- No. BLSTM layers : 3 (tanh as activation function)
	- No. units for each BLSTM layer : 150

 $Omega$

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Experimental setup for baseline

■ Baseline: BLSTM network using MFCCs as input

- 5 fold cross validation (each fold consists of 12 ALS, 12 PD, 12 HC)
- Features: MFCC (computed with window length of 20ms & shift of 10ms)
- No. BLSTM layers : 3 (tanh as activation function)
- No. units for each BLSTM layer : 150
- Activation function : softmax @ output

 $Omega$

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Evaluation metrics

Classification accuracy

p-value from sign rank test 1 : performed using the five folds' classification accuracies of the baseline and the proposed approach where each test fold is again split into three sub folds since a minimum of five variables are required for this test.

^{1.} W[ilco](#page-24-0)xon signed-rank,test, https://en.wikipedia.org/w/index.php?title=Wilcox[onsi](#page-26-0)[gn](#page-24-0)[ed](#page-25-0)[−](#page-26-0)[ran](#page-21-0)[k](#page-22-0)[te](#page-34-0)[st](#page-35-0)[old](#page-21-0)[id](#page-22-0)[=](#page-34-0)[97](#page-35-0)[207](#page-0-0)[4830](#page-40-0)∩Q

Experiments

1 2 class ALS vs HC

- 2 2 class PD vs HC
- **3** 2 class ALS vs PD

 \equiv

Experiments

 \equiv

イロン イ御ン イミン イヨン

ALS vs HC classification performance

Table: Average classification accuracy (SD in brackets) of the proposed approach and baseline (MFCC). Blue entries indicate the cases where the proposed approach performs significantly($p < 0.05$) better than MFCC.

Experiments

1 2 class ALS vs HC 2 class PD vs HC **3** 2 class ALS vs PD

 2990

 \equiv

PD vs HC classification performance

Table: Average classification accuracy (SD in brackets) of the proposed approach and baseline (MFCC). Blue entries indicate the cases where the proposed approach performs significantly($p < 0.05$) better than MFCC.

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{B} \rightarrow \mathcal{B}$

Experiments

1 2 class ALS vs HC 2 2 class PD vs HC **3** 2 class ALS vs PD

 \equiv

ALS vs PD classification performance

Table: Average classification accuracy (SD in brackets) of the proposed approach and baseline (MFCC). Blue entries indicate the cases where the proposed approach performs significantly($p < 0.05$) better than MFCC.

 $\mathcal{A} \subseteq \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P}$

Illustration of learned CNN filters

Figure: Magnitude response of 256 filters for ALS/PD, PD/HC, and ALS/HC

1-D CNN output

Figure: Illustration of /pa/ sequence spoken by ALS and PD patients using (a) speech waveform, (b) 1-D CNN output, and (c) spectrogram

 QQQ

 \equiv

Overview

1 [Introduction](#page-1-0)

- 2 [Proposed approach](#page-14-0)
- **3** [Data collection](#page-18-0)
- **4 [Experiments and Results](#page-22-0)**

5 [Conclusions](#page-35-0)

 \equiv

Conclusions

- Task-specific+Raw way outperforms Task-specific+MFCC across all classification tasks (ALS vs HC, PD vs HC, and ALS vs PD)
- \blacksquare Pooled+Raw wav in turn performs better than Task-specific+Raw wav or Pooled+MFCC in all classification tasks
- **From the analysis of the learned CNN filter response, it is revealed** that the filters are low pass in nature and the center frequencies lie below 800Hz, 500Hz, and 400Hz for ALS/PD, PD/HC, and ALS/HC, respectively

 $Omega$

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Key Takeaways

- 1 A comparison of the proposed approach with baseline acoustic features (MFCC) revealed that the proposed approach significantly performs better than baseline.
- 2 The proposed approach allows the classifier to extract features related to speech rate cues by enhancing vowels in low-frequency regions and help in accurate classification.

 $Omega$

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Future work

- **1** To investigate the proposed approach of classification for severity estimation of ALS and PD patients
- 2 To investigate the proposed approach incorporating the attention mechanism which enables of learning high quality features

イロト イ母ト イヨト イヨト

Acknowledgement

- Authors thank Ms Renuka and Ms Hima Jyothi for their technical assistance in generating plots.
- Authors thank the Department of Science and Technology, Govt. of India for their support in this work.

 A

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

THANK YOU

Have Questions/Suggestions? Write to us at spirelab.ee@iisc.ac.in

 \equiv

 $\mathcal{A} \subseteq \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P}$