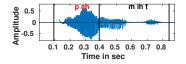
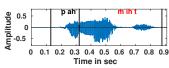
SPIRE-ABC: An online tool for acoustic-unit boundary correction (ABC) via crowdsourcing

Chiranjeevi Yarra, Kausthubha N K, and Prasanta Kumar Ghosh

SPIRE LAB

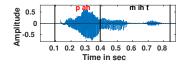
Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India

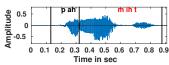




- Need of time-aligned acoustic-unit (AU Word, Syllable and Phoneme) boundaries¹
 - Human computer interaction
 - Computer assisted language learning (CALL)

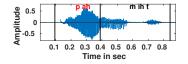
 $^{^{-1}}$ Hönig, Batliner, and Nöth, "Automatic assessment of non-native prosody annotation, modelling and evaluation", 2012

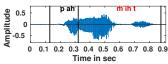

²Franco et al., "Automatic detection of phone-level mispronunciation for language learning ∰ 1999 🛢 🕟 < 🛢 🕟 💆



- Need of time-aligned acoustic-unit (AU Word, Syllable and Phoneme) boundaries¹
 - Human computer interaction
 - Computer assisted language learning (CALL)

 $^{^{1}}$ Hönig, Batliner, and Nöth, "Automatic assessment of non-native prosody annotation, modelling and evaluation", 2012

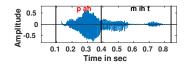


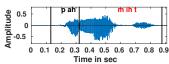


- Need of time-aligned acoustic-unit (AU Word, Syllable and Phoneme) boundaries¹
 - Human computer interaction
 - Computer assisted language learning (CALL)
- Typically, these boundaries are estimated using automatic speech recognition (ASR) system².

 $^{^{-1}}$ Hönig, Batliner, and Nöth, "Automatic assessment of non-native prosody annotation, modelling and evaluation", 2012

²Franco et al., "Automatic detection of phone-level mispronunciation for language learning. #1999 🛢 🕨 4 🛢 🕨 📳 💎



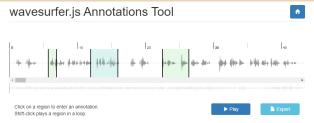


- Need of time-aligned acoustic-unit (AU Word, Syllable and Phoneme) boundaries¹
 - Human computer interaction
 - Computer assisted language learning (CALL)
- Typically, these boundaries are estimated using automatic speech recognition (ASR) system².
- However, these boundaries often suffer from errors due to inaccuracies in ASR system.

 $^{^{-1}}$ Hönig, Batliner, and Nöth, "Automatic assessment of non-native prosody annotation, modelling and evaluation", 2012

²Franco et al., "Automatic detection of phone-level mispronunciation for language learning [#] 1999 🖹 🕟 🔻 🖹 🕒

- Need of time-aligned acoustic-unit (AU Word, Syllable and Phoneme) boundaries¹
 - Human computer interaction
 - Computer assisted language learning (CALL)
- Typically, these boundaries are estimated using automatic speech recognition (ASR) system².
- However, these boundaries often suffer from errors due to inaccuracies in ASR system.


Goal of SPIRE-ABC

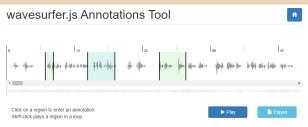
Facilitates the manual correction of AU boundaries (online) with naive annotators for cost-effective solutions

 $^{^1}$ Hönig, Batliner, and Nöth, "Automatic assessment of non-native prosody annotation, modelling and evaluation", 2012

²Franco et al.. "Automatic detection of phone-level mispronunciation for language learning ♣ 1999 ♣ ► < ♣ ► ■

Existing online annotation tool⁶

■ WaveSurfer is a general purpose JavaScript.


³Saiz, Matuszewski, and Goldszmidt, "Audio oriented UI components for the web platform", 2015

⁴Baker et al., "BioAcoustica: a free and open repository and analysis platform for bioacoustics", 2015

 $^{^5}$ Matuszewski, Schnell, and Goldszmidt, "Interactive Audiovisual Rendering of Recorded Audio and Related Data with the WavesJS Building Blocks", 2016

⁶Katspaugh, "wavesurfer.js", 2012

Existing online annotation tool⁶

- WaveSurfer is a general purpose JavaScript.
- It has been used via crowdsourcing in many applications include 1) combining audios³, 2) voice activity detection⁴, and 3) audio rendering⁵.

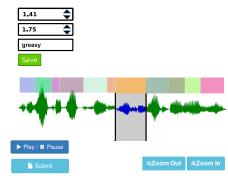
³Saiz, Matuszewski, and Goldszmidt, "Audio oriented UI components for the web platform", 2015

⁴Baker et al., "BioAcoustica: a free and open repository and analysis platform for bioacoustics", 2015

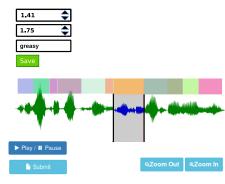
⁵Matuszewski, Schnell, and Goldszmidt, "Interactive Audiovisual Rendering of Recorded Audio and Related Data with the WavesJS Building Blocks", 2016

⁶Katspaugh, "wavesurfer.js", 2012

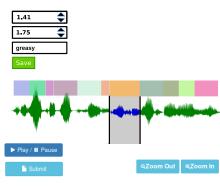
Existing online annotation tool⁶

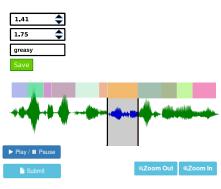

- WaveSurfer is a general purpose JavaScript.
- It has been used via crowdsourcing in many applications include 1) combining audios³,
 2) voice activity detection⁴, and 3) audio rendering⁵.
- However, it is not correction friendly.
 - Can be used for new annotation but may not be for correction.
 - Continuous zoom control.

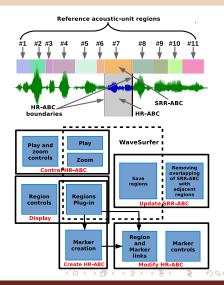
³Saiz, Matuszewski, and Goldszmidt, "Audio oriented UI components for the web platform", 2015


⁴Baker et al., "BioAcoustica: a free and open repository and analysis platform for bioacoustics", 2015

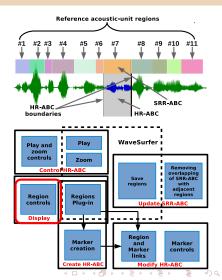
 $^{^5}$ Matuszewski, Schnell, and Goldszmidt, "Interactive Audiovisual Rendering of Recorded Audio and Related Data with the WavesJS Building Blocks", 2016


⁶Katspaugh, "wavesurfer.js", 2012

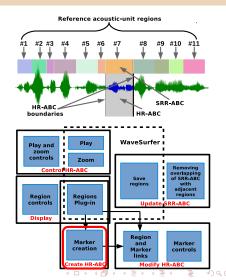

- Two types of regions markings
 - Reference AU regions
 - Highlighted region for ABC (HR-ABC)

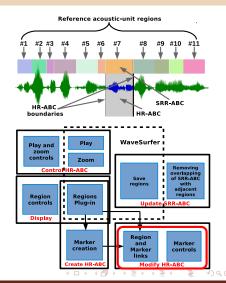


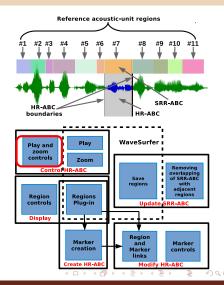
- Two types of regions markings
 - Reference AU regions
 - Highlighted region for ABC (HR-ABC)
- Controls only specific to HR-ABC
 - Play the audio segment in HR-ABC
 - Zoom
 - Resizing by dragging the boundaries

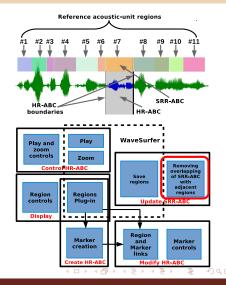


- Two types of regions markings
 - Reference AU regions
 - Highlighted region for ABC (HR-ABC)
- Controls only specific to HR-ABC
 - Play the audio segment in HR-ABC
 - Zoom
 - Resizing by dragging the boundaries
- With save, selected reference regions (SRR-ABC) are updated based on HR-ABC




Display SRR-ABC with only play option

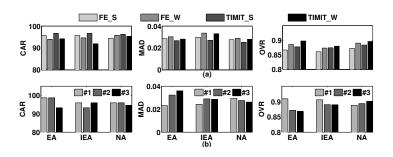

- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.


- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
- Modify HR-ABC
 - Link the SRR-ABC and HR-ABC

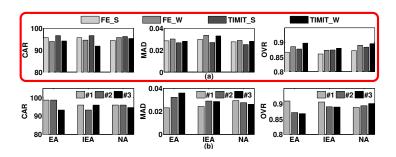
- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
- Modify HR-ABC
 - Link the SRR-ABC and HR-ABC
- Control HR-ABC
 - Discrete zoom levels $-\frac{1}{2}x$, $\frac{1}{4}x$, $\frac{1}{8}x$, and $\frac{1}{16}x$,

- Display SRR-ABC with only play option
- Create HR-ABC on mouse click on SRR-ABC with play, resize and move controls.
- Modify HR-ABC
 - Link the SRR-ABC and HR-ABC
- Control HR-ABC
 - Discrete zoom levels $-\frac{1}{2}x$, $\frac{1}{4}x$, $\frac{1}{8}x$, and $\frac{1}{16}x$,
- Update SRR-ABC with save option

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.

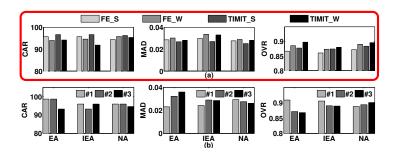

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.
- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.
- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.
- AU segments syllable and words, obtained with fisher English and TIMIT data. Total: FE_S; TIMIT_S; FE_W; TIMIT_W.

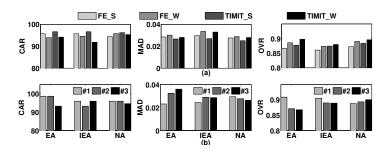

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.
- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.
- AU segments syllable and words, obtained with fisher English and TIMIT data. Total: FE_S; TIMIT_S; FE_W; TIMIT_W.
- Annotators Experienced (EA), Inexperienced (IEA), naive (NA).

- Mean absolute difference (MAD) between the ground truth and the corrected AU boundaries.
- Correct alignment rate (CAR): The percentage of AU boundaries that fall within a tolerance of 40ms from the ground truth AU boundaries.
- Overlap rate (OVR): The amount of overlap between the corrected and ground truth segments for all AUs.
- 30 utterances from TIMIT data are considered, for which, ground-truth AU boundaries are available.
- AU segments syllable and words, obtained with fisher English and TIMIT data. Total: FE_S; TIMIT_S; FE_W; TIMIT_W.
- Annotators Experienced (EA), Inexperienced (IEA), naive (NA).

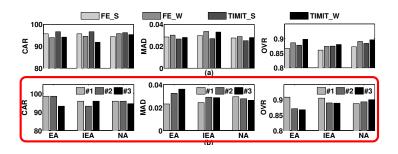
	FE_S	FE_W	TIMIT_S	TIMIT_W	Common	Total
EA#1, IEA#1, NA#1	10	10	10	10	12	52
EA#2, IEA#2, NA#2	10	10	10	10	12	52
EA#3, IEA#3, NA#3	10	10	10	10	12	52



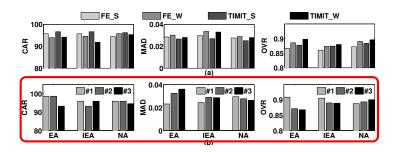
	FE_S	FE ₋ W	TIMIT_S	$TIMIT_{W}$
CAR	83.02	78.92	86.72	82.35
MAD	0.0465	0.0518	0.0352	0.0394
OVR	0.7927	0.8120	0.8257	0.8398

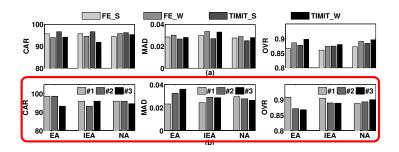

	FE_S	FE_W	TIMIT_S	TIMIT_W
CAR	83.02	78.92	86.72	82.35
MAD	0.0465	0.0518	0.0352	0.0394
OVR	0.7927	0.8120	0.8257	0.8398

■ After manual correction, all the three type annotators has shown improved performance.



	FE_S	FE_W	TIMIT_S	TIMIT_W
CAR	83.02	78.92	86.72	82.35
MAD	0.0465	0.0518	0.0352	0.0394
OVR	0.7927	0.8120	0.8257	0.8398


- After manual correction, all the three type annotators has shown improved performance.
- The performance measures obtained by NAs are not significantly different from those by EAs and IEAs.


■ NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.

■ NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.

- NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.
- On the common set, EA#1 shows better performance across all performance measures over IEAs and NAs.

- NAs have higher CAR than both EAs and IEAs for TIMIT_W setup.
- \blacksquare On the common set, EA#1 shows better performance across all performance measures over IEAs and NAs.
- However, interestingly, the EA#3 has lower performance among all EAs and across both the IEAs and NAs.

■ This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.

- This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.
- This is developed by creating additional functional modules as well as modifying the existing functional modules in the WaveSurfer.

- This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.
- This is developed by creating additional functional modules as well as modifying the existing functional modules in the WaveSurfer.
- Experiments on TIMIT corpus have shown improvements in the AU boundaries after manual correction irrespective of annotators type.

- This work presents SPIRE-ABC that helps in correcting errors in noisy acoustic-unit boundaries using web interface via crowdsourcing.
- This is developed by creating additional functional modules as well as modifying the existing functional modules in the WaveSurfer.
- Experiments on TIMIT corpus have shown improvements in the AU boundaries after manual correction irrespective of annotators type.
- Further works are required for adding all reference acoustic-unit transcriptions.

THANK YOU

For more info:

http://spire.ee.iisc.ernet.in/spire-abc/