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Introduction

Amyotropic Lateral Sclerosis (ALS)

SPIRE LAB

4 A progressive neurodegenerative disorder primarily affecting motor
neurons.

4 Muscle weakness and atrophy develop over time, affecting mobility and
daily activities.

4 Dysarthria, an early symptom of ALS, manifests as impaired speech
production.

4 As the disease advances, individuals encounter challenges in producing
sounds, modulating pitch, and maintaining proper vocal quality.
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ALS Speech vs Healthy Speech
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Figure: Mel spectrogram of ALS and healthy speech: rapid repetition of monosyllabic
sequence ‘pa-pa-pa’
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Introduction

Motivation
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4 Investigate the use of speech cues to distinguish between ALS and healthy
individuals.

4 Develop simple models suitable for deployment on accessible platforms.
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Introduction

Our Objective
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4 Develop low complexity methods for ALS and Healthy Control (HC)
classification.

4 Investigate three distinct Deep Neural Network (DNN) models with
varying complexities, comparing them against a Convolutional Neural
Network (CNN) - Bidirectional (Bi) Long Short-Term Memory (LSTM)
reference model.

4 Analyze 12-D Mel Frequency Cepstral Coefficients (MFCCs),
derivatives, and individual coefficients to capture essential features.

4 Explore various temporal statistics

m Standard deviation (SD)
m Autocorrelation at lag 1 (AC(1))
m Autocorrelation at lag 2 (AC(2))
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Literature
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CNN-
LSTM/BILSTM

4 J. Mallela et al., “Raw speech waveform based classification of patients with
ALS, Parkinson's disease and healthy controls using CNN-BLSTM,” in
Proc. 21st Annual Conference of the International Speech Communication
Association, Shanghai, China, 2020, pp. 4586-4590.

J. Mallela et al., “Voice based classification of patients with Amyotrophic
Lateral Sclerosis, Parkinson's disease and healthy controls with CNN-LSTM
using transfer learning,” in ICASSP, IEEE, 2020, pp. 6784-6788.
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FLOPs=2400000

#Param=79,104
FLOPs=144100

MFCC

speech-related tasks.

MFCCs are known for their low complexity and effectiveness” in

Temporal statistics such as mean, median and SD of MFCC are utilized for
ALS-induced dysarthria diagnosis and severity assessment.

Individual coefficients of 12-D MFCC has been analyzed for EMG based

ALS diagnosis** and other speech tasks, but not for speech based ALS vs

HC classification.

"A. A. Joshy and R. Rajan, “Automated dysarthria severity classification: A study on acoustic features and deep learning techniques,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1147-1157, 2022.

A.B. M. S. U. Doulah and S. A. Fattah, “Neuromuscular disease classification based on mel frequency cepstrum of motor unit action potential,”
in International Conference on Electrical Engineering and Information Communication Technology, 2014, pp. 1-4.
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Dataset

I
Subject Details
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4 Demographic details

Mean(SD)
Class #Male #Female Age (years)

ALS 46 26 55.36 (10.80)
HC 40 15 46.62 (6.85)

4 Recording conducted at National Institute of Mental Health and
Neurosciences, Bengaluru, India.

4 Subjects spoke Bengali, Kannada, or Telugu as native languages.
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! Dataset

Recording Details

4 Speech tasks:
m Spontaneous (SPON): Subjects describe a festival and a recent place they

visited in their native language (approx. 1 minute each).
m Diadochokinetic rate (DIDK): Subjects rapidly repeat mono-syllabic or

tri-syllabic sequences (e.g., ‘pa-pa-pa’, ‘ta-ta-ta’, ‘ka-ka-ka’, ‘pataka’,

‘badaga’).
4 Recording duration

Task  Class Mean (SD) Total Duration

Duration (sec) (min)

ALS  60.75 (18.15) 138.7

SPON" "L 50.06 (20.78) 107.28

ALS 15.92 (9.44) 93.65

85.85

DIDK b 18.80 (8.33)

J. Mallela et al., "Voice based classification of patients with Amyotrophic Lateral Sclerosis, Parkinson's disease and healthy controls with
CNN-LSTM using transfer learning,” in International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 6784=6788.
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Classification Method

Classification Pipeline
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Classification Method

Methods for Complexity Reduction
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1. Model Complexity Reduction

4 Transitioned from CNN-BiLSTM to simpler DNN models.

4 Decreased model complexity: Lower number of parameters (#params)
and Floating Point Operations (FLOPs).
4 Simplifying with DNNs:
m DNN-2L: 2 dense layers

m DNN-1L: 1 dense layer
m DNN-OL: O dense layer
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Figure: DNN models of varying complexity; here, fcl and fc2 are fully connected layers
with 128 units each, and output layer is a dense layer with 2 units
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Classification Method

Methods for Complexity Reduction

2. Feature Dimensionality Reduction
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Model Feature Dimension

MFCC + delta + double delta (36D Matrix) 36
. MFCC Matrix 12
CNN-BiLSTM Delta Matrix 12
Double delta Matrix 12

SD, AC(1), and AC(2) of:
36D Matrix 36
DNN MFCC Matrix 12
Delta Matrix 12
Double delta Matrix 12
Individual coefficients of 36D Matrix 1
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Classification Method

Model Complexity
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Table: Model complexity for different models and feature dimensions

Model Feature dimension  #params FLOPs
. . 36 1321832 2400000
CNN-BILSTM 12 1307462 2380000
36 22018 21500
DNN-2L 12 18046 18430
1 17538 17020
36 4994 9730
DNN-1L 12 1992 3580
1 514 768
36 74 9540
DNN-OL 12 26 3350
1 4 514

*J, Mallela et al., “Raw speech waveform based classification of patients with ALS, Parkinson’s disease and healthy controls using CNN-BLSTM,”
in Proc. 21st Annual Conference of the International Speech Communication Association, Shanghai, China, 2020, pp. 4586-4590.
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Classification Method

Training and Evaluation
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4 Trained using 5-fold cross validation method
m 3 folds for training, 1 for validation and 1 for testing

4 Mean and SD of balanced accuracy scores computed over 5 test sets
reported.

4 Wilcoxon signed-rank test (1% significance level) used to compare
classification accuracies across different feature and model configurations.
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Results and Discussion

Model Complexity Reduction
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Results and Discussion

Model Complexity Reduction

Table: Comparison with baseline

model
SPON Task DIDK Task
Best Configu- DNN-OL using  DNN-OL using
ration AC(2) of 36D  SD of 36D
vector vector
Reduction in o o
#Param 99.99% 99.99%
R —
Reduction i 99.60% 99.60%
Mean Bal-
anced Accu- Increase: 5.67% Increase: 6.69%
racy
#Configurations
Statistically
Similar to 16/36 10/36
Baseline
#Configurations
Outperform- 6/36 3/36

ing Baseline
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On average, SPON task outperforms DIDK
task in mean accuracy score by:

4 4.84% for DNN model.
4 0.75% for CNN-BIiLSTM model.



Results and Discussion

Feature Dimensionality Reduction
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Results and Discussion

Feature Dimensionality Reduction
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Feature Dimensionality Reduction

Table: Comparison with the best
configuration of model complexity

sD
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A On average, SPON task outperforms
DIDK task in mean accuracy score
by 4.24% for DNN model using
individual coefficients.

4 First delta and double delta
coefficients excel in SPON task;
second in DIDK task.
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Conclusion

I
Key-Takeaways
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4 DNN models perform comparably to CNN-BiLSTM with fewer resources.

4 Simplifying DNN complexity maintains high performance while reducing
resource usage.

A DNN-OL with a mere softmax matches CNN-BiLSTM for lower delta and
double delta coefficients.

4 Standard deviation and auto-correlations offer similar performance, allowing
flexible feature selection.

4 DNN models show promise for ALS vs HC classification under resource
constraints.

A Lower delta and double delta coefficients are crucial for accurate and efficient
classification.
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s
Future Work
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4 Extending the study to various datasets.

4 Exploration of additional methodology to further enhance the accuracy of the
classification task.
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THANK YOU

Have Questions/Suggestions?
Write to us @ spirelab.ee@iisc.ac.in
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