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Speech (syllable) rate estimation typically involves computing a feature contour based on sub-band

energies having strong local maxima/peaks at syllable nuclei, which are detected with the help of

voicing decisions (VDs). While such a two-stage scheme works well in clean conditions, the esti-

mated speech rate becomes less accurate in noisy condition particularly due to erroneous VDs and

non-informative sub-bands mainly at low signal-to-noise ratios (SNR). This work proposes a tech-

nique to use VDs in the peak detection strategy in an SNR dependent manner. It also proposes a data-

driven sub-band pruning technique to improve syllabic peaks of the feature contour in the presence of

noise. Further, this paper generalizes both the peak detection and the sub-band pruning technique for

unknown noise and/or unknown SNR conditions. Experiments are performed in clean and 20, 10, and

0 dB SNR conditions separately using Switchboard, TIMIT, and CTIMIT corpora under five additive

noises: white, car, high-frequency-channel, cockpit, and babble. Experiments are also carried out in

test conditions at unseen SNRs of �5 and 5 dB with four unseen additive noises: factory, sub-way,

street, and exhibition. The proposed method outperforms the best of the existing techniques in clean

and noisy conditions for three corpora. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5124473

[JHLH] Pages: 1615–1628

I. INTRODUCTION

Speech has been one of the main media of communica-

tion in human computer interface applications, in which the

speech rate has been shown to be useful for automatic speech

recognition (ASR)1,2 and identification of disfluencies.3

Cucchacarini et al.4 have shown that the speech rate is corre-

lated with the human expert’s pronunciation quality ratings.

Recently, systems that are similar to these applications have

been used in online voice training and spoken language

learning,5 where the voice is typically noisy.6,7 Under such

noisy conditions, a reliable speech rate estimation technique

could be necessary for better evaluation of the pronunciation

quality. Further, for a smooth functioning of these systems,

ASR needs to be robust under such noisy conditions. For

ASR, speech rate based continuous frame rate normalization

has been used to improve the ASR accuracy.2,8 In contrast to

normalization on the entire audio segment as in continuous

frame rate normalization, variable frame rate has been used

for ASR;9–11 here, the frame rate is computed using the

frames that are selected based on the energy and entropy

based differences between the acoustic properties of two

consecutive frames. Both of these methods have also been

shown to be suitable for noisy conditions. Thus, a reliable

speech rate estimation in noisy conditions could improve the

ASR accuracy when techniques based on these methods are

used. In addition, Borrie et al.12 have shown that there is a

relationship between processing dysarthric speech and

speech in noise. Hence, a noise robust speech rate estimation

could be useful in the assessment of dysarthric speech,13,14

where it is known that the speaking rate is an important

parameter for analytics. However, estimating the speech rate

from a noisy recording still remains a challenging task.

In these applications, the speech (syllable) rate esti-

mated directly from speech acoustics could be useful com-

pared to other alternative approach of estimating the speech

rate based on ASR,15 for example, as proposed by Yuan

et al.16 The ASR based speech rate estimation is prone to

recognition errors, particularly the errors are more when the

speech is from noisy, dysarthic conditions and from lan-

guage learners. In addition, the speech rate is expected to

provide complementary information to ASR instead of being

dependent on it. In these cases, the acoustic based speech

rate estimation could be advantageous. Typically, the acous-

tic based speech rate estimation comprises two steps: (1)

computing a short-time feature contour such that most of its

peaks correspond to the syllable nuclei locations, (2) detect-

ing these peaks and thereby, the syllable nuclei.

Heinrich and Schiel17 used the contour from the short

time root-mean square of a speech signal and an average

based threshold mechanism to detect the peaks. Pfau and

Ruske18 estimated the vowel locations based on prominent

peaks in the smoothed loudness contour. They used zero

crossing rate to accurately estimate the vowel locations.

Dekens et al.19 proposed a low frequency modulated energy

envelope and a multilevel threshold mechanism based on thea)Electronic mail: chiranjeeviy@iisc.ac.in
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characteristics of unvoiced regions to avoid peaks in those

regions. Zhang and Glass20 proposed a contour based on

Hilbert envelope and used rhythm guided peak counting to

estimate the syllable nuclei. They improved the peak count-

ing by removing the peaks falling in unvoiced regions using

voicing decisions (VDs) from the estimated pitch values.

Jong et al.21 used an intensity based envelope with peak

counting based on VDs to estimate speech rate. Wang and

Narayanan22 proposed a feature contour called “Temporal

Correlation Selected Sub-band Correlation” (TCSSBC) and

a peak detection strategy (PDS) which involves smoothing

and a threshold mechanism in the voiced regions. A compre-

hensive study comparing eight different methods for speech

rate estimation has been summarized by Dekens et al.,23

who found that the TCSSBC based method performs the best

for speech rate estimation. We observe that most of the exist-

ing techniques use various peak detection strategies based on

VDs for speech rate estimation.

The TCSSBC has been used in most of the existing speech

rate estimation studies. For example, mode-shapes of the

TCSSBC have been used for estimating the speech rate and

detecting syllable nuclei in the support vector machine based

syllabic peak classification technique.24 The principle of

TCSSBC (spectro-temporal correlation) has been extended in

dictionary based speech rate estimation (DSRE) by learning

activations based on a dictionary to create a feature contour.25

Wang and Narayanan15 further proposed a robust speech rate

estimation (RSRE) method to improve the performance of

TCSSBC by optimizing the parameters involved in the

TCSSBC computation and the PDS with VDs. Due to the

effectiveness of TCSSBC and PDS with VDs, RSRE has been

considered as a baseline in most of the existing studies.13,24–27

However, it has been shown that the performance of

RSRE drops with increasing noise.24,25 Yarra et al.24 showed

that the speech rate estimation performance using RSRE

drops by 50% on the CTIMIT28 corpus compared to

TIMIT.29 Similarly, the syllable nuclei detection perfor-

mance drops by 25%.24 CTIMIT contains recordings of

TIMIT in a noisy condition. We also observe that the perfor-

mance of RSRE reduces when the speech is corrupted with

various additive noises at different signal-to-noise ratio

(SNR) conditions. Figure 1 shows the TCSSBC (blue) con-

tour computed from speech under clean condition and addi-

tive white Gaussian noise at 20, 10, and 0 dB SNRs for an

exemplary sentence (“So would radar picket ships”) taken

from the TIMIT corpus. In the figure, the peaks detected by

RSRE are indicated by the taller blue colored vertical lines

and the estimated VDs (1 for predicted regions and 0 other-

wise) used in RSRE are indicated by the cyan colored line.

From the figure, it is observed that the number of correct syl-

labic peaks detected by the RSRE drops from 20 to 0 dB. It

is also observed that the TCSSBC peak in the syllable “I t”

is missed by RSRE at 10 and 0 dB SNRs because they do not

fall under the estimated VDs. These together indicate that

with more additive noise, the error in the estimated VDs

increases, thereby causing more syllabic peaks to be missed.

Thus, errors in the estimation of VDs directly affect the

RSRE performance.

FIG. 1. (Color online) An illustrative example showing the insertion/deletion errors in TCSSBC by the PDS with and without VDs at 0, 10, and 20 dB SNR

conditions.
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To further investigate the effect of accuracy of the VDs

in syllabic peak estimation, we estimate the TCSSBC peaks

using the PDS of RSRE without using VDs, referred to as

PDS without VDs. The shorter vertical red colored lines in

Fig. 1 indicate the estimated peaks obtained from the PDS

without VDs at clean as well as at 20, 10, and 0 dB SNRs.

From the figure, it is observed that at 10 dB SNR, the peak in

the syllable “I t” is detected using the PDS without VDs;

however, it is missed by the PDS with VDs due to incor-

rectly estimated VDs. This indicates that the TCSSBC peaks

at low SNRs, which may be missed by the PDS with VDs,

could be detected using the PDS without VDs. However,

from Fig. 1, it is observed that the PDS without VDs introdu-

ces peaks in the unvoiced region of syllable “S I p s” in clean

as well as all in three SNR conditions; this could be elimi-

nated if VDs are considered. Thus, while the VDs are useful

in syllable peak detection when they are accurate (e.g., in

high SNR), they could be detrimental when they are errone-

ous (e.g., in low SNR).

We hypothesize that it could be beneficial to use VDs in

PDS in an SNR dependent manner, since the PDS without

VDs would work well in low SNRs while the PDS with VDs

would provide accurate syllable peaks in high SNRs. From

Fig. 1, it can be observed that both the PDSs (without and

with VDs) fail to detect the syllabic peak in the syllable “I t”

at 0 dB SNR. This is because the TCSSBC does not have

strong enough local maxima in that syllable at low SNRs. It

is also observed that an extra TCSSBC peak is inserted in

the syllable “r eI” by both the PDSs in clean as well as in 20

and 10 dB SNRs. This is because TCSSBC has two local

maxima in that syllable. Both these unwanted variations

could be due to the SNR dependent variations in the spectro-

temporal structure in different sub-bands that are exploited

to produce the TCSSBC peaks.22

We hypothesize that these variations could be fixed by

pruning a set of non-informative sub-bands (referred to as

pruned sub-bands) that distorts the expected spectro-

temporal structure for obtaining the TCSSBC peaks in an

SNR dependent manner. Hence, in general, the informative

sub-bands could recover the missing syllabic peaks in low

SNRs as well as eliminate the unwanted TCCSBC peaks at

high SNRs, which, in turn, could be useful when the PDS

without VDs and the PDS with VDs are used in an SNR

dependent manner. We identify these pruned sub-bands in a

data driven manner separately for each choice of the PDS—

PDS with VDs and PDS without VDs.

In the proposed approach, a feature contour is computed

with TCSSBC using a sub-set of sub-bands that is obtained

by pruning the non-informative bands; here the sub-bands

are computed based on the work by Huckvale.30 The pruned

sub-bands are selected according to the choice of PDS with

VDs and the PDS without VDs, which is selected depending

on the SNR of the signal. The pruned sub-bands for each

PDS are obtained using a forward sub-band selection strat-

egy. Experiments are performed on three corpora, namely,

Switchboard,31 TIMIT,29 and CTIMIT.28 In the case of

Switchboard and TIMIT, the performance of the proposed

method is analysed by simulating seen and unseen noisy test

conditions by adding different noises at various SNRs

similar to the experimental setup considered in most of the

existing studies.32–35 It should be noted that no noise is

added to the utterances from CTIMIT as it has noisy record-

ings. For seen noisy conditions, we consider five noises,

namely, babble, car (volvo), high frequency channel (hfc),

F16 cockpit (f16), and white Gaussian (white) from the

NOISEX-92 database,36 and three SNRs: 20, 10, and 0 dB.

For unseen noisy conditions, we consider four noises,

namely, factory, sub-way, street, and exhibition from the

Aurora database37 and two SNRs: �5 and 5 dB. Compared

to the best of the existing methods, the proposed method

results in a higher correlation with the ground truth syllable

rate for CTIMIT as well as for both the TIMIT &

Switchboard corpora under clean condition. The proposed

method also performs better in all seen and unseen noise and

SNR conditions for both TIMIT & Switchboard.

II. DATABASE

We use ICSI Switchboard,31 TIMIT,29 and CTIMIT28

corpora for all experiments in this work. Switchboard is a

spontaneous speech corpus consisting of sentences spoken

by 370 speakers with a wide range of speech rates, ranging

from 1.26 to 9.2 syllables per second. The audio in the

Switchboard corpus was collected through the telephone

channel. A subset of 7300 audio segments, each of duration

greater than 200 ms, is used for our experiments. In

Switchboard, syllable transcriptions as well as their time

aligned boundaries are available; however, phonetic tran-

scription is not available. TIMIT is a read speech database,

which has phonetically balanced 6300 sentences spoken by

630 speakers with a speech rate ranging from 1.44 to 8 sylla-

bles per second. All sentences from the TIMIT are used for

our experiments. CTIMIT is similar to TIMIT except that

the audio was collected through the cell phone channel

under various noisy conditions. All 3370 sentences from the

CTIMIT corpus, spoken by 630 speakers, are used for our

experiments. The speech rate in the CTIMIT sentences

ranges from 1.87 to 8 syllables per second. In TIMIT and

CTIMIT, only phonetic transcriptions and their time

aligned boundaries are available. Using these, we obtain

syllable transcriptions and the corresponding time aligned

boundaries with NIST syllabification software.38 Following

the work by Wang and Narayanan15 for the experimenta-

tion, silent segments in the initial and final parts of each

sentence of all corpora are removed. We use nine noises,

namely, white, volvo, hfc, f16, babble, factory, sub-way,

street, and exhibition in the experiments. The first five

noises are from the NOISEX-92 database36 and the remain-

ing noises are from the Aurora database.37 Babble noise has

the most non-stationary characteristics among all the noises

considered in this work.

III. PROPOSED APPROACH

The block diagram in Fig. 2 shows the steps involved

in the proposed method. A given test audio signal goes

through two stages in the proposed method: (a) feature

computation and (b) peak detection strategy. The feature

computation involves two steps. The first step prunes the

J. Acoust. Soc. Am. 146 (3), September 2019 Yarra et al. 1617



non-informative sub-bands, which are learnt during train-

ing, based on the noise and SNR condition of the test signal.

In the second step, spectro-temporal correlation is used to

compute the feature contour using the pruned sub-bands.

The peak detection strategy selects either a PDS with VDs

or PDS without VDs using the estimated SNR of the test

signal. For selecting the PDS, we use an SNR based PDS

selection criterion in which the parameters are learnt during

the training stage.

A. Feature computation (Pruned sub-band TCSSBC)

The feature computation in the proposed method is based

on the TCSSBC, computed using spectro-temporal correlation

from 19 sub-band energy contours.39 In order to overcome dis-

tortions in the TCSSBC in noisy conditions, we, in this work,

propose a feature contour called pruned sub-band TCSSBC

deduced from the TCSSBC by pruning sub-bands that are

learnt during training. Below, we discuss the sub-band pruning

technique following a brief description of spectro-temporal cor-

relation and the motivation for sub-band pruning.

1. Spectro-temporal correlation

The typical steps involved in the spectro-temporal corre-

lation computation are explained for a given set of K sub-

band energy contours y1ðnÞ; y2ðnÞ;…; yKðnÞ, where n is the

frame index, as below.

(1) The temporal correlation is computed on each sub-band

energy contour with a window shift of one frame using a

Gaussian window (w) of length J and variance r2 as follows:

ziðnÞ ¼
1

JðJ � 1Þ
XJ�2

j¼0

XJ�1

p¼jþ1

yiðnþ jÞwðjÞyiðnþ pÞwðpÞ
� �

8i ¼ 1; 2;…;K: (1)

(2) At each frame (n), from all temporally correlated sub-

bands, M highest energies are selected zð1ÞðnÞ; zð2ÞðnÞ;
…; zðMÞðnÞ where zð1ÞðnÞ � zð2ÞðnÞ �;…;� zðMÞðnÞ
� zðkÞðnÞ; M þ 1 � k � K. Using these M components,

the sub-band correlation is computed as follows:

xðnÞ ¼ 2

MðM � 1Þ
XM�1

i¼1

XM

j¼iþ1

zðiÞðnÞzðjÞðnÞ: (2)

The parameters (J, r and M) in steps (1) and (2) are selected

following the work by Wang and Narayanan.15

2. Motivation

In the proposed pruned sub-band TCSSBC feature con-

tour, the non-informative sub-bands are eliminated before com-

puting the spectro-temporal correlation. In this sub-section, we

motivate the need for pruning such non-informative sub-bands

using illustrative examples. Figure 3(a) shows the median of

sub-band energies across all frames in the entire TIMIT corpus

for each unvoiced phoneme. From the figure, it is observed

that the energy values corresponding to the phonemes /tS/, /s/,

and /S/ are higher at the sub-band indices 15 and above com-

pared to the remaining sub-bands. We observe that these higher

energies result in unwanted TCSSBC peaks in unvoiced

regions that do not correspond to the syllable nuclei, causing

errors in the speech rate estimation. In order to avoid these

unwanted peaks, VDs are typically used in TCSSBC based

methods,15,22,24,25 such as RSRE. Unlike using VDs, which

could be inaccurate in the presence of noise, we propose to

identify and eliminate non-informative sub-bands that cause

unwanted peaks in the TCSSBC contour.

FIG. 2. (Color online) Block diagram of the proposed approach illustrating

the steps involved in Noise and SNR specific strategy, Pruned sub-band

TCSSBC computation, and PDS.

FIG. 3. (Color online) An illustrative example describing: (a) sub-band energy profiles of the unvoiced regions, (b) effect of VDs on RSRE performance under

noisy conditions using three different TCSSBC and VD combinations: (1) both the TCSSBC and VDs are from the noisy signals, (2) the TCSSBC is from the

noisy signal and the VDs are from the clean signal, and (3) the TCSSBC is from the clean signal and the VDs are from the noisy signal and (c) the threshold

on SNR for choosing one of the PDSs (a is a metric evaluating the speech rate performance).

1618 J. Acoust. Soc. Am. 146 (3), September 2019 Yarra et al.



In order to examine the effects of errors due to inaccu-

rate VDs and the lack of local maxima in TCSSBC around

syllable nuclei, we perform a pilot experiment on speech

rate estimation at three SNRS, namely, 20, 10, and 0 dB with

additive white noise using the RSRE method15 on the entire

TIMIT corpus. Three different combinations of the TCSSBC

and VDs are considered for the speech rate estimation. In the

first combination, both the TCSSBC and the VDs are

obtained from noisy signals. This setup is identical to that

proposed by Wang et al.15 In the second combination, the

TCSSBC is obtained from the noisy signal and the VDs

from the clean signal. In the third combination, the TCSSBC

is obtained from the clean signal and the VDs from the noisy

signal. Figure 3(b) shows the percentage of syllabic nuclei

that is missed at all three SNRs for all the three combinations

considered. From the figure, it is observed that the syllabic

nuclei missed in the first and third combinations are more

than the second combination. This indicates that the VDs

from the noisy signal introduce more errors than the

TCSSBC from the noisy signal. It is also observed that the

first and third combinations have more errors at 0 dB than at

20 dB SNR. This implies that the errors due to inaccurate

VDs increase with decreasing SNR.

We hypothesize that the speech rate estimation can be

improved using the PDS without VDs by removing the depen-

dency on VDs when they are inaccurate (i.e., at low SNR). We

also hypothesize that in the absence of VDs, the unwanted

TCSSBC peaks in unvoiced regions can be suppressed by prun-

ing the sub-bands that contribute to the peaks in the unvoiced

regions. In order to remove unwanted peaks in high SNR (e.g.,

syllable “r eI” in Fig. 1), we propose to perform sub-band prun-

ing using the PDS with VDs. Similarly, for recovering the

missing peaks in low SNR (e.g., syllable “I t” in Fig. 1), we

propose to perform sub-band pruning using the PDS without

VDs. To determine the PDS used in sub-band pruning, we use

the PDS obtained from a PDS selection criterion. The pruned

sub-bands are learnt by maximizing either the speech rate esti-

mation or the syllable nuclei detection performance.

3. Sub-band pruning

The pruned sub-bands that remove unwanted TCSSBC

peaks could be noise and SNR specific. For example, in Fig.

3(a), it is observed that the high energy sub-bands that pri-

marily cause TCSSBC peaks in unvoiced regions vary across

the unvoiced phonemes /tS/ and /?/. We observe that these

high energy sub-bands vary across noise types as well as

SNR conditions for a given unvoiced phoneme. Thus, in this

work, we propose a method, called forward sub-band

pruning, to identify noise and SNR specific non-informative

sub-bands using both the PDSs separately. The respective

sub-band sets for PDS without VDs and PDS with VDs are

denoted by SwoVD
ðn;gÞ and SwVD

ðn;gÞ, where n 2 fbabble; f16; hfc;
volvo; white Gaussiang and g 2 {0, 10, 20 dB, clean}.

Further, at each SNR and noise combination, we choose a

set based on the PDS obtained from the PDS selection crite-

rion given the noise (n) and SNR (g) of the test signal.

However, in an unknown noise and SNR condition, we

identify the non-informative sub-bands by following steps in

Sec. III C.

a. Forward sub-band pruning. All K sub-band energies

are used in the forward sub-band pruning for each combina-

tion of noise (n), SNR (g) and PDS. The steps in the sub-

band pruning are outlined in Algorithm 1, which takes the K
sub-band energy contours as the input and returns pruned

sub-bands and the corresponding maximum speech rate or

syllable nuclei performance a. A full search for an optimal

set of sub-bands would require 2K – 1 combinations, which

is computationally infeasible. The forward sub-band pruning

consider only K(Kþ 1)/2 combinations, although it may

result in a sub-optimal set of non-informative sub-bands.

ALGORITHM 1: Forward sub-band pruning – input: Y ¼ ½Y1; Y2;…; YK � (K
sub-band energy contours), outputs: S (pruned sub-bands), a (highest speech

rate or syllable nuclei performance).

(1): Initialization: Ys ¼ U ðnull vectorÞ:P;X as empty vectors.

I ¼ f1; 2;…;Kg
(2): for l¼ 1 to K do

(3): Initialization: f ¼ U
(4): for i 2 I do

x[n] compute TCSSBC using [Ys Yi] following (1) and (2).

fi Compute speech rate or syllable nuclei detection perfor-

mance using TCSSBC x[n]

(5): end for

Pl  max
i

fi

Xl  arg max
i

fi

Ys  ½Ys YXl
�

I InXl

(6): end for

T  arg max
l

Pl; a max
l

Pl

S XTþ1:K ; Return S, a

Figure 4 shows the pruned sub-band TCSSBCs computed

using the pruned sub-bands obtained from the PDS without

VDs as well as the PDS with VDs (magenta & green colored

contours respectively) and their respective detected peaks with

the PDS without VDs & PDS with VDs for the exemplary sen-

tence and noise used in Fig. 1. Compared to the TCSSBC in

Fig. 1, Fig. 4 shows the improvements in the pruned sub-band

TCSSBC that removes unwanted peaks in the syllables “S I p s”

and “r eI” at all and high SNRs respectively as well as recovers

the missing peak in the syllable “I t” at low SNRs. However, all

these improvements are not observed simultaneously in the

pruned sub-band TCSSBCs using both the PDSs.

From Fig. 4, it is observed that the pruned sub-band

TCSSBC from the PDS without VDs is effective in removing

unwanted peaks in the syllable “S I p s” at all SNRs. However,

at high SNRs (clean and 20 dB SNR), it fails to remove the

extra peak in “r eI” syllable, as observed in Fig. 1. Such an

unwanted peak is eliminated using the pruned sub-band

TCSSBC from the PDS with VDs, for which the pruned sub-

bands are learnt considering only the voiced regions using the

PDS with VDs. Similarly, it is interesting that the pruned sub-

band TCSSBC from the PDS with VDs fails to preserve the

syllabic peak in “S I p s” syllable at 0 and 10 dB SNRs com-

pared to the pruned sub-band TCSSBC from the PDS without

VDs. This is because the pruned sub-band TCSSBC from the
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PDS with VDs does not have strong local maxima in low

SNRs. These together suggest that the speech rate performance

could be improved by the appropriate selection of one of the

pruned sub-band TCSSBCs, which, in turn, depends on the

PDS obtained from the PDS selection criterion.

B. Peak detection strategy

We examine the benefit of sub-band pruning using dif-

ferent PDSs on the speech rate estimation performance

using a pilot experiment on the entire TIMIT corpus. This

is illustrated for white Gaussian noise in Fig. 3(c), which

shows awVD
ðn;gÞ and awoVD

ðn;gÞ (speech rate performance) obtained

on the TIMIT corpus in three SNRs and clean conditions (g
¼ 0, 10, 20, clean) using blue and red colored contours

respectively. In this case, n is the white Gaussian noise.

Note that awVD
ðn;gÞ is obtained by using the PDS with VDs on

the pruned sub-band TCSSBC from the PDS with VDs.

Similarly, awoVD
ðn;gÞ is obtained by using the PDS without VDs

on the pruned sub-band TCSSBC from the PDS without

VDs. It is clear that awVD
ðn;gÞ is higher than awoVD

ðn;gÞ at 20 dB and

clean conditions. This indicates that the PDS with VDs is

useful at high SNRs. On the other hand, at low SNRs, awoVD
ðn;gÞ

is higher than awVD
ðn;gÞ indicating the benefit of the PDS with-

out VDs in 0 and 10 dB. Hence, we combine their comple-

mentary advantages to propose a strategy for using the PDS

with VDs and the PDS without VDs in an SNR dependent

manner.

a. PDS selection criterion. Given a test signal with known

noise (n) and SNR (g), the PDS without VDs and the PDS with

VDs are selected depending on the value of SNR as follows:

dPDS ¼
PDS with VDs for g > sn

PDS without VDs for g � sn;

(
(3)

where sn is a noise-specific SNR threshold that is determined

based on the training set. In order to determine the threshold,

we first compute awVD
ðn;gÞ and awoVD

ðn;gÞ at three SNRs (20, 10,

0 dB) and clean conditions, as shown by the blue and red

dots in Fig. 3(c) for example n being white Gaussian noise.

We then determine the threshold by finding the SNR at

which these two a vs SNR curves (obtained by linear inter-

polation) intersect each other. We observe that both the

curves intersect at an SNR above 0 dB in both TIMIT and

Switchboard corpora for all the noises considered in this

work. In the white Gaussian noise case [as shown in Fig.

3(c)], the threshold turns out to be sn ¼ 19.77 dB.

Figure 4, along with Fig. 1, demonstrates the effective-

ness of the SNR dependent PDS selection in the proposed

method under known noise (n ¼ white Gaussian) and SNR

conditions compared to using the PDS with VDs (i.e.,

RSRE15) or the PDS without VDs on TCSSBC consistently

in all SNRs. In Fig. 4, the grey colored dashed contour and

vertical lines indicate the selected pruned sub-band TCSSBC

and the peaks detected by dPDS in an SNR dependent man-

ner. From the figure, it is observed that the proposed method

detects the peaks correctly in every syllable (one peak in

each syllable nuclei) in all SNRs except an extra peak in the

syllable “r eI” at 10 dB SNR. These improvements in the

proposed method could be due to the SNR dependent sub-

band pruning and PDS, where it is expected to preserve the

missing peaks as well as eliminate unnecessary peaks in the

TCSSBC contour.

FIG. 4. (Color online) Illustrative example from Fig. 1 describing the benefit of the proposed PDS dependent sub-band pruning strategy and the PDS selection

criterion (red color phonemes indicate the syllable nuclei), which remove unwanted peaks in the syllables “S I p s” and “r eI” and recover a missing peak in

the syllable “I t” compared to TCSSBC.
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C. Sub-band pruning and PDS selection under
unknown noise and SNR

For a test signal, in general, the noise and SNR may not be

known a priori. We, in this work, propose a method for identi-

fying the pruned sub-bands and computing the SNR threshold

when either the noise or the SNR or both could be unknown.

For this purpose, we follow the steps in the flow chart depicted

in Fig. 5 for known and unknown noise and SNR combina-

tions: (1) noise and SNR are known (denoted by N & S), (2)

noise is known and SNR is unknown (N&S0), (3) noise is

unknown and SNR is known (N0&S), and (4) noise and SNR

are unknown (N0&S0). In the first step, we check whether n or

g or both of them belong to their known values used in

training. In the second step, the PDS is selected (dPDS) using

Eq. (3). The respective pruned sub-bands for each dPDS
2 fPDS without VDs; PDS with VDsg are selected when the

SNR or noise or both are unknown as follows:

CwoVD
ðN;SÞ ¼ SwoVD

ðn;gÞ ; CwVD
ðN;SÞ ¼ SwVD

ðn;gÞ

CwoVD
ðN;S0Þ ¼

\
g s:t:
g� sn

SwoVD
ðn;gÞ ; CwVD

ðN;S0Þ ¼
\
g s:t:
g� sn

SwVD
ðn;gÞ

CwoVD
ðN0;SÞ ¼

\
n s:t:
g� sn

SwoVD
ðn;gÞ ; CwVD

ðN0;SÞ ¼
\
n s:t:
g� sn

SwVD
ðn;gÞ

CwoVD
ðN0;S0Þ ¼

\
g; n s:t:
g� sn

SwoVD
ðn;gÞ ; CwVD

ðN0;S0Þ ¼
\

g; n s:t:
g� sn

SwVD
ðn;gÞ:

(4)

When the noise or SNR or both are unknown, the intersec-

tion of several pruned sub-band sets is chosen, i.e., common

sub-bands among the pruned sub-band sets to preserve infor-

mative sub-bands. However, the parameters g and sn in Eq.

(3) change according to the known and unknown conditions

of noise and SNR. In the case of unknown noise, the sn is

replaced with bs, which is obtained by averaging all the sn

belonging to the noises considered in this work; however,

when the noise is known, sn is used directly. Similarly, in

the case of unknown SNR, estimated SNR (bg) value is used

in place of g. The SNR is estimated on a test utterance fol-

lowing the work by Gerkmann et al.40,41

D. Experimental setup

We consider Pearson correlation coefficient42 (q)

between the estimated syllable rate and the ground truth syl-

lable rate across all test sentences as an objective measure

for evaluating the speech rate estimation. We consider the

RSRE15 and DSRE25 techniques as baselines in our experi-

ments. Following the TCSSBC computation in RSRE, we

consider a set of K¼ 19 sub-band energy contours computed

using the method given by Huckvale30 with non uniform

sub-bands as described by Holmes.39 Experiments are per-

formed on data from CTIMIT, TIMIT, and Switchboard. For

parameter learning, we consider the TIMIT and Switchboard

data under clean and noisy conditions with additive noises

namely, white Gaussian, volvo, hfc, f16, and babble at 0, 10,

and 20 dB SNRs. The data in the clean and each noisy condi-

tions is divided into three parts randomly: 10% as the train-

ing set for learning the pruned sub-bands, 40% as the

development set for learning threshold (sn) and pruned sub-

bands SwoVD
ðn;gÞ and SwVD

ðn;gÞ, and the remaining 50% as the test set.

For TIMIT and Switchboard, we learn the parameters sepa-

rately for each corpora, which are used for the respective test

sets. Although, during training, the threshold and pruned

sub-bands are learnt in a noise and SNR specific manner, the

known and unknown noise (N and N0) and SNR (S and S0)
conditions in the test sets are simulated by using the thresh-

old and pruned sub-bands as illustrated in Fig. 5. This is

done to show the effectiveness of the proposed method under

all known and unknown conditions of noise and SNR seen

during parameter learning. In order to know the performance

of the proposed method under noise and SNR conditions

unseen in training, we consider CTIMIT as well as TIMIT

and Switchboard data under noisy conditions with four addi-

tive noises namely, factory, sub-way, street, and exhibition

at �5 and 5 dB SNRs. In addition to q, we consider F-score

measure for learning the parameters: threshold and pruned

sub-bands. F-score is computed following the work by

Landsiedel et al.27 and Yarra et al.24 We hypothesize that

learning the parameters using F-score could have an advan-

tage over those using q. This is because the q computation

depends only on the estimated and actual number of sylla-

bles in the test sentences. On the other hand, F-score depends

on the accuracy of the estimated syllable nuclei locations

with respect to the actual ones.

E. Hyper-parameter optimization

1. SNR threshold

Table I shows the estimated sn values using q and F-

score for TIMIT and using q for Switchboard. In the case of

Switchboard, sn is learnt using only q since the phone

boundaries (needed for syllable nuclei information for F-

score computation) are not available. From the table, it is

FIG. 5. (Color online) Flow chart for the selection of pruned sub-bands

under known and unknown noise & SNR combinations: (1) noise and SNR

are known (denoted by N&S), (2) noise is known and SNR is unknown

(N&S0), (3) noise is unknown and SNR is known (N0&S), and (4) noise and

SNR are unknown (N0&S0).
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observed that among all noises, sn is the least in babble noise

for both measures in both corpora. This could be because the

babble noise has a highly time varying (non-stationary) spec-

trum similar to speech.43 The non-stationary babble noise

spectrum could alter the spectro-temporal correlation more

than other noises to varying degree depending on the SNR.

This, in turn, could result in a lower crossover point between

the performance vs SNR curves for the PDS without VDs

and the PDS with VDs schemes [Fig. 3(c)]. Similarly, the

spontaneous speech in the Switchboard corpus may be less

structured,44,45 resulting in a different spectro-temporal cor-

relation compared to the read speech in TIMIT; this, in turn,

could result in a lower sn value for Switchboard compared to

TIMIT for all noises considered in this work.

2. Pruned sub-bands

Figure 6 shows the pruned sub-bands ðSwoVD
ðn;gÞ and SwVD

ðn;gÞÞ
obtained using Algorithm 1 for five noises in three SNRs

and clean conditions considering two performance mea-

sures—q and F-score—for TIMIT and using q for

Switchboard. It should be noted that the pruned sub-bands

are used for speech rate estimation only for some combina-

tions of noise, SNR and PDS. This is because both the PDSs

are not used for every combination of noise and SNR; rather,

it depends on the PDS selection criterion. In Fig. 6, the �

marks indicate such used combinations. In the case of

unknown noise and SNR, the pruned sub-bands CwoVD
ðN0;S0Þ and

CwVD
ðN0;S0Þ, obtained using Eq. (4), are also shown in the figure.

From the selected set of pruned sub-bands for TIMIT

[Figs. 6(a) and 6(b)] corresponding to the � marks, it is

observed that the sub-bands 16–19 are selected as pruned sub-

bands in all five noises at all three SNRs for both the measures

except for hfc, f16, and babble at 0 dB SNR under q measure

as well as for babble at 0 dB SNR under F-score measure. On

the other hand, sub-bands 1–3 are detected as informative

bands in all five noises at all three SNRs for both the measures

except at 0 and 10 dB under babble noise for q measure as

well as volvo and bable noises at 0 dB SNR and f16 noise at

20 dB SNR for F-score measure. This could be because the

first formant typically falls in the frequency range of the sub-

bands 1–3. Also, the sub-bands 16–19 have frequency ranges

beyond the typical locations of third formants.46 However,

such a consistency in pruned sub-bands is not seen in the case

of Switchboard [Fig. 6(c)] probably due to the spontaneous

nature of speech, unlike the read speech in TIMIT, which is

more structured;44,45 hence, it has less spectral variability than

the spontaneous speech in Switchboard.

F. Results

Table II shows the q values computed on the test sets of

TIMIT and Switchboard using the two baselines as well as

TABLE I. Noise specific SNR threshold values for TIMIT and Switchboard

corpora for all five noise conditions, using q and F-score measures on

TIMIT and using q measure on Switchboard.

white volvo hfc f16 babble

TIMIT using q 19.91 19.36 21.26 19.30 13.86

using F-score 19.77 18.21 19.71 17.55 16.27

Switchboard using q 12.18 9.58 12.33 9.88 9.25

FIG. 6. (Color online) Pruned sub-bands, ðSwoVD
ðn;gÞ and SwVD

ðn;gÞÞ, (black colored regions) for (a) TIMIT using performance measure as q, (b) TIMIT using F-score,

and (c) Switchboard using q under both known and unknown n & g. CwoVD
ðN0 ;S0 Þ and CwVD

ðN0 ;S0 Þ indicate the pruned sub-bands obtained in the case of unknown noise

and SNR using Eq. (4). The � marks marks correspond to the PDS selected for every combination of noise and SNR separately in (a), (b), and (c).
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the proposed method with SNR threshold and pruned sub-

bands obtained using both q and F-score measures. The pro-

posed scheme is executed assuming unknown noise and

SNR (i.e., N0&S0 combination). The bold entries in the table

indicate the highest q values among different schemes for

each corpus. From the table, it is observed that the q values

obtained using the proposed method are higher than those

with both the baselines on TIMIT, while the q values are

comparable on Switchboard. It is also observed that for

TIMIT, the q value is higher when sub-band pruning is per-

formed using F-score compared to that using q, indicating

the robustness of the F-score for sub-band pruning.

a. Performance under seen noise conditions. Table III

shows the q values obtained using the two baselines as well

as the proposed method for test cases with additive noise for

five seen noises at three seen SNRs. In the table, the bold

entry for every corpus in each row indicates the highest q
value for each noise and SNR combination. From the table,

it is observed that the estimated q values by the proposed

method are more than those by the RSRE and DSRE meth-

ods for both TIMIT and Switchboard corpora at all noises

and SNR combinations. In the case of TIMIT corpus, the q
values obtained based on F-score measure are higher than

those based on q for five noises at three SNRs, except for the

white noise at 10 dB SNR and f16 noise at 0 dB SNR. This

indicates that the parameters obtained using F-score measure

are more robust than those using q. This observation is con-

sistent with the observations in the clean condition (Table

II). When averaged across all noises, the proposed method

(with parameters optimized using both q and F-score) per-

forms significantly (p< 0.01 with t-test) better than the best

of the baseline schemes (in most cases RSRE performs better

than DSRE) at all three SNRs on TIMIT. However, on

Switchboard where q measure is used for selecting pruned

sub-bands, the proposed method performs significantly

(p< 0.01 with t-test) better only at 0 dB SNR, while at the

remaining SNRs, there is no significant difference between

the performance of the best baseline and the proposed

method. This suggests that the proposed method achieves a

better speech rate estimation accuracy over both the base-

lines through the selection of PDS in an SNR specific

manner.

From Table III, it is observed that the increase in q val-

ues from the proposed method over those from the RSRE

varies across SNRs. These improvements are summarized

using bar-plots in Fig. 7, representing the percentage of

improvement in the difference between q values (qProposed

� qRSRE) in the 6th and 3rd columns and the 9th and 7th

TABLE II. Correlation coefficient (q) obtained on the test sets of TIMIT

and Switchboard under clean condition considering the parameters learnt

separately using q and F-score measures.

TIMIT Switchboard

RSRE DSRE

Proposed

RSRE DSRE

Proposed

using q using F-score using q

Clean 0.6639 0.6704 0.6756 0.6803 0.6627 0.6486 0.6629

TABLE III. Correlation coefficient (q) obtained on the test sets of TIMIT and Switchboard with five noises and three SNR conditions considering the parame-

ters learnt separately using q and F-score measures.

TIMIT Switchboard

RSRE DSRE

Proposed

RSRE DSRE

Proposed

using q using F-score using q

White 0 dB 0.1166 0.1058 0.5381 0.5609 –0.0795 –0.0911 0.4776

10 dB 0.4880 0.4900 0.6359 0.6239 0.5310 0.5233 0.5326

20 dB 0.6364 0.6439 0.6435 0.6540 0.6456 0.6409 0.6476

Volvo 0 dB 0.3009 0.2859 0.6131 0.6140 0.4104 0.3358 0.5757

10 dB 0.5842 0.5774 0.6183 0.6229 0.6239 0.6110 0.6249

20 dB 0.6571 0.6545 0.6551 0.6665 0.6486 0.6408 0.6496

hfc 0 dB 0.1307 0.1155 0.4102 0.4130 0.0011 –0.0187 0.4028

10 dB 0.4880 0.4852 0.6107 0.6138 0.5655 0.5584 0.5677

20 dB 0.6360 0.6391 0.6417 0.6596 0.6403 0.6446 0.6450

f16 0 dB 0.1616 0.1489 0.4100 0.3997 0.0282 0.0006 0.4179

10 dB 0.4997 0.4951 0.6059 0.6179 0.5471 0.5402 0.5489

20 dB 0.6413 0.6421 0.6433 0.6566 0.6467 0.6366 0.6475

Babble 0 dB 0.1962 0.1810 0.2504 0.2732 0.1030 0.0603 0.2218

10 dB 0.5056 0.5036 0.5225 0.5306 0.5503 0.5444 0.5524

20 dB 0.6451 0.6440 0.6453 0.6595 0.6502 0.6348 0.6532

Average 0 dB 0.1812 0.1674 0.4465 0.4521 0.0926 0.0574 0.4191

(0.0735) (0.0649) (0.1387) (0.1362) (0.1892) (0.1474) (0.1295)

10 dB 0.5131 0.5103 0.6018 0.6019 0.5635 0.5555 0.5653

(SD) (0.0404) (0.0341) (0.0456) (0.0400) (0.0358) (0.0300) (0.0355)

20 dB 0.6431 0.6447 0.6457 0.6593 0.6462 0.6395 0.6488

(0.0086) (0.0052) (0.0053) (0.0046) (0.0038) (0.0035) (0.0030)

Overall Average 0.4458 0.4408 0.5647 0.5711 0.4341 0.4175 0.5443
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columns in Table III with respect to qRSRE. It is found that

the absolute improvements in q using the proposed method

are more in low SNR compared to high SNR for each noise

in case of both the corpora. We observe that the estimated

SNR values for test signals at 0 dB SNR are below the aver-

age SNR threshold (bs) for all five noises in both corpora.

Thus, the proposed method selects the PDS without VDs for

peak detection at 0 dB SNR. This indicates that the proposed

method accurately detects several syllabic peaks that are

missed by RSRE due to inaccurate VDs at 0 dB SNR. It is

also observed that the absolute improvement in q value is

the highest for white Gaussian noise and the lowest for the

babble noise at 0 dB SNR. This could be because white noise

has equal energy per unit bandwidth.47 Hence, it has a con-

sistent structure across all frames compared to the non-

stationary babble noise, resulting in more effective pruned

sub-bands in white noise compared to those in babble noise.

From Table III, it is observed that the improvement in

speech rate estimation by the proposed method is more for

TIMIT compared to that for Switchboard when averaged

across all noises and SNRs. One of the reasons for such per-

formance difference could be the robustness of F-score in

learning pruned sub-bands, which is used for TIMIT but not

for the Switchboard corpus. It could also be due to less con-

sistency in the pruned sub-bands because of the spontaneous

nature of speech in Switchboard, which results in less sup-

pression of peaks in the unvoiced regions in Switchboard

compared to the TIMIT corpus. More incorrect selection of

PDS and pruned sub-bands in Switchboard due to wrongly

estimated SNR could be another reason for the performance

difference between the TIMIT and Switchboard corpora. For

example, Table IV shows the percentage of confusion

between the (estimated) PDS obtained using the PDS selec-

tion criterion under unknown noise and SNR conditions and

the (expected) PDS obtained assuming that the noise and

SNR of the test sentence are known. The percentages in the

table also denote the confusion between the estimated and

expected pruned sub-band sets. From the table, it is observed

that the confusions are more in Switchboard (0.03 and

49.04) than those in the TIMIT (0.69 and 0.00) corpus,

which, in turn, could cause poor performance of the pro-

posed method in the Switchboard compared to that in the

TIMIT corpus. We observe that the majority of confusion in

the Switchboard corpus is due to an incorrect PDS selection

for test signals at 10 dB SNR. This is because the average

SNR threshold bs for Switchboard is 10.64 dB. While the

PDS without VDs would be the right choice for a test signal

at 10 dB SNR (as 10< 10.64), a positive SNR estimation

error more than 0.64 dB would result in the selection of PDS

with VDs, which, in turn, could drop the performance of the

proposed method.

Further, from Table IV, it is clear that the proposed

method mostly uses PDS with VDs (similar to RSRE) in the

cases of both TIMIT and Switchboard at clean and 20 dB

SNR conditions under all five noises. Thus, higher q values

with the proposed method on both the corpora in Table II at

clean and in Table III at 20 dB SNR condition compared to

those with RSRE suggest the effectiveness of sub-band prun-

ing in the proposed method. Similarly, on TIMIT, the pro-

posed method uses PDS without VDs at 0 and 10 dB SNR

conditions. Hence, the higher q values with the proposed

method in Table III at 0 and 10 dB SNRs compared to those

with RSRE are due to both sub-band pruning and VDs

removal. However, from Fig. 6, it is observed that in the

case of PDS without VDs, the pruned sub-bands are non-

empty only when those are learnt using F-score measure.

Thus, improvements in the cases using q measure are only

due to the removal VDs, suggesting the effectiveness of VDs

removal in the proposed method. Further, higher q values

using F-score measure compared to those using q measure

suggest the effectiveness of sub-band pruning in the 0 and

10 dB SNRs.

b. Performance under unseen noise conditions. Table V

shows the q values obtained on the test sets of TIMIT and

Switchboard under four unseen noises at �5 and 5 dB SNR

conditions considering the parameters learnt separately using

q and F-score measures. From the table, it is observed that

the q values obtained with the proposed method are higher

than those with both the baselines in all cases except in exhi-

bition noise under 5 dB SNR condition on the Switchboard

corpus. This indicates the benefit of the proposed method

even under unseen conditions. Further, we observe that the

PDS without VDs is selected for all four noises at both

unseen SNRs on TIMIT. Hence, under this condition, the

improvements in q values over RSRE for the TIMIT corpus

indicate the benefit of the VDs removal in the proposed

method, when the parameters learnt using q are used. The q
values obtained using the parameters learnt with F-score are

higher than those using the parameters learnt with q. This

indicates the benefit of only sub-band pruning because the

pruned sub-bands (as observed in Fig. 6) are empty in the

case of learning with q.

Table VI shows the q values obtained on CTIMIT using

the two baselines and the proposed method separately

TABLE IV. Percentage of confusion among estimated (rows) and expected

(columns) PDSs due to errors in SNR estimation. The estimated PDSs are

obtained using the PDS selection criterion under unknown noise and SNR

conditions. The expected PDSs are obtained assuming that the noise and

SNR of the test sentence are known.

TIMIT Switchboard

PDS

without VDs

PDS

with VDs

PDS

without VDs

PDS

with VDs

PDS without VDs 100.00 0.69 50.96 0.03

PDS with VDs 0.00 99.31 49.04 99.97

FIG. 7. Improvement in the performance of the proposed method with

respect to RSRE for five noises and three SNRs. The improvement is shown

using percentage change in the q values with respect to jqRSREj.
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considering the parameters (pruned sub-bands and s) learnt

from TIMIT using F-score, TIMIT using q, and Switchboard

using q. The table also shows the q values averaged across

all seen noises and all three seen SNRs and clean condition

on TIMIT and Switchboard under both matched and mis-

matched train-test conditions. This is repeated by averaging

across all unseen noises and two unseen SNRs. In the table,

the rows indicate the test corpus considered and the columns

indicate the training conditions from which the parameters

are obtained. Blue color entries in the table mark the q val-

ues obtained under mismatched condition. Higher q values

with the proposed method in all conditions over those with

the two baseline schemes indicate the merit of the proposed

method. We observe improvements in the q values on

Switchboard with the parameters from TIMIT using F-score

over those using q and those with RSRE. Improvements in

these two cases respectively suggest the advantages of sub-

band pruning only and sub-band pruning, plus VDs removal

even under mismatched train-test conditions. Further, it is

interesting to observe that under both seen and unseen condi-

tions, q values are improved on Switchboard when the

parameters learnt from TIMIT data are used compared to the

case when Switchboard data are used. On the other hand, on

TIMIT, the q values are lower under mismatched condition

compared to those under matched condition. Overall, the

results in the table indicate that the proposed method esti-

mates speech rate more consistently within and across cor-

pora when parameters are learnt using F-score.

Unlike additive noise conditions, CTIMIT contains noisy

speech that is recorded in realistic scenarios and we observe

that the estimated SNRs for the recordings in CTIMIT range

from 7.36 to 35.17 dB with mean and standard deviation (SD)

of 17.48 and 4.48 dB, respectively. From Tables II and VI, it

is observed that the performance on the CTIMIT (noisy ver-

sion of TIMIT) degrades compared to that on TIMIT for both

the baselines and the proposed method. However, the degra-

dation is less in the proposed method. In particular, the q val-

ues obtained using the proposed method, separately with all

three sets of parameters, are higher than those using both the

baseline schemes. This indicates that the proposed method is

robust even under adverse real noisy scenarios. Among all

three sets of parameters, the highest q values are obtained

with the parameters using F-score. The improvements in the

q values with the parameters from TIMIT using F-score com-

pared to those from Switchboard using q are mostly due to

sub-band pruning only.

G. Discussions

1. Noise and SNR specific analysis

The results in Tables II and III are computed when the

noise type and SNR of the signal are unknown (denoted by

N0&S0). We also investigate the performance of the proposed

method in the following known and unknown noise and SNR

combinations—(1) N&S, (2) N&S0, and (3) N0&S. The selec-

tion of pruned sub-bands and PDS is done according to Fig. 5.

Table VII shows the average of q values across all five noises

at each SNR for the TIMIT and Switchboard corpora. In the

case of TIMIT, we consider the q values obtained from the

parameters learnt using F-score. From the table, it is observed

that the average q values under N&S, N&S0; N0&S, and

TABLE V. Correlation coefficient (q) obtained on the test sets of TIMIT and Switchboard with four unseen noises and two unseen SNR conditions, consider-

ing the parameters learnt using q and F-score measures separately.

TIMIT Switchboard

RSRE DSRE

Proposed

RSRE DSRE

Proposed

using q using F-score using q

Factory �5 dB �0.0225 �0.0335 0.3635 0.3723 0.0406 0.0256 0.3620

5 dB 0.3870 0.3723 0.5218 0.5564 0.4636 0.4370 0.5125

Sub-way �5 dB 0.0354 0.0191 0.3232 0.3348 0.0225 0.0069 0.2678

5 dB 0.4115 0.4003 0.4972 0.5072 0.4432 0.4392 0.4731

Street �5 dB 0.1700 0.1567 0.3415 0.3546 0.1710 0.1156 0.3991

5 dB 0.4909 0.4435 0.5132 0.5278 0.4960 0.4736 0.5037

Exhibition �5 dB 0.0253 0.0139 0.3473 0.3625 0.0313 0.0059 0.2431

5 dB 0.3739 0.3651 0.5283 0.5416 0.4756 0.4563 0.4681

Average �5 dB 0.0520 0.0391 0.3439 0.3561 0.0663 0.0385 0.3180

(0.0826) (0.0820) (0.0166) (0.159) (0.0701) (0.0522) (0.0745)

(SD) 5 dB 0.4158 0.3953 0.5151 0.5333 0.4696 0.4515 0.4893

(0.0524) (0.0355) (0.0135) (0.0209) (0.0221) (0.0170) (0.0221)

Overall Average 0.2339 0.2172 0.4295 0.4447 0.2680 0.2450 0.4037

TABLE VI. Performance of the proposed method on CTIMIT as well as

TIMIT and Switchboard under matched and mismatched train-test cases in

seen and unseen noise conditions.

Proposed

Noise
TIMIT Switchboard

condition Test corpora RSRE DSRE using q using-Fscore using q

Unseen TIMIT 0.2339 0.2172 0.4295 0.4447 0.4237

Switchboard 0.2680 0.2450 0.4244 0.4391 0.4037

Seen TIMIT 0.4574 0.4529 0.5924 0.5984 0.5784

Switchboard 0.4582 0.4296 0.5788 0.5867 0.5740

CTIMIT 0.2764 0.2892 0.4017 0.4178 0.3696
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N0&S0 do not vary much among themselves in most of the

cases on both corpora. This indicates that a knowledge of the

noise and SNR specific information does not improve the per-

formance significantly, which, in turn, suggests that the pro-

posed method is robust to unknown noisy conditions under all

five noises considered in this work. Similarly, it also suggests

that the proposed method is robust to the estimation errors

reported in Table IV in selecting the PDS.

We further investigate the variation in performance of

the proposed approach with respect to the variations in the

threshold (s) used in PDS selection. Figure 8 shows the q vs

s plots under all five known noise conditions as well as under

unknown noise condition. In the case of the known noise

condition, the q value is computed using the estimated

speech rates belonging to all three SNR and clean condi-

tions. However, in the case of an unknown noise, we use the

estimated speech rates belonging to all five noises at all three

SNR and clean conditions for computing q. In the figure, we

indicate a range (shown using color-filled rectangles in Fig. 8)

of s values under each known and unknown noise condition

that corresponds to q values that lie above 99% of the highest

q value. Also, in the figure, the color-filled circles indicate the

sn reported in Table I using F-score for all five noises and the

respective bs in the unknown noise case. From the figure, it is

observed that the sn and bs values fall within their respective

ranges for unknown noise as well as all five noises except for

white and hfc. This indicates that the estimated sn and bs val-

ues are robust to unknown noise as well as most of the seen

noises considered in this work. Further, considering the q
value obtained using 40% of the data as a development set,

we find that the q values are within 65% when the size of the

development data is varied from 5% to 40% in steps of 5%

under all five noise conditions as well as under unknown noise

condition.

2. Phoneme-specific analysis

Sub-band pruning in the proposed method changes the

strength of local maxima in the pruned sub-band TCSSBC

from that in the TCSSBC at both consonant and vowel (syl-

lable nuclei) phonemes. Typically, at each syllable, the

peaks detected by the proposed method depend on the vowel

peak strength with respect to its neighboring phoneme peak

strength as well as on the PDS. When the PDS with VDs is

used, typically at 20 dB and clean conditions, it is expected

that both RSRE and the proposed method have the similar

performances. However, from Tables II and III, it is

observed that the proposed method performs better than

RSRE. Figures 9(a) and 9(b) show exemplary syllable seg-

ments (“SIns” and “zIk”) to illustrate the reason for improve-

ments in the proposed method. From the figures, it is

observed that the proposed method neither misses the sylla-

ble peak nor inserts extra peaks in the syllables; however,

the RSRE misses the syllable peaks. This could be because,

in both segments (“SIns” and “zIk”), sub-band pruning

results in a reduction of the height of the valley before the

phoneme “I” in addition to reduction of the peak strengths in

the respective phonemes “S” and “z” compared to those in

TCSSBC. The changes in valley heights and peak strengths

in the pruned sub-band TCSSBC from TCSSBC would

affect peak detection using the PDS with VDs;15 this leads to

the correct syllable peak detection by the proposed method.

We observe that the improvements in correct syllable

peak detection by the proposed method are found to be the

highest in the syllables containing the phoneme “I,” which

belongs to the short vowel category. This is observed in

clean and all three SNR conditions. On the other hand, the

least improvement is found in the syllables containing the

phoneme “A,” which belongs to the long vowel category. It

is also interesting to observe that the six highest improve-

ments are found in the syllables containing the vowels “@,”

“2,” “I,” “i,” “U,” and “u” out of which “@,” “2,” “I,” and

“U” are short vowels. On average, we observed that the

improvement in correct syllable peak detection by the pro-

posed method is higher in the syllables containing short

vowels than those containing long vowels at all SNRs. This

could be because short vowels are largely affected due to

inaccurate VDs mostly at low SNRs; hence, RSRE misses

most of the syllable peaks belonging to the syllables contain-

ing those vowels. On the other hand, in general, the proposed

method introduces extra peaks within the syllables contain-

ing long vowels. Figures 9(c) and 9(d) show the two exem-

plary syllable segments “teIlz” and “saId,” containing extra

peaks detected by the proposed method. From the figures, it

is observed that the extra peaks are detected due to the valley

at the boundary of the phoneme “eI” in the syllable “teIlz”

and that in the middle of the phoneme “aI” in the syllable

“saId.”

In this work, analysis on the proposed method is primar-

ily performed in a controlled manner under additive noisy

conditions. The improvements under unseen additive noisy

TABLE VII. Average of the q values across all five noises with the pro-

posed method under the following known and unknown noise and SNR

combinations—(N&S), (N&S0), (N0&S), and (N0&S0). In the case of TIMIT,

we consider the parameters learnt using F-score only. Average values of the

q across all five noises with the RSRE are the same under all four condi-

tions, and those are 0.1812, 0.5131, and 0.6431 and 0.0926, 0.5635, and

0.6462 at 0, 10, and 20 dB SNRs, respectively, on TIMIT and Switchboard

corpora.

TIMIT Switchboard

0 dB 10 dB 20 dB 0 dB 10 dB 20 dB

N&S 0.4744 0.6025 0.6580 0.4302 0.5566 0.6299

N&S0 0.4545 0.6031 0.6582 0.4197 0.5457 0.6299

N0&S 0.4568 0.6018 0.6592 0.4133 0.5759 0.6486

N0&S0 0.4521 0.6018 0.6593 0.4192 0.5653 0.6488

FIG. 8. (Color online) Effect of variation in threshold (s) on the perfor-

mance of the proposed method for the TIMIT corpus under all five known

noise conditions as well as unknown noise condition.
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conditions and mismatched train-test conditions indicate the

usefulness of the proposed method in handling a range of

additive noises.34 Further, the improvements on CTIMIT

suggest the benefit of the proposed method in realistic situa-

tions when the target data is phonetically and/or linguisti-

cally similar to TIMIT. However, further analysis is required

to know the effectiveness of the proposed method under

more realistic conditions, particularly in spontaneous speech

recordings.

IV. CONCLUSIONS

We propose a noise robust speech rate estimation tech-

nique comprising a sub-band pruning strategy to compute a

feature contour as well as a syllabic peak detection strategy

in an SNR dependent manner. The pruning strategy selects a

set of sub-bands from the sub-band energies used in the tra-

ditional TCSSBC contour. This is done to minimize noise

and SNR dependent unwanted variations in TCSSBC. The

selection strategy decides the use of VDs in peak detection

to minimize the errors due to low accuracy in VDs estima-

tion, particularly at low SNRs. Experiments with three cor-

pora, namely, Switchboard, TIMIT, and CTIMIT reveal that

speech rate estimation with the proposed strategies are more

accurate than the best of the existing methods. Further inves-

tigations are required to study the use of the proposed

method in current state-of-the-art ASR systems under differ-

ent noise and SNR conditions. Future works also include the

estimation of pruned sub-bands in unknown noise and SNR

conditions considering a weighted combination of noise and

SNR specific pruned sub-bands. Further, a direct estimation

strategy could be developed for pruned sub-bands consider-

ing current state-of-the-art machine learning approaches,

without any rule-based combination strategies on the noise

and SNR specific pruned sub-bands.
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