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Abstract: Second language learners of British English (BE) are typi-
cally trained for four intonation classes: Glide-up, Glide-down, Dive,
and Take-off. Automatic four-way intonation classification could be
useful to evaluate a learner’s pronunciation. However, such automatic
classification is challenging without having manually annotated tones,
typically considered in intonation analysis and classification tasks. In
this, a three-dimensional feature sequence is proposed representing tem-
poral patterns in the utterance-level f0 contour using a perceptually
motivated pitch transformation. Hidden Markov model based classifi-
cation experiments conducted using a training material for teaching BE
intonation demonstrate the benefit of the proposed approach over the
baseline scheme considered.
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1. Introduction

Intonation often adds meaning to words and word groups.1,2 In general, intonation
contains a sequence of discrete patterns called tones.1–3 Although the last tone in the
sequence, called nuclear tone,1,3 plays a critical role in the intonation, all tones in the
sequence together convey the meaning.1,2 Hence, an incorrect tone sequence would
result in wrong intonation, thus, miscommunication. Therefore, in the second language
(L2) training, for example, in learning British English (BE), L2 learners are required to
learn BE intonation for a better spoken communication.

In general, the intonation of BE varies across different geographic regions.3

However, instead of teaching the L2 learners with many varieties of BE intonation,
they are typically trained to learn intonation of the received pronunciation of BE (Ref.
1) containing four different patterns—Glide-up, Glide-down, Dive, and Take-off,1,2

referred to as intonation classes. Later, they are trained to add finer changes to those
patterns.1 In this work, models are proposed to classify those four classes automatically
in the expert’s BE intonation which could be useful for detecting L2 learner’s profi-
ciency similar to the work proposed by Witt,4 where the quality of phonemes in L2
learner’s utterance has been assessed using the models built from expert’s data. For
this, the temporal structures in the pitch over the entire sentence are considered which,
in turn, could represent intonation class dependent variabilities in the tone sequence.1,2

It has been shown that the intonation also depends on the linguistic patterns like sylla-
ble stress;1,2 however, in this work only the pitch patterns are exploited for the intona-
tion classification task. Most of the existing works have studied the variations of into-
nation across different nativities.3 However, a few works have addressed the problem
of intonation assessment of L2 learners.5–7

Li et al.7 have classified the intonation using two manually annotated tones,
namely, a tone at the final pitch accent and an edge tone instead of considering an
entire tone sequence. Ke and Xu6 have assessed the L2 learners’ intonation by compar-
ing the tone duration based features from their pitch contour with those from experts’
pitch contour. However, the manual annotation is not possible to do on a learner’s
utterance in an automatic assessment task. Thus, the tone labels need to be estimated.
However, the tools available for estimating the tones are very limited and also errors
in the tone estimation could cause degradation in the classification accuracy. In con-
trast to using tones, Arias et al.5 have assessed the L2 learners using original pitch con-
tours from learners and experts. However, it cannot be extended to the case of
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spontaneous speech where the learners’ utterances are different from those of experts.
Further, all the existing studies on the intonation assessment do not exploit the intona-
tion dependent temporal structures in the pitch contour or tone sequence of the entire
utterance.

In contrast, in this work an automatic BE intonation classification is per-
formed which has three key aspects: (1) temporal structures in the utterance-level pitch
contour are considered and modeled using hidden Markov models (HMMs), (2) a
transformed pitch contour is used instead of the original pitch, for which frequency
transformations (FTs) are considered that approximate the perceptual properties of the
ear, and (3) a three-dimensional (3D) feature sequence is proposed using the trans-
formed pitch. Experiments are performed on the speech data collected from a spoken
English training material for teaching BE intonation.2 Among all FTs in the proposed
scheme, the highest absolute improvement in the unweighted average recall (UAR)
over the baseline scheme is found to be 30.53%. The highest UAR is also found to be
13.56% more than the UARs obtained, respectively, without considering the FT indi-
cating the benefit of the proposed FT.

2. Database

In this work, the speech data are considered from a spoken English training material2

used for teaching BE. The entire speech recording is considered that contains all the
utterances of intonation phrases belonging to intonation lessons for our experiments.
The entire speech recording is manually segmented into individual speech files belong-
ing to every utterance. Further, the annotated text transcriptions are obtained along
with the respective intonation class label for each utterance. In the speech data, the
total number of utterances is 233 out of which 50, 68, 82, and 33 belong to Glide-up,
Glide-down, Dive, and Take-off intonation classes, respectively. The entire speech data
considered in this work has been spoken by one male and one female native BE
speaker. To the best of our knowledge, there is no larger speech data that has these
four intonation class labels annotated by experts. This could be because recording and
labeling of such corpora require highly trained specialists, which, in turn, limit the size
and the availability of such corpora.

3. Proposed approach

The block diagram in Fig. 1 describes the three major stages involved in the proposed
approach. The first stage extracts pitch p(t); 1� t�T in the tth frame of the speech sig-
nal and a confidence score in estimating the pitch,8 where T is the total number of
frames. The second stage computes a feature sequence, f(t), using p(t) and the confi-
dence scores in four steps. In the first step, the original pitch contour is transformed
using one of the three FTs, namely, equivalent rectangular bandwidth (ERB), bark,
and Mel to obtain transformed pitch /(t).

In the second step, the range of the confidence score is normalized for each
utterance separately such that it spans between 0 and 1, referred to as normalized score
sequence s(t). In the third step, utterance specific mean and range normalization of
/(t) is performed using s(t) to obtain frequency transformed normalized pitch contour
/n(t). In the fourth step, a 3D feature sequence f(t) is obtained by concatenating the
/n(t), s(t), and first order differentiation of /n(t). However, in the unvoiced regions,
/n(t) values are interpolated from /n(t) in the voiced regions. Since the interpolated
values are not obtained directly from a pitch estimation technique, the s(t) values are
set to zero in those regions. The third stage estimates class conditional probabilities
[pðf jCÞ] using HMM. The HMMs are trained for each intonation class C and the
parameters are optimized on the development data. The class conditional probabilities
are compared from each model with the 3D feature from a test utterance and the class
with the highest probability is considered as the estimated intonation class Ĉ .

Fig. 1. (Color online) Block diagram summarizing the stages involved in the proposed approach.
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3.1 Frequency transformed normalized pitch /n(t)

Typically, the intonation classes are dependent on the dynamic information in the
pitch contour and their associated temporal structures. Pitch frequency and its dynam-
ics are, in general, speaker specific. Hence, the original pitch without the speaker spe-
cific normalization could have a large variation within every intonation class, which is
not desirable for high classification accuracy. Thus, across all the classes, it is ensured
that /n(t) has a similar range using the following utterance specific mean and range
normalization:

/nðtÞ ¼
~/ðtÞ

max
t

~/ðtÞ
� �

�min
t

~/ðtÞ
� � ; (1)

where ~/ðtÞ ¼ /ðtÞ � l/ðtÞ; /ðtÞ is the frequency transformed pitch, and

l/ðtÞ ¼ ½
PT

t¼1sðtÞ/ðtÞ=
PT

t¼1sðtÞ�. One of the obvious choices for /(t) can be the original
pitch p(t) without any FT, which is equivalent to having transformation of the pitch
uniformly across all the pitch frequencies. However, in general, the perception of the
pitch is not uniform across the pitch frequencies due to non-linearities in the auditory
system. Considering this, in the literature several FTs have been proposed to capture
the non-linearities, for example, ERB, bark, and Mel. The respective transformations
are ERB: /ðtÞ ¼ 21:4� log10½1þ 0:00437pðtÞ�, bark: /ðtÞ ¼ 26:81pðtÞ=1960þ pðtÞ,
Mel: /ðtÞ ¼ 2595� log10½1þ 0:0014pðtÞ�. It is observed that the features obtained from
the frequency transformed pitch are less dependent on the factors that are not discrimi-
native across intonation classes.

3.2 Feature computation

The dynamics in the intonation patterns are represented using a 3D feature vector
sequence f(t) and their temporal dependencies are modeled using HMM in each utter-
ance. In order to obtain the feature sequence, the first dimension is considered as the
values of /n(t), referred to as the static feature. The second dimension represents the
values obtained from the first order difference of the static features [at t and (t� 1)th
frames] for each tth frame, referred to as the D feature. It has been hypothesized that
augmenting D features to the static features would provide better temporal dependent
cues for time series modeling, for example, with HMMs. It is observed that adding a
higher order difference does not improve the performance and, hence, they are not
considered. The third dimension represents the score indicating the confidence in esti-
mating the pitch contour. Due to normalization, the score sequence s(t) lies between 0
and 1.

The benefit of s(t) as a feature. Typically, the pitch estimation techniques are
not robust in estimating the pitch in all parts of the sentence. In general, they are
prone to halving and doubling errors, which, in turn, could cause errors in the classifi-
cation task. However, these techniques provide a score, referred to as the confidence
score, whose values are proportional to the accuracy of the estimated pitch. Thus,
using the confidence score as a feature could provide a benefit in the classification task.
This is illustrated with the help of Fig. 2 using two exemplary sentences belonging to
the intonation class “Glide-down.” Figures 2(a) and 2(b) show two pitch contours and
their associated s(t) profiles. In the examples there is no unvoiced segments except at
the beginning and at the end of the utterances, where both the values of pitch and s(t)
are zero. From the inset in Fig. 2(a), it is observed that the pitch rises after the fall (a
high to low value) at the 45th frame index, which is against the Glide-down property.
On the other hand, in Fig. 2(b), the pitch contour matches well with the Glide-down

Fig. 2. (Color online) Illustrative examples of Glide-down class describing the benefit of s(t) for intonation clas-
sification task. p(t) shows the original pitch contour with the range normalization.
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property. From both the figures, it is interesting to observe that the confidence scores
are lower in the inset of Fig. 2(a) (where erroneous pitch rise is present) compared to
those in the inset of Fig. 2(b). It is also observed that the confidence scores in the inset
of Fig. 2(b) are above 0.5. The observations from both the figures indicate that the
confidence scores could add complementary properties to the pitch based features for
intonation classification task.

3.3 Interpolation at unvoiced regions

In general, pitch confines to the voiced regions only; hence, the estimated pitch contour
in an unvoiced region does not contain any meaningful information related to the into-
nation. However, Xu and Prom-On9 have hypothesized that the dynamics involved in
producing pitch in a voiced region are unchanged in the following unvoiced region.
Based on the dynamics, they also suggested that the pitch contour of a voiced region
can be extended into the following unvoiced region. However, the suggested computa-
tion is complex and involves many parameters, which are required to be learned from
a reasonably large amount of data. In order to obtain values in the unvoiced regions,
in this work, due to the limited data size, pitch values are interpolated in those regions
considering the estimated pitch values in all voiced regions of an utterance using three
interpolations, namely, linear, cubic, and spline.

3.4 HMM based classifier

HMM is one of the time series models which can model the temporal dependencies in
feature sequences effectively. In the recent past, long short-term memory recurrent net-
works have been used for the time series modeling, however, these require a large
amount of data for training. In this work, due to limitation on the data size, a HMM
is considered to learn the temporal structures for each intonation class separately using
the 3D feature vector sequences. In general, after the training, each class specific
HMM results in a higher likelihood under matched conditions compared to the
HMMs of mismatched intonation classes. With this hypothesis, for a test sentence the
intonation class is estimated using two steps. First, class conditional probabilities are
computed using each class specific HMM, following which the class with the highest
class conditional probability is considered as the estimated intonation class. The num-
ber of states in each class specific HMM is learned during the training on development
data by varying the number states from 3 to 5. Each HMM state is considered with
four component Gaussian mixture model and a diagonal covariance for each mixture
component.

3.5 Experimental setup

UAR, which is the average of each class recall,10 is considered the performance mea-
sure to evaluate the classification accuracy. Experiments are conducted in a tenfold
cross validation setup where eightfolds are used for training, onefold for development,
and onefold for testing in a round robin fashion. The SWIPE algorithm is used to esti-
mate pitch and obtain confidence scores.8 Class specific HMMs are implemented using
the HTK toolkit.11 For comparison, the work proposed by Li et al.7 is implemented
and considered as a baseline. Li et al. have used manually annotated tone labels
belonging to the final pitch accent and the following edge tones as the features. In this
work, the pitch accents and tones are estimated using automatic tone and break indices
(AuToBI) tool,10 which requires syllable transcriptions. Syllable transcriptions are
obtained by performing automated syllabification12 on the phone transcriptions
obtained from force alignment employing the Kaldi speech recognition tool kit.13

3.6 Results and discussion

The mean and standard deviations (SDs) of UARs are reported that are computed
across all the tenfolds on the test set. First, the performance of the proposed method is
discussed with /n(t) and /(t) under the three interpolations. Next, considering the /n(t)
with the interpolation that provides the best UAR, the performance of the proposed
method is analyzed with the baseline scheme. The mean UARs averaged across all
three FTs are found to be 60.06% and 55.29%, 55.34% and 54.90%, and 55.44% and
52.25% with /n(t) and /(t), respectively, under three interpolations. From these values,
it is observed that the average UAR values are higher when the mean and range nor-
malization is considered under all three interpolations. This indicates that normaliza-
tion of the transformed pitch improves the classification performance. It is also
observed that the average UAR values with and without normalization are the highest
under linear interpolation among all three interpolations. This indicates that the varia-
bilities in the higher order interpolations cause unwanted variations, and hence result

C. Yarra and P. K. Ghosh: JASA Express Letters https://doi.org/10.1121/1.5080466 Published Online 30 November 2018

EL474 J. Acoust. Soc. Am. 144 (5), November 2018 C. Yarra and P. K. Ghosh

https://doi.org/10.1121/1.5080466


in lower UARs. Further, the performance of the proposed method is analyzed using
/n(t) with linear interpolation.

Table 1 shows the mean (SD) of UARs on the test sets for all three FTs and
four feature combinations: (1) /n(t); (2) f/nðtÞ; sðtÞg; (3) f/nðtÞ;D/nðtÞg, and (4) pro-
posed 3D feature set f/nðtÞ;D/nðtÞ; sðtÞg using the linear interpolation. The mean (SD)
of UARs using baseline is 31.24% (5.96%) across all tenfolds on the test sets. From
Table 1 it is observed that the UARs obtained using the baseline are found to be lower
than that using the proposed method under all combinations of the FTs and feature
combinations. The improvements in the performance of the proposed method over the
baseline suggest that for the intonation classification task, it would be beneficial to
consider the temporal structures in the transformed pitch contour across the entire
utterance compared to the tones at the end of the utterance. The lower UAR in the
baseline scheme could also be due to the tone estimation errors; however, currently
there is no readily available automatic tool which provides more accurate tone estima-
tion than the AuToBI. It is also observed that the averaged mean UARs are the lowest
in all four feature combinations when no FT is used. This indicates that the FT is
helpful for the intonation classification.

From Table 1 it is interesting to observe that the classification accuracies in
the second and fourth rows are higher than those in the first and third rows, respec-
tively. This indicates that the performance of the proposed approach is improved by
considering the confidence score in the feature sequence. Similarly, higher classification
accuracies in the third and fourth rows compared to those in the respective first and
second rows show the benefit of the D feature for the intonation classification task. In
the proposed method the highest accuracy (indicated in bold) is found with the 3D fea-
ture sequence computed using the Mel FT. This could be because the Mel FT has
been derived from the perceptual experiments on the pitch frequencies unlike bark and
ERB FTs, which are based on the properties of critical bands in hearing.

4. Conclusion

Utterance-level temporal structures are modeled for the BE intonation classification
task using HMM, for which a 3D feature sequence is proposed from the pitch contour.
The pitch contour is obtained by transforming the original pitch using ERB, bark, and
Mel scales. Experiments with the spoken English training material with four intonation
classes reveal that the proposed scheme improves the UAR compared to the baseline
scheme, which shows the benefit of the utterance-level temporal patterns, FT, and the
proposed 3D feature. Further investigations are required to develop a better feature
sequence that could result in an improved UAR under typical halving and doubling
errors in the pitch estimation. Future works also include the use of linguistic features
in addition to the 3D feature sequence for improving the classification performance.
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