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ABSTRACT

Spoken language training benefits from showing a video of native
speakers’ articulatory movements to train the second language learn-
ers. Typically, the articulatory video is prepared in conjunction with
the audio which is collected simultaneously with the articulatory
recording. Articulatory video recording requires specialized equip-
ment and, hence, is expensive and time consuming. In this work,
we propose a concatenative synthesis approach to obtain articula-
tory videos for an audio, which may not have a simultaneous artic-
ulatory recording. In the training stage of the proposed approach,
we make a repository for phoneme specific articulatory image se-
quence from the available articulatory video. During testing, image
sequences are selected from this repository to ensure a smooth tran-
sition across phonetic events. The selected image sequences are fi-
nally stitched to synthesize the articulatory video for the test audio.
Articulatory videos are synthesized for 50 words randomly selected
from the MRI-TIMIT database, not seen in the training data. Subjec-
tive evaluation on the quality of the synthesized videos using twelve
subjects suggests that the videos are close to the original ones with a
rating of 3.78 out of 5, where a score of 5 (1) indicates that there is no
(great) difference in quality between the original and the synthesized
videos.

Index Terms— Articulatory video synthesis, spoken language
training, concatenative synthesis, real-time MRI videos

1. INTRODUCTION

The pronunciation of the second language (L2) learners, especially
spoken English learners, is often effected by several factors [1] [2]
[3] that are influenced by their nativity. This happens mainly be-
cause the articulatory movements during speaking English are dom-
inated by the articulatory constraints from the speaker’s native lan-
guage [4]. For example, the Tamil people articulate ‘/t”/’ in place
of ‘/th” /’, since they do not have aspiration in their native language
sounds [4]. It is known that an incorrect phoneme articulation would
result in miscommunication [5] [6]. Thus, in L2 training, for ex-
ample, while learning English, L2 learners need to overcome the
influence of their native articulatory gestures in order to have cor-
rect articulation while speaking English. It is also known that the L2
learners benefit from a video that shows correct articulation [5] [6].
Such video based feedback are often useful in the applications like
computer assisted language learning (CALL). There are a number of
reported results, that have shown that the visualization of the correct
(from native speakers, we refer to as experts) articulatory movements
helps in the pronunciation training [5] [6] [7] [8] [9] [10]. In most
of the cases, experts’ articulatory movements are captured using
real-time motion capture techniques simultaneously with their au-
dio [11] [6] [12] [13]. Further, the articulatory movements, referred
to as articulatory video, are added with an augmented reality along
with experts’ audio to obtain a final video, referred to as augmented
articulatory video (AA-video), for the training [8] [6] [14] [15] [16].

Pierre et al. have used the data from electro-magnetic articu-
lography (EMA) to construct an AA-video [7]. In addition to EMA

data, they have also used one or more combinations of data from
computed tomography (CT), ultrasound imaging and magnetic res-
onance imaging (MRI) to obtain a better augmented reality in con-
structing the AA-videos [8]. Similarly, for creating the AA-videos,
Engwell et al. have used the combined data from ultrasound imaging
and EMA [10]. In a few works, the AA-video is created directly with
the articulatory video from ultrasound imaging technique and with
an augmented reality [9] [16] [14]. Similarly, Bernd et al. have con-
structed the AA-video with the articulatory video from MRI with an
augmented reality [17]. In constructing the AA-videos, most of the
existing works have used an expert from whom both audio and ar-
ticulatory motion have been recorded. Hence, these techniques have
a limitation in using an arbitrary experts’ audio from whom direct
articulatory measurement is not available. In addition, the data ac-
quisition methods used in all of these techniques require specialized
equipment, which is time consuming and expensive [18]. Hence,
it becomes challenging to collect articulatory data for a large set of
stimuli from multiple experts.

Various articulatory data acquisition methods have their own ad-
vantages and disadvantages [18]. The CT method has good temporal
and spatial resolution and captures pharyngeal structures. Hence, it
is the most suitable modality for creating AA-videos. However, its
main disadvantage is that it exposes the subject to radiation. Simi-
larly, EMA has a high temporal resolution but it only tracks a few
sensors placed on the articulators, thus lacking a complete view of
the vocal tract. It cannot also capture pharyngeal structures. In the
absence of a complete mid-sagittal view, EMA based video may not
be effective for L2 learners. In addition, Meenakshi et al. have
shown that due to the presence of EMA sensors in the vocal tract,
the audio during EMA recording differs significantly from the natu-
ral voice of the subject [19]. To circumvent these limitations, most
of the works have used ultrasound and rt-MRI method, which are
non-invasive and safe [18]. The ultrasound imaging has high tempo-
ral resolution and detects only first air-tissue boundary and, hence,
is not suitable for anterior tongue tip and lip imaging. On the other
hand, the rt-MRI captures pharyngeal structures and, hence, reduces
the effort in augmented reality. Even without augmented reality, it is
easy to notice the articulators in an rt-MRI video. Thus, there is flex-
ibility in using rt-MRI modality directly for L2 training. However,
rt-MRI recording setup is expensive and also provides a relatively
poor spatial and temporal resolution [13]. But, depending on the
frame rate, it could be suitable to create an AA-video since a min-
imum frame rate of 15 frames per second is good enough for such
purpose [20].

In this work, we propose an automatic articulatory video synthe-
sis method corresponding to an arbitrary expert’s audio even though
direct articulatory measurements may not be available for the ex-
pert. It should be noted that, in the proposed method, audio is not
synthesized rather taken from an expert and the corresponding image
sequence for the video is synthesized. Similar to this problem, au-
diovisual synthesis approaches have been addressed in the literature
for synthesizing the movements of visible articulators (when look-
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ing at a speaker’s face) such as the lips and the cheeks [21]. How-
ever, synthesis of other articulatory movements such as the tongue
and the velum is challenging and has been less explored [22] [23].
This is due to the challenges involved in the collection of such ar-
ticulatory data [22]. In the audio visual synthesis, the video syn-
thesis approaches are typically inspired by speech synthesis tech-
niques among which the popular ones are – concatenative and statis-
tical parametric approaches [21]. Among these two, concatenative
synthesis is commercially used in many systems [22]. In addition,
the quality of the synthesized signal obtained from the statistical ap-
proaches depends on the training data size, typically, requiring rea-
sonably large amount of data [24]. In general, the articulatory data
corpora are less in size [13], hence, we, in this work, use concatena-
tive synthesis approach for the articulatory video synthesis.

Given an audio, in order to synthesize a corresponding video,
we obtain phonetic boundaries in the audio using forced-alignment.
Further, we find the best representative image frames (IFs) for each
phoneme in a given context as well as maintain smoothness across
video frames. This, in turn, demands that the available corpus be rich
with phoneme in different contexts. For this purpose, we use MRI-
TIMIT [13], which consists of rt-MRI videos of subjects speaking
phonetically balanced sentences. Finally, we interpolate the selected
IFs to synchronize with the audio and concatenate the interpolated
IFs by stitching operation at the boundary. We evaluate the synthe-
sized video quality subjectively using a set of 12 raters and 50 words
randomly from the MRI-TIMIT data. The average quality rating is
found to be 3.78 out of 5 when the raters rate the synthesized video
quality with respect to the corresponding original video.

2. REAL-TIME MRI (rt-MRI) DATABASE

MRI-TIMIT is a phonetically rich database comprising rt-MRI
videos, i.e., rt-MRI data with synchronized audio. The rt-MRI data
is primarily an IF sequence of the mid-sagittal view of a speaker
speaking an utterance. The rt-MRI data was captured at a frame
rate of 23.18 frames per second with an image resolution of 68×68
pixels in gray scale. The audio was simultaneously recorded with rt-
MRI data at a sampling frequency of 20kHz inside an MRI scanner
using a fiber-optic microphone. The data was collected from two
male and two female speakers of American English speaking 460
TIMIT sentences. Along with the videos, text stimuli are available
for all utterances. Among the four speakers, we consider data from
one female speaker for our experiments and extract audio from the
rt-MRI video of each utterance using FFmpeg. We estimate phonetic
transcriptions and its aligned boundaries using forced-alignment im-
plemented using the Kaldi tool kit [25] considering deep neural
network based acoustic models (Karels’ implementation) learnt
from the fisher English [26] data. In the forced-alignment, we use
a lexicon obtained by combining the CMU [27] and TIMIT [28]
pronunciation dictionaries. From the data, it is also observed that
the total number of unique phones is 40.

3. PROPOSED APPROACH

Block diagram in Figure 1 shows the three steps involved in the pro-
posed video synthesis. In the first step, we construct a phoneme
specific IF sequences (PSIFS) repository V using a training artic-
ulatory data for the set (Q) of all the phonemes in a given con-
text, where Q = {Q(1), Q(2), . . . , Q(M)} is a collection of all
the context dependent phonemes, whose total count is M , in the
training set in which Q(i) is i-th context dependent phoneme. V =
{VQ(1),VQ(2), . . . ,VQ(M)} in which VQ(i) is a collection of

∣∣VQ(i)

∣∣
PSIFS, where V k

Q(i) = {V k
Q(i)(l), 1 ≤ l ≤ Nk

Q(i)} denotes the
k-th PSIFS belonging to Q(i) and Nk

Q(i) =
∣∣V k
Q(i)

∣∣, the cardi-

nality of V k
Q(i). V k

Q(i)(l) is the l-th image frame of 68×68 pix-
els in the k-th PSIFS for Q(i). In the second step, given a test
audio and its text, we apply forced-alignment to obtain phonetic
boundaries. From this, we obtain a context dependent phoneme set
P = {P (1), P (2), . . . , P (N)} and the corresponding durations
{dP (1), dP (2), . . . , dP (N)} for each P (i), whereN is the total num-
ber of forced-aligned phonemes in the test audio and P ⊆ Q. Using
P and V , we find the best PSIFS V̂P (i) for each P (i) using a dy-
namic programming (DP) approach by ensuring maximum smooth-
ness across the selected PSIFS. In the third step, we interpolate the
selected PSIFS V̂P (i) to synchronize with its corresponding duration
dP (i). Following this, we perform stitching between two boundary
IFs of the PSIFS of every two consecutive phonemes. Finally, we
combine the audio to obtain a synthesized video.

Fig. 1. Block diagram illustrating the steps involved in the proposed
approach for video synthesis.

3.1. Phoneme specific image frame sequences (PSIFS) reposi-
tory
Given time-aligned phoneme transcriptions of an utterance and its
respective articulatory data in the training set, we obtain context de-
pendent phonemes and corresponding durations. Following this, we
compute start and end IF locations in the articulatory data for every
context dependent PSIFS. Let x be a start or end time of a context
dependent phoneme, then its respective start or end IF index is com-
puted as dx×Fe, where F is the video frame rate and dxe is the
lowest integer higher than x. Figure 2 illustrates the computation of
IF indices for an exemplary word ‘sell’ from the rt-MRI data. The
word has three phonemes ‘/s/, /e/, /l/’. As the end time of a phoneme
is identical to the start time of next phoneme, from the figure, it is ob-
served that the start IF indices of PSIFS for the phonemes ‘/e/’ and
‘/l/’ are identical to the end IF indices of PSIFS for the phonemes
‘/s/’ and ‘/e/’ respectively.

Fig. 2. An example word ‘sell’ illustrating the preparation of PSIFS
repository.

3.2. PSIFS selection
Given an expert audio’s P = {P (1), P (2), . . . , P (N)}, we find
the best PSIFS V̂P (i) for each P (i) to ensure smoothness across the
selected PSIFS. Since the PSIFS are obtained from the original nat-
urally recorded rtMRI video, we assume that the smoothness within
the selected PSIFS is automatically ensured. Thus, we use a cost
function that minimizes the discontinuities at the boundaries of the
selected PSIFS given by,{

V̂P (i),
1≤i≤N

}
= argmin
VP (i)∈VP (i)

∀i∈{1:N}

∑
i

D
(
VP (i)(NP (i)), VP (i+1)(1)

)
(1)
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where, D (A,B) is the Frobenius norm [29] between two IFs A and
B. We assume that the cost function D ensures smoothness across
frames in the synthesized video. The optimization problem is solved
using DP. The detailed steps for solving (1) are provided in Algo-
rithm 1.

Algorithm 1 PSIFS selection using DP. Input: P =
{P (1), P (2), . . . , P (N)}, V = {VP (1),VP (2), . . . ,VP (N)}. Out-
put: V̂P (i), 1 ≤ i ≤ N

1: Initialization: TP (i) =
∣∣VP (i)

∣∣ ;C1(r) = 0 ∀ r ∈ {1 : TP (1)}
2: for each phone index i from 2 to N do
∀ r ∈ {1 : TP (i)}
Ci(r) = min

j∈{1:TP (i−1)}

{
Ci−1(j) + D

(
V j

P (i−1)
(NP (i−1)),V

r
P (i)(1)

)}
ki(r) = argmin

j∈{1:TP (i−1)}

{
Ci−1(j) + D

(
V j

P (i−1)
(NP (i−1)),V

r
P (i)(1)

)}
3: end for
4: Back tracking: ηN = argmin

r∈{1:TP (N)}
{CN (r)} , V̂P (N) = V ηN

P (N)

5: for each frame i from N − 1 to 1 do
ηi = ki+1(ηi+1), V̂P (i) = V ηi

P (i)

6: end for

3.3. Video creation
3.3.1. Interpolation
The duration of the selected PSIFS for P (i) may not match with the
duration of the test expert’s audio, i.e., dP (i). Hence, we propose
an interpolation technique to alter the length of V̂P (i) accordingly.
The interpolation is done in two steps. In the first step, the required
number of frames N̂P (i) belonging to P (i) is computed as

N̂P (i) =

⌈(
i∑

j=1

dP (j)

)
×F −

i−1∑
j=1

(N̂P (j) − 1)

⌉
(2)

In (2),
(∑i

j=1 dP (j)

)
is the total time at the end of P (i) and∑i−1

j=1(N̂P (j) − 1) is the total number of frames constructed in
synthesized video before P (i). The −1 in (2) is due to merging of
two boundary (discussed in the next section) IFs of PSIFS to one
frame at the boundary of every P (i).

Equation (2) has an advantage compared with an alternative
computation of N̂P (i), directly from dP (i) as N̂P (i) =

⌈
dP (i) ×F

⌉
unlike the cumulative sum in (2). It is easy to show that, in an ut-
terance, the total rounding error in (2) due to the d.e operation is
lesser than that in the above mentioned alternative computation.
This is because, in the alternative computation, the error occurs at
the end of each phoneme and it is accumulated N times at the end
of the utterance. However, in (2), the error occurs only at the end of
the utterance and it is

∣∣∣(∑N
i=1(N̂P (i) − 1)

)
×F −

∑N
i=1 dP (i)

∣∣∣,
referred to as δ. To compensate for this error, we add silence of
δ duration at end of the test experts audio. This, in turn, removes
the mismatch between the duration of the audio and that of the
synthesized video.

In the second step, we convert NP (i) values at each pixel loca-
tion in the selected PSIFS V̂P (i) to N̂P (i) values using linear inter-
polation technique. Hence, we obtain of total of N̂P (i) frames in the
interpolated PSIFS V̂ IP (i). Figure 3 shows V̂P (i) and V̂ IP (i) of the
phonemes ‘/s/,/e/,/l/’ in the word ‘sell’ as chosen in Figure 2. From
the figure, it is observed that the total number of IFs in V̂P (i) are 3,
3 and 4 for ‘/s/,/e/,/l/’ phonemes and their respective N̂p(i) are 2, 3

and 3. It should be noted that, after interpolation, the start and end
IFs in the V̂ IP (i) are kept identical to those in the V̂P (i).

N̂/s/ = 2 N̂/e/ = 3 N̂/l/ = 3 δ

Fig. 3. An illustrative example explaining the PSIFS interpolation
and video stitching for the word ‘sell’.
3.3.2. PSIFS boundary IF stitching
We assume that the first and last IFs in the selected PSIFS for a
phoneme corresponds to the transitions to the neighboring phonemes.
In this work, we consider the IF corresponding to a inter-phoneme
transitions from two boundary IFs of two consecutive phonemes and
stitch them using function f . For this, in V̂ IP (i), we consider the
start and end IFs as representative of the transition from P (i − 1)
to P (i) and from P (i) to P (i + 1) respectively. For example, in
Figure 3, the start IF of V̂ I/e/ and the end IF of V̂ I/s/ are considered
to represent the same inter-phoneme transition i.e., from ‘/s/’ to ‘/e/’
and on those IFs, the stitching function f is applied. We choose
the function f as the average of two corresponding pixels in these
two IFs. We hypothesize that the average would result in smooth
phoneme transition in the synthesized video.

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup
The rt-MRI videos of 460 sentences from one of the female subjects
is used for the experiments. For the evaluation, we synthesize the
videos for a random set of 50 words, which occur only once in the
entire corpora. We consider the audio in the rt-MRI videos of the test
words as the test expert’s audio for the synthesis. While the expert’s
audio can be taken from any other subject, in this work, those are
chosen from the rt-MRI videos. This is done to ensure that during
evaluation, the ground truth rt-MRI video is available for each test
audio. We perform the synthesis under mono-phone context, i.e., M
is the total number phonemes in the corpus. In creating the PSIFS
repository, we consider all the utterances in the corpora excluding
the utterances containing those 50 words used for evaluation.

Fig. 4. Graphical user interface (GUI) used in the subjective evalua-
tion.

As the mid-sagittal view of the subject does not have the same
orientation in all videos, we perform required image translation and
rotation to ensure that the mid-sagittal view in all video frames have
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Fig. 5. Average ratings obtained across all the evaluators for each word; the blue colored numbers indicate the average rating across all the
evaluators and all the words for a given number of phonemes in a word.

identical orientation. For this, we randomly select an image frame
as a reference image and rotate the remaining image frames to have
the same orientation as in the reference image. Following this, we
compute an angle of rotation and translation vector based on the lines
joining the bottom nose point and the lower jaw point considering the
nose point on the reference image as the reference point.
4.2. Subjective evaluation
We conduct the subjective evaluation using a set of 12 evaluators (6
males and 6 females). The evaluators are in the age group of 20 to
33 years with an average age of 23.58 years (±3.60). The evalua-
tors are undergraduate and graduate engineering students. None of
the evaluators has any vision problems. All the evaluators can read,
write and speak English fluently.
4.2.1. Description of the evaluation set-up
In the evaluation, we present original and synthesized videos for ev-
ery word to the evaluator in the context of previous and next words.
For this, in the original video containing previous, target and next
words, we replace the target word’s video segment with its synthe-
sized video. Hence, it helps in quantifying the quality of the syn-
thesized video at the word boundaries. The average duration of the
videos used for evaluation is found to be 1.29 seconds (±0.39) and
all the evaluators found the duration of the words to be comfortable
for evaluation. We ask the evaluator to rate the presented videos
using the following five categories:
• Poor: There is a great difference between the quality of the

synthesized and the original videos. Score is 1.
• Fair: There is a moderate difference between the quality of

synthesized and the original videos. Score is 2.
• Good: There is a slight difference between the quality of syn-

thesized and the original videos. Score is 3.
• Very good: There is no significant difference between the

quality of synthesized and the original videos. Score is 4.
• Excellent: There is no difference between the quality of syn-

thesized and the original videos. Score is 5.
This evaluation is done using a graphical user interface (GUI) devel-
oped using MATLAB R2015a as shown in Figure 4. It allows the
evaluator to play the original video and the synthesized video sepa-
rately as many times as he/she wants. The GUI displays the target
word transcription including its previous and next words. The GUI
provides radio buttons for obtaining the evaluator ratings. The GUI
also displays the progress of the evaluation. To know the consistency
of the evaluator, we randomly repeat 5 synthesized videos. All the
evaluators are found to have more than 60% matching in the ratings
of the repeated words.
4.2.2. Results and discussion
From the evaluator ratings, it is found that the quality of the synthe-
sized videos is 3.78 (±1.07) when averaged across all the 12 eval-
uators and all 50 stimuli. This indicates that the quality of the syn-
thesized videos is not significantly different from that of the origi-
nal video. Figure 5 shows the average rating across the evaluators

for each word with respect to the number of phonemes in a word.
From the figure, it is observed that the highest average rating is 4.36,
which occurs for the word “broke”, which has 4 phonemes. Sim-
ilarly, the least average rating is 3.09 for the words “crisscrossed”
and “understanding”, which have 9 and 12 phonemes respectively.
Figure 6 shows the synthesized video frames corresponding to the
word “broke”, which has four frames.

Fig. 6. Four synthesized video frames corresponding to the word
’broke’(/b/,/r/,/oU/,/k/) which has the highest rating among all 50
words used.

From Figure 5, comparing average ratings for every number of
phonemes per word, it is also observed that the ratings do not di-
rectly depend on the number of phonemes in a word. However, the
number of phonemes averaged across the words with less than and
greater than 3.78 (overall average) is found to be 5.7 and 6.8 re-
spectively. This indicates that, on an average, the words with more
phonemes have lower quality. This is because the words containing
more phonemes have more boundaries to smooth and, hence, could
result in more disruptions in the videos. In general, there could be
cases where the target phoneme duration is largely different from the
selected PSIFS phoneme duration. With large number of phonemes
in a word, such large deviations is more likely to occur.

5. CONCLUSIONS

We propose a method to synthesize an articulatory video for an
audio, for which the articulatory data is not available. The proposed
method, is based on concatenative synthesis approach, in which,
a PSIFS repository is created for every phoneme in the training
data. Given an audio, we find the best representative PSIFS for
each phoneme in a given context to maintain smoothness across the
boundaries. Following this, we synchronize each selected PSIFS
with its respective audio and apply image stitching at the PSIFS
boundaries. Experiments with MRI-TIMIT containing rt-MRI
videos, following subjective evaluation, reveal that the quality of
the synthesized video is close to that of the original video. Further
investigations are required to develop better techniques for image
stitching as well as for PSIFS selection and interpolation.
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