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Abstract
Parkinson’s disease (PD) affects both source and vocal tract
components of speech. Various speech cues explored in liter-
ature for automatic classification of individuals with PD and
healthy controls (HC) implicitly carry information about both
these components. This work explicitly analyzes the contribu-
tion of source and vocal tract attributes toward automatic PD
vs. HC classification, which has not been done earlier to the
best of our knowledge. Here fundamental frequency (fo) is used
to capture source information. For quantifying vocal tract in-
formation, speech waveforms are converted to unvoiced forms
and mel-frequency cepstral coefficients (MFCC), denoted by
voicing-removed MFCC, are obtained from them. Experimen-
tal results suggest that (1) the relative merit of source and vo-
cal tract cues in classifying PD vs. HC largely depends on the
speech task being considered, (2) both cues complement each
other across all tasks, (3) while MFCC encodes both source
and vocal tract features, source information captured by fo is
different and further complements MFCC when the classifiers
are trained and tested under clean or matched noise conditions,
thereby enabling the feature-level fusion of fo and MFCC to
achieve the best classification accuracy, (4) under unseen noise
conditions, fo alone proves to be a highly noise-robust feature.

Index Terms: Parkinson’s disease, source, vocal tract, funda-
mental frequency, mel-frequency cepstral coefficients

1. Introduction
According to the source-filter model [1], speech is produced
by passing a source signal through a filter. The glottal and/or
supra-glottal excitation acts as the source and the vocal tract
constitutes the filter. Major components of human vocal tract in-
clude oral cavity, nasal cavity, pharynx, and larynx. For voiced
sounds, the source is predominantly quasi-periodic with mini-
mal aperiodic components which are responsible for the natu-
ralness of speech [2]. In case of unvoiced sounds, the source
is essentially a colored noise. This source signal when passed
through the vocal tract undergoes changes in its spectral char-
acteristics and results in the speech waveform.

Parkinson’s disease (PD) affects speech production in about
90% of the patients even in the early stages [3]. Deficit of the
neurotransmitter dopamine in basal ganglia caused by PD ham-
pers coordinated and smooth muscular control. The muscles
responsible for speech production are reported to be highly af-
fected by this disease typically leading to hypokinetic dysarthria
[4]. Impairments are observed in both source and vocal tract
attributes of speech. Signs like monopitch, monoloudness, low
voice intensity, and reduced fundamental frequency range [3, 5],
as observed in PD, characterize the impact on source compo-

nent. On the other hand, imprecise articulation, voice nasality
and increased acoustic noise [5] primarily account for the dys-
functions associated with the vocal tract. This work attempts to
compare the source and vocal tract characteristics in patients af-
fected by PD and analyze how they contribute individually and
in combination toward automatic classification of individuals
with PD and healthy controls (HC).

Literature Review: Several speech cues have been ana-
lyzed in the literature as potential bio-markers for speech-based
automatic PD vs. HC (PD/HC) classification. To our knowl-
edge, all the already explored feature sets implicitly encode
information about both the source and the vocal tract compo-
nents of speech. No known work has yet been done to ex-
plicitly study these two components in the context of PD/HC
classification. Mel-frequency cepstral coefficients (MFCC) and
log mel spectrograms, indicative of the spectral characteristics
of speech, have been explored in [6] and [7], respectively, for
PD/HC classification. Along with MFCC, Khan et al. [8] has
employed cepstral separation difference to quantify phonation
characteristics and spectral dynamics together with fundamen-
tal frequency (fo) variation to capture respiration and prosodic
properties for PD severity assessment. In [9], pitch and MFCC
have been compared under the influence of background noise
and the constraint of low complexity classifier. Various dys-
phonia measures including fo, jitter and shimmer measures,
noise-to-harmonics ratio, pitch period entropy, have also been
explored for identifying PD and monitoring the disease pro-
gression [10, 11]. In [12], the authors have employed a 1D-
convolutional neural network (CNN) for learning representa-
tions from raw speech waveform itself, whereas, a stacked au-
toencoder has been used in [13] to extract features from spec-
trogram and scalogram of speech signals for PD prediction.

Main Contribution: This work aims to explore the util-
ity of source and vocal tract components of speech for PD/HC
classification by answering the following four key questions -
(1) Which one between source and vocal tract provides more
discriminative cues for the classification? (2) Are the cues pro-
vided by the two components complementary in nature? (3)
Does MFCC carry source specific cues required for the classi-
fication or does fusing source features explicitly provide a per-
formance gain? (4) How does the presence of noise impact the
classification performance obtained using these feature sets, in-
dividually as well as together?

We consider speech recordings for three tasks, e.g. image
description (IMAG), diadochokinetic rate (DIDK), and spon-
taneous speech (SPON). The fo features are used for quan-
tifying source information whereas vocal tract information is
captured exclusively using voicing-removed MFCC (vrMFCC)
(described in Section 2). Here we employ CNN-LSTM as a
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classifier [6], where LSTM stands for long short term mem-
ory. Five-fold cross-validation experiments on 59 PD and 60
HC subjects in both clean and four additive noisy conditions in-
dicate that though the relative merit of source and vocal tract
cues varies in different speech tasks, the two components com-
plement each other consistently. Moreover, the source informa-
tion encoded in fo further complements that captured by MFCC
leading to the highest classification accuracy using both to-
gether as features in clean condition. This is found to be true
even in noisy cases when the classifier is trained and tested un-
der matched noise and signal-to-noise ratio (SNR) conditions.
Furthermore, source cues in the form of fo are found to be highly
robust against unseen noise.

2. PD vs. HC Classification
Figure 1 summarizes various speech features, characterizing
source and vocal tract information, which are used in the
PD/HC classification analysis pursued in this work. These
features are extracted from the raw waveform. MFCC with
delta and delta-delta features are computed, which are known
to capture cues from both source and vocal tract components
of speech simultaneously [14]. To encode the source informa-
tion exclusively, fo contours along with their 1st and 2nd order
derivatives are utilized. The process of extracting vocal tract
characteristics without any influence of the source component
involves two steps - voicing removal and MFCC computation.
During voicing removal, the speech waveform is modified to
eliminate any voicing information present in the signal. To do
so, the input speech is decomposed into fo, spectral envelope
and aperiodicity using WORLD analyzer [2]. The obtained fo

estimates are replaced by 0s and the aperiodicity values for all
frequency bands are made 1s in order to remove the inherent
voicing information, thereby making the source purely noisy
throughout the utterance. The speech waveform is then re-
synthesized by WORLD synthesizer using the modified fo and
aperiodicity values along with the unchanged spectral envelope.
MFCC computed from this voicing-removed speech, denoted as
voicing-removed MFCC (vrMFCC), is thus expected to primar-
ily capture vocal tract cues. Apart from the three sets of fea-
tures, MFCC, fo, and vrMFCC, another two sets, namely fo +
vrMFCC and fo + MFCC, are generated by fusing fo with vrM-
FCC and MFCC, respectively, at the feature-level. Each of these
five feature sets is then processed by the classifier block shown
in Figure 1 to obtain the PD/HC decisions. Here, a CNN-LSTM
network, as proposed in [6], is employed as the classifier. How-
ever, unlike [6], the general architecture of the network consid-
ered here does not involve any max-pooling operation.

3. Dataset
Speech data collection was performed at National Institute of
Mental Health and Neurosciences (NIMHANS), Bengaluru, In-
dia. 59 PD (45 male and 14 female) and 60 HC (44 male and 16
female) subjects having age in the range 35 - 79 years and 22
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Figure 1: PD/HC classification scheme

- 53 years, respectively, participated in the data collection ses-
sions. The subjects belonged to six different native languages,
namely, Bengali, Hindi, Odiya, Tamil, Telugu, and Kannada,
with approximately equal proportion of subjects coming from
each language. Dysarthria severity of the PD subjects were
assessed by five speech-language pathologists (SLP) from the
Speech Pathology and Audiology Department, NIMHANS as
per the UPDRS-III scale (range: 0 - 4) [15]. The mode of the
five severity scores was considered as the final score. The PD
subjects had the final scores in the range of 0 - 2. Data for three
different speech tasks - IMAG (∼12.83 hours), DIDK (∼4.65
hours), and SPON (∼5.62 hours) are considered. All speech
data were recorded at 44.1 kHz and downsampled to 16 kHz.
Further details about the speech tasks and data collection proto-
col can be found in [12]. Besides the speech recordings, high-
frequency (HF) channel, pink, and babble noise from NOISEX-
92 dataset [16], along with the additive white gaussian noise
(AWGN) are considered for simulating noisy speech conditions.

4. Experimental Setup
4.1. Feature Extraction

The process of estimating the three types of features used in
this work is elaborated below. Utterance-level Z-score normal-
ization is applied to each feature dimension independently such
that each dimension has zero mean and unit standard deviation
(SD) over all frames of a particular utterance.

Fundamental Frequency (fo): SWIPE (SWIPE’ variant)
[17] algorithm is used to extract fo values from speech wave-
forms every 10 ms. A detailed description of the fo contour
estimation process along with the adapted parameter settings
can be found in [9]. The fo estimates for unvoiced/silence re-
gions are replaced by 0s. Local estimates of the 1st and 2nd

order derivatives of the obtained fo contours are computed over
9 frames using the Librosa package [18], thereby giving rise to
3-dimensional feature vectors for fo.

MFCC: KALDI speech recognition toolkit [19] is used for
computing MFCC with 20 ms frame length and 10 ms overlap.
13-dimensional MFCC along with 1st and 2nd order differences
totalling a 39-dimensional feature vector is considered.

Voicing-Removed MFCC (vrMFCC): To compute vrM-
FCC, voicing removal is first performed on the speech samples
using WORLD [2], as stated in Section 2. During this process,
fo estimates of a speech utterance are obtained with a frame
period of 5 ms using Harvest algorithm [20]. The floor and ceil-
ing frequencies for the fo estimation range are set to 70 Hz and
800 Hz, respectively. The spectral envelope and aperiodicity are
estimated using CheapTrick [21] and D4C [22] algorithms, re-
spectively. MFCC features of the voicing-removed speech are
then extracted following the MFCC computation process de-
scribed above.

4.2. Classifier Configuration

The CNN-LSTM classifier adapted in this work has an initial
1D-CNN layer with NF filters each of size FS and stride 1.
ReLU is used as the non-linear activation for this layer. The
CNN layer is followed by two LSTM layers each having NC
cells with tanh activation. The final layer of the model is a
dense layer with 2 units and softmax activation. The values
of NF, FS, and NC are tuned independently for each feature set
by optimizing the validation accuracy while maintaining simi-
lar classifier complexity in all cases. We take into account both
memory and runtime complexity of the classifiers. The number
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Table 1: Tuned values of CNN-LSTM architecture parameters

Feature Set NF FS NC #params FLOPs
fo 18 20 64 55500 175.48k

MFCC /
vrMFCC 5 20 64 54979 174.46k

fo + MFCC /
fo + vrMFCC 5 20 64 55279 175.06k

of parameters (#params) of the model is used for quantifying
memory complexity, whereas runtime complexity is measured
by the number of floating point operations (FLOPs) needed by
the network. Table 1 summarizes the tuned parameter values for
all feature sets. It is to be noted that similar model complexity
is preserved in case of all feature sets in order to restrict any
particular feature set from receiving added advantages owing to
a more complex model in classification.

All classifiers are trained using binary cross entropy loss
and Adam optimizer. The learning rate is set to 0.001 and the
batch size is kept at 32. The models are trained for a maximum
of 60 epochs while early stopping with a patience of 5 based on
validation loss is employed to avoid overfitting.

4.3. Noise Conditions

Four different noise conditions, namely, AWGN, HF channel,
pink, and babble, are explored in this work. Each noise is added
to every speech utterance at 0, 5, 10, and 20 dB SNRs. For
HF channel, pink and babble, random segments of required
length are extracted from the noise recordings and are added
to the speech samples. AWGN, on the other hand, is added
to the speech utterances using the awgn command of MAT-
LAB (R2017a). We consider two different train-test settings
here - matched and mismatched. In matched setup, the data
used for training and testing the classifiers cater to the same
noise and SNR conditions. On the contrary, in the mismatched
case, classifiers are trained using clean speech samples only and
are used to evaluate both clean and noisy test utterances. The
mismatched case is considered to assess the robustness of the
features against unseen noise conditions, which is essential for
deployment in practice.

4.4. Evaluation Protocol

All experimental evaluations are performed in the same 5-fold
cross-validation setup as used in [9] with each fold contain-
ing almost equal number of subjects from PD and HC classes.
The mean and SD of the classification accuracies obtained in
the 5 folds are reported as the performance metrics. We per-
form Wilcoxon signed rank test [23] at 10% significance level
to determine if the classification accuracies obtained for differ-
ent feature sets and noise conditions are significantly different
across 5 folds. Toward this end, test samples from each fold are
divided into 3 random groups of equal sizes. The 15 classifica-
tion accuracies thus obtained are considered for the test.

5. Results and Discussion
This section attempts to answer the four key questions put for-
ward in Section 1 using supporting results and observations.

5.1. Source (fo) or Vocal Tract (vrMFCC)?

The classification accuracies obtained using source (fo) and vo-
cal tract (vrMFCC) features independently in all three speech
tasks, e.g. IMAG, DIDK, and SPON, are presented in the first

Table 2: Mean classification accuracies in % (SD in bracket)
obtained using different feature sets; here # indicates that
MFCC outperforms vrMFCC at 10% significance level; *
and � indicate that fo + MFCC/vrMFCC outperforms fo and
MFCC/vrMFCC, respectively, at 10% significance level

Feature Set Speech Task
IMAG DIDK SPON Overall

fo
74.19
(4.67)

75.33
(2.86)

88.12
(4.44)

79.21

MFCC 85.30
(4.92)

81.23 #

(2.40)
88.04 #

(2.84)
84.86

vrMFCC 83.17
(3.56)

76.45
(4.31)

83.26
(3.41)

80.96

fo + vrMFCC 84.74 *
(3.69)

83.42 *�

(1.29)
90.36 �

(4.03)
86.17

fo + MFCC 88.65 *
(4.21)

83.28 *
(4.09)

91.91 *�

(1.31)
87.95

and third rows of Table 2. Wilcoxon signed rank test sug-
gests that source cues significantly outperform vocal tract cues
in the SPON task. The spontaneous fo variations and intona-
tions inherent in SPON task appear to capture discriminative
cues which predominate the markers obtained from vocal tract
information. For IMAG task on the other hand, vocal tract is ob-
served to outperform source cues by a significant margin. The
speech recordings for IMAG task being very short in duration
(∼3-5 sec) may not be able to capture fo variations indicative
of PD. Hence the contribution of vocal tract cues become pre-
dominant in this case. Lastly, for DIDK task, both source and
vocal tract features achieve similar level of classification per-
formance. This might be due to the fact that DIDK, being an
artificially crafted speech task, attempts to put similar weigh-
tage to both source and vocal tract information. Hence it can
be argued that source and vocal tract cues manifest themselves
differently in different speech tasks leading to varied relative
contribution toward PD/HC classification over tasks.

5.2. Are They Complementary?

As stated earlier, MFCC incorporates both source and vocal
tract information. It can be seen from Table 2 that PD/HC clas-
sification accuracies drop on average w.r.t. MFCC when fo or
source information is removed from MFCC to obtain vrMFCC.
Significant drops are observed in case of DIDK and SPON tasks
(indicated by #). Furthermore, adding the source information
back on top of vrMFCC by fusing fo and vrMFCC (fo + vrM-
FCC) improves the average performance over vrMFCC. Signif-
icant improvements are observed again in case of DIDK and
SPON (indicated by �). Since the vocal tract provides predom-
inant cues in the case of IMAG, removal or addition of source
information impacts less in this case. Wilcoxon signed rank test
also shows that for all speech tasks no significant difference ex-
ists between the classification performances obtained using fo +
vrMFCC and MFCC itself. These observations suggest that if
vocal tract features are considered as the baseline information,
then source indeed provides complementary cues for PD/HC
classification. Table 2 also illustrates that the average classifi-
cation accuracies obtained using fo + vrMFCC are higher than
those obtained using fo only, with significant improvements in
case of IMAG and DIDK tasks (indicated by *) suggesting the
complementarity of source and vocal tract features. The lower
boost in case of SPON is expected as source itself captures pre-
dominant discriminative cues in this case making the contribu-
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tion of vocal tract less significant.

5.3. Does Fusion of fo and MFCC help?

Table 2 reports that the average classification accuracy obtained
using fo + MFCC over all tasks is 8.74% and 3.09% higher than
those obtained by fo and MFCC respectively. The performance
enhancement over fo is significant for all speech tasks (indicated
by *), whereas that over MFCC is significant particularly in the
case of SPON (indicated by �). This finding indicates that the
source information encoded in MFCC is different from that en-
coded in fo and both these types of source cues complement
each other. For example, shimmer and jitter information could
be captured by MFCC, but not by the fo contour itself. Hence
the classification accuracy benefits from this feature fusion over
the individual features. It should be noted here that the average
classification accuracy obtained by fo + MFCC over all tasks is
higher than that obtained by fo + vrMFCC as well. Hence we
consider only fo + MFCC for the rest of the analysis.

5.4. What is the Effect of Noise?

Figure 2 shows the classification accuracies obtained using fo,
MFCC, and fo + MFCC (denoted by fusion in the figure) in all
three speech tasks averaged over four different noise conditions
- AWGN, HF channel, pink, and babble. It can be observed
that under matched train-test condition for IMAG and SPON,
average accuracies using all feature sets drop significantly w.r.t.
the corresponding clean condition at same level of SNR (10 dB
or lower). However, in the case of DIDK, the performance of
MFCC drops at higher SNR (20 dB) than the other two feature
sets. In this matched condition, fusion significantly outperforms
both the individual features at all tasks and SNR conditions ex-
cept for the 0 dB cases in DIDK and SPON. This suggests that
source and vocal tract features are complementary even in the
matched train-test noisy conditions. Figure 3 provides a more
detailed picture of the performances of all the three feature sets
under the influence of each noise separately. It can be observed
that fusion significantly outperforms fo in all cases of IMAG
task. For DIDK, the improvement is significant in all but two
cases, namely, 10 dB SNR cases for pink and babble noises.
Fusion, on average, outperforms fo for SPON task as well, with
significant improvement observed in 50% of the noisy cases.
On the other hand, the average classification accuracy obtained
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Figure 2: Mean classification performance over four noise con-
ditions - AWGN, HF channel, pink, and babble; here red dot
indicates drop in accuracy w.r.t. clean case at 10% significance
level and black dot marks the feature set which outperforms the
other two at 10% significance level for a particular SNR condi-
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Figure 3: Classification performance under different noise con-
ditions for matched train-test setting; SD of accuracy is indi-
cated by error bar; here dots and triangles indicate that fusion
outperforms fo and MFCC, respectively, at 10% significance
level

using fusion is higher than that obtained by MFCC in majority
of the cases, with significant improvement observed in 41.67%
of noisy cases. However, a noticeable decline in the average
performance of fusion w.r.t. MFCC is also observed for SPON
task under 0 dB babble noise condition. These findings suggest
that, under the influence of different types of noises, combining
fo and MFCC helps more in the cases of IMAG and DIDK as
compared to SPON.

Contrary to the matched case, in mismatched condition
(Figure 2), fusion outperforms the individual features in DIDK
only (except 0 dB case). For IMAG and SPON, fo is found
to achieve the best performance at all SNRs except for the 20
dB case of IMAG where all three feature sets achieve similar
performances. The inferior performance of fusion in these two
tasks relates to the event of MFCC performance getting more
severely affected by noise during these two tasks in particular.
Moreover, a significant drop in accuracy w.r.t. the clean condi-
tion is observed at lower SNR for fo than MFCC and fusion in
two out of the three tasks. These observations indicate fo to be
highly robust against unseen noise and SNR conditions.

6. Conclusions

This work analyzes the speech-based PD/HC classification task
from the perspective of source and vocal tract cues. Depend-
ing on the speech task, different components are found to cap-
ture predominant discriminative features, though the two com-
ponents complement each other throughout all tasks. Among
all the feature sets considered, the fusion of fo and MFCC is
found to attain the highest classification accuracy under both
clean and matched train-test conditions. However, robustness
against unseen noise is predominantly observed in the case of
source features encoded in fo. Though this paper talks about
the behaviour of source component in general, the experiments
are restricted to the fo attribute only. Similar analysis needs to
be carried out using other source cues like glottal flow. Exper-
iments involving PD subjects with dysarthria severity spanning
the entire UPDRS-III range (0 - 4) are also essential. Another
interesting future direction for this work would be to assess the
dysarthria severity using source and vocal tract cues.
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nition toolkit,” in Workshop on automatic speech recognition and
understanding. IEEE Signal Processing Society, 2011.

[20] M. Morise et al., “Harvest: A high-performance fundamental fre-
quency estimator from speech signals.” in INTERSPEECH, 2017,
pp. 2321–2325.

[21] M. Morise, “CheapTrick, a spectral envelope estimator for high-
quality speech synthesis,” Speech Communication, vol. 67, pp.
1–7, 2015.

[22] ——, “D4C, a band-aperiodicity estimator for high-quality
speech synthesis,” Speech Communication, vol. 84, pp. 57–65,
2016.

[23] R. Woolson, “Wilcoxon signed-rank test,” Wiley encyclopedia of
clinical trials, pp. 1–3, 2007.

2965


