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ABSTRACT

Dysarthria due to Amyotrophic Lateral Sclerosis (ALS) and Parkin-

son’s Disease (PD) impairs sustained phoneme productions. Vowels

and fricatives get affected differently owing to the differences in their

production mechanisms. This paper examines three sustained voice-

less fricatives - /s/, /sh/ and /f/, as compared to three sustained vowels

- /a/, /i/ and /o/, for classifying patients with ALS/PD and Healthy

Controls (HC). Fricatives are found to achieve higher classification

accuracies than /a/ and /o/, though /i/ outperforms all. Patients seem

to find it difficult to form constrictions while producing fricatives,

or to proximally position the tongue and palate while uttering /i/,

due to dysarthria. Unwanted voicing added to voiceless fricatives by

the patient population further contributes towards the discrimination.

Both source (related to vocal cord) and filter (related to vocal tract)

cues of fricatives, on average, outperform those of vowels. Lastly,

decision-level fusion of /i/-/s/-/sh/, with a pooled classifier for these

three phonemes, achieves the highest mean ALS vs. HC classifi-

cation accuracy of 83.35%, although in PD vs. HC case, fusion of

multiple /i/ utterances performs the best with an accuracy of 80.03%.

Index Terms— Dysarthria, Fricatives, Vowels, Constriction,

Voicing.

1. INTRODUCTION

Dysarthria, prevalent in Amyotrophic Lateral Sclerosis (ALS) and

Parkinson’s Disease (PD), affects various aspects of speech func-

tion, particularly, phonation, articulation and respiration [1, 2]. All

of these three sub-systems of speech can be thoroughly assessed by

Sustained Phoneme Production (SPP) tasks [3]. SPP is common-

place in clinical speech assessment routines due to its simplicity and

ease of use. Thus, SPP can be a potential task for speech-based au-

tomatic diagnosis of ALS and PD. This paper analyzes the relative

utility of different fricatives as compared to vowels in SPP task based

classification of ALS/PD patients and Healthy Controls (HCs).

The physiological mechanisms of uttering vowels and fricatives

differ. Hence, the impact of dysarthria on their productions may also

vary significantly. Fricatives are produced by forcing the air to flow

turbulently through a narrow constriction in the vocal tract resulting

into frication. A vowel sound, on the other hand, is produced when

the airflow from the lungs passes through the vibrating vocal folds

(voicing) followed by a relatively open vocal tract which acts as a

resonance chamber. Though the tongue can be placed close to the

roof of the mouth, as in the case of close vowels, no constriction is

formed in the vocal tract and air can flow without generating any au-

dible frication. Fricatives can be voiced or voiceless; however, we

limit our analysis to voiceless fricatives only. Restricted movements

of articulators like lips, jaw, tongue, and velum, as observed in ALS

[4] and PD [3], lead to altered configurations of vocal tract during

phoneme production. Among others, the place and manner of con-

striction formation might be significantly altered in case of fricatives.

This can further result into varied nature of air turbulence at the con-

striction. Also, dysarthric subjects often add voicing to voiceless

fricatives [5] which can provide additional discrimination between

ALS/PD and HC classes. Thus, it would be worthwhile to investi-

gate if these factors provide sustained fricatives (SFs) any edge over

sustained vowels (SVs) for ALS/PD vs. HC classification.

Multiple works present in the literature have analyzed SVs, par-

ticularly /a/, /e/, /i/, /o/ and /u/, for ALS/PD vs. HC classification.

Quan et al. [6] have utilized dynamic articulation transition features

and bidirectional Long Short Term Memory (LSTM) network for

this purpose. Different time-frequency features including short-time

Fourier transform [7], Mel-Frequency Cepstral Coefficients (MFCC)

[8], tunable Q-factor wavelet coefficients [9] and Hilbert spectrum

based cepstral features [10] have also been explored together with

Support Vector Machine (SVM) [7, 9, 10] and Random Forest (RF)

[9] classifiers. Moreover, features related to the phonatory subsys-

tem, like pitch, jitter, shimmer, harmonic-to-noise ratio [8, 11, 12],

have been considered as well in this context.

Although a few studies have investigated the spectral proper-

ties of fricatives /s/ and /sh/ produced by ALS and PD patients at

word initial positions [13, 14, 15], limited analysis on SFs exist for

automatic ALS/PD vs. HC classification. The only works present

in the literature have considered three SFs (/s/, /sh/, /f/) and five

SVs (/a/, /i/, /o/, /u/, /æ/) together to train or test the classifiers

[3, 16, 17, 18]. In [3] and [18], MFCC has been considered as the

feature, whereas log mel spectrograms have been extracted in [17].

SVM [18], Dense Neural Network [18], 2D-Convolutional Neural

Network (CNN) [17] and CNN-LSTM [3] have been explored as

the classifiers. Mallela et al. [16] have fed raw speech waveforms

directly to a CNN-bidirectional LSTM framework.

To the best of our knowledge, this paper, for the first time, ex-

tensively analyzes the discriminative power of solely the SFs and

assesses their relative utility w.r.t. the SVs for ALS/PD vs. HC clas-

sification. Particularly, we aim to answer three key questions - (1)

How do different SFs contribute towards the classification tasks at

hand and how do their performances compare with various SVs? (2)

How do the discriminative power inherent in the source (associated

with vocal cord) and filter (associated with vocal tract) [19] cues of

SFs compare with those of SVs? (3) Do multiple utterances of the

same or different phoneme(s), considering both SFs and SVs, con-

tain complementary information such that their decision-level fusion

would provide a performance gain over the individual phoneme ut-

terances? Thus, our contribution does not lie in proposing novel

classifiers or new speech tasks; it is in identifying these key ques-

tions and designing experiments to answer the same.

We consider three voiceless SFs - /s/, /sh/, /f/ and three SVs

- /a/, /i/, /o/. The experimental observations are as follows. (1)IC
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Table 1. Number and duration of utterances of different phonemes obtained from ALS, PD and HC groups; each cell entry is in the form of x

/ y (z), where, x is the number of utterances, y is mean duration (in sec) of the utterances and z is SD of the durations (in sec) of the utterances

Condition /a/ /i/ /o/ /s/ /sh/ /f/

ALS 88 / 4.81 (2.51) 89 / 4.21 (2.66) 88 / 4.07 (2.42) 86 / 2.58 (1.74) 88 / 2.21 (1.50) 87 / 1.88 (1.29)

PD 86 / 5.65 (2.62) 85 / 5.47 (2.40) 85 / 5.24 (2.33) 90 / 3.48 (1.92) 92 / 2.85 (1.88) 90 / 2.11 (1.42)

HC 88 / 6.13 (1.75) 85 / 6.06 (2.17) 82 / 6.03 (1.82) 84 / 4.87 (1.73) 84 / 3.97 (1.41) 84 / 3.23 (1.22)

With MFCC as feature and CNN-LSTM [3] as classifier, fricatives

achieve at least 4.04% and 8.73% higher (absolute) mean accuracies

than /a/ and /o/ for ALS vs. HC and PD vs. HC classifications, re-

spectively. However, /i/ outperforms the fricatives by (absolute) at

least 0.95% and 6.19%, respectively, in the two classification tasks.

Dysarthria seems to affect constriction formations during utterances

of fricatives, as well as, the proximal placement of tongue and palate

during the production of /i/, thus embedding discriminative cues in

these phonemes. Altered nature of air turbulence at the constric-

tion sites for dysarthric SFs, along with the frequently observed un-

wanted voicing of voiceless fricatives by dysarthric subjects, further

contributes towards the differentiating abilities of SFs. (2) Fricatives

commonly attain higher mean accuracies than vowels while using

MFCC associated with either source or filter estimates of the utter-

ances. (3) Decision-level fusion of /i/, /s/ and /sh/ is found to achieve

the highest ALS vs. HC classification accuracy (83.35%), indicating

the complementary nature of the cues present in these phonemes.

However, the best PD vs. HC classification accuracy (80.03%) is

obtained by decision-level fusion of multiple /i/ utterances.

2. DATASET

Data collection was carried out at National Institute of Mental Health

and Neurosciences (NIMHANS), Bengaluru, India. 35 subjects

(25M + 10F) from each of ALS, PD and HC categories, totalling

105 subjects (75M + 30F), contributed their speech samples. The

subjects of the three groups had ages in the ranges of 36-70, 45-73

and 35-62 years, respectively. Dysarthria severity of the ALS and

PD subjects were rated by three Speech-Language Pathologists from

NIMHANS following the 5-point speech component of ALSFRS-R

scale [0 (Loss of useful speech) to 4 (Normal speech)] [20] and that

of UPDRS-III scale [0 (Normal speech) to 4 (Unintelligible speech)]

[21], respectively. The mode of the three ratings was considered as

the final severity score. Approximately equal number of ALS sub-

jects were selected from each of the five dysarthria severity levels.

In case of PD, participants had severity scores in the range of 0-2

with approximately equal proportion coming from each level.

Sustained utterances of three voiceless fricatives - /s/, /sh/, /f/,

and three vowels - /a/, /i/, /o/ were recorded. The subjects were

asked to take a deep breath and prolong a phoneme at a comfort-

able pitch and loudness level. The process was repeated 1-3 times

for each phoneme depending on a subject’s level of comfort. The

number of utterances of each phoneme obtained from ALS, PD and

HC subjects, along with the mean and Standard Deviation (SD) of

the duration of the utterances, is mentioned in Table 1. All speech

data were recorded at 44.1 kHz sampling frequency and downsam-

pled to 16 kHz. More details about the data collection protocol and

the recording setup can be found in [16].

3. EXPERIMENTAL SETUP

This section describes the experiments conducted to answer the key

questions listed in Section 1. The associated features and classifiers,

along with the evaluation scheme are also summarized.

3.1. Experimental Design

1. SFs vs. SVs: We perform ALS/PD vs. HC classification using

MFCC of different SFs and SVs in order to examine their relative

utilities for these classification tasks.

2. Source - filter analysis: To analyze the discriminative power of

source and filter cues of SFs, as compared to those of SVs, MFCC

associated with estimates of these components of the utterances are

used to classify ALS/PD vs. HC subjects.

3. Effect of fusion: To exploit the complementary information that

might be present in different sustained utterances of the same or dif-

ferent phoneme(s) performed by a subject, we conduct intra- and

inter-phoneme decision-level fusion over utterances of /i/, /s/ and

/sh/. The choice of the three phonemes is due to their superior per-

formances observed in the first experiment (refer Section 4). In the

intra-phoneme fusion case, we make use of the predictions obtained

in the first experiment and perform majority voting over the predic-

tions of three repetitions of a phoneme recorded by a subject. On the

other hand, inter-phoneme fusion is performed through majority vot-

ing over predictions of one utterance each of /i/, /s/ and /sh/ recorded

by a subject. We consider two different classifier training schemes in

case of inter-phoneme fusion - (1) three distinct classifier models are

trained corresponding to the three phonemes (same as the first exper-

iment), and (2) a single pooled classifier is trained using utterances

of all the three phonemes taken together. Both approaches utilize

MFCC of the original utterances as the features. Given sufficient

representation ability, a single pooled model might be able to learn

the entire space constituted by the three phonemes being considered.

All the experiments elaborated above use the CNN-LSTM net-

work proposed in [3] as the classifier.

3.2. Feature Extraction

A 2-step feature extraction process is adopted in this work.

1. Source-Filter Estimation: Nth order Linear Prediction (LP)

is performed on every 20 ms frame of a sustained utterance with

10 ms overlap using the autocorrelation method. The sequence of

LP Coefficient (LPC) vectors thus obtained characterize the time-

varying filter component of the speech, whereas, the LP residual,

combined over frames using the overlap-add method, represents the

source. 2nd order pre-emphasis (α = 0.99) is applied before per-

forming LP for spectral equalization purpose following [22]. The

computations are done in MATLAB R2021a. We experiment with

N = {8, 16, 32, 64, 128}.

2. MFCC Computation: 12D MFCC (excluding energy coeffi-

cient) with delta and double-delta measures constituting a 36D fea-

ture vector are computed for every 20 ms frame with 10 ms overlap.

KALDI speech recognition toolkit [23] is used to compute these for

the original utterances (referred to as O-MFCC) and their source es-

timates (referred to as S-MFCC). MFCC features for the filter esti-

mates, referred to as F-MFCC, are computed in MATLAB R2021a.

For this purpose, LPC vector of each 20 ms frame of the original

utterance is first mapped to complex frequency response of the filter,

which is then converted to MFCC.
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3.3. Classifier

A CNN-LSTM based classifier architecture, as proposed in [3], is

employed for all experiments. The first layer of the network is a 1D-

CNN having 30 filters each with kernel size 20, stride 1 and ReLU

activation. It takes MFCC features chunked into 0.5 sec segments

with 0.25 sec overlap as input. This layer is followed by a Maxpool-

ing layer of window size 4. These two layers together extract local

and time-invariant patterns from frame level MFCC vectors. The

temporal dynamics of the MFCC vector sequences is then captured

by two LSTM layers each with 64 cells and tanh activation. The hid-

den state outputs of the last LSTM layer at the last frame index are

finally fed to a 2-unit dense layer with softmax activation to obtain

the predicted class labels.

The classifiers are trained using Adam optimizer with binary

cross entropy loss function. The learning rate is kept at 0.001 and

the batch size is set to 16. The models are trained for a maximum of

100 epochs. To avoid overfitting, early stopping criteria with a pa-

tience of 8 based on validation loss is imposed. During testing, mode

of the predictions corresponding to all chunks of a test utterance is

considered as the final decision.

3.4. Evaluation Protocol

Five-fold cross-validation procedure is implemented with each fold

comprising equal number of ALS, PD and HC subjects. All folds

have similar distributions of age, gender and dysarthria severity

scores. In every iteration of cross validation, data from three folds

are used in training while data from one fold each are used in

validation and testing. Mean and SD of classification accuracies

obtained in five folds of evaluation are used as the performance

metrics. It is to be noted here that, since all subjects could not

perform three utterances of each phoneme or equal number of ut-

terances of all phonemes, we can not include all utterances during

the testing phases of the fusion experiments. However, all data are

used for training in the respective folds. Table 2 reports the number

of phoneme sets used for testing the fusion approaches. A set con-

tains three utterances of the same phoneme in case of intra-phoneme

fusion, whereas, one utterance each of /i/, /s/ and /sh/ comprises a

phoneme set in inter-phoneme fusion case.

4. RESULTS AND DISCUSSION

4.1. SFs vs. SVs

Table 3 presents the ALS/PD vs. HC classification accuracies ob-

tained using O-MFCC of the six phonemes under consideration. The

average accuracies obtained over all fricatives are observed to be

5.70% and 5.38% higher than those achieved over all vowels in case

of ALS vs. HC and PD vs. HC classifications, respectively. While

comparing individual phonemes, all fricatives are found to outper-

form /a/ and /o/ w.r.t. mean accuracies in both classification tasks.

/sh/ achieves the highest mean performance among the fricatives,

followed by /s/. However, /i/ attains the best average accuracy among

all the phonemes being studied. Productions of different fricatives

require constrictions to be formed between different pairs of articu-

lators, namely, tongue against the alveolar ridge in case of /s/, tongue

behind the alveolar ridge in case of /sh/ and between lower lip and

upper teeth in case of /f/. Though no constriction is formed while

uttering the high vowel /i/, tongue is placed in close proximity of the

palate. In contrast to these phonemes, /a/ and /o/ require the vocal

tract to be relatively more open. Better performances of the fricatives

and /i/ might indicate that ALS and PD population face difficulties

Table 2. Number of phoneme sets used during the testing phases of

intra and inter-phoneme fusion approaches; for intra-phoneme case

number of phoneme sets is equal to the number of subjects consid-

ered, whereas, in inter-phoneme fusion case the number of subjects

is given in parentheses

Condition
Intra-phoneme fusion Inter-phoneme

fusion/i/ /s/ /sh/

ALS 26 24 24 77 (33)

PD 24 27 28 84 (35)

HC 24 24 24 83 (35)

in forming constrictions in case of fricatives, or even, proximally

placing tongue and palate in case of /i/. These lead to altered or

compensatory configurations of the vocal tract and altered nature of

airflow. However, it can be observed from Table 3 that the SD values

of 5-fold classification accuracies are quite high in all cases. This

might be due to the small size of the dataset considered in this work.

Figure 1 illustrates some specimen spectrograms of vowel /i/

and fricative /sh/ uttered by ALS, PD and HC subjects. In case of

/i/, clear harmonics of fundamental frequency as well as prominent

formant bars can be observed in the HC utterance. The harmonic

structure becomes less evident in higher frequency regions of ALS

and PD spectrograms, where the representations become more noise-

like. The resonant energies corresponding to formants are also lower

in these utterances as compared to the HC case. On the other hand,

some harmonic structure indicating the presence of voicing can be

observed in the /sh/ spectrogram for ALS, whereas that for HC com-

prises only high frequency components confirming voiceless nature

of the utterance. Lack of high frequency component is observed in

case of PD /sh/. All these factors presumably contribute towards

differentiating ALS/PD and HC utterances.

In order to further validate the presence of unwanted voicing in

SFs performed by the dysarthric subjects as opposed to HCs, we ex-

Table 3. Mean classification accuracies in % (SD in bracket) ob-

tained using O-MFCC of different sustained phonemes

Phonemes ALS vs. HC PD vs. HC

V
o
w

el
s /a/ 62.88 (7.91) 55.97 (9.89)

/i/ 78.42 (10.03) 72.85 (12.04)

/o/ 68.40 (5.47) 51.78 (8.73)

Overall 69.90 60.20

F
ri

ca
ti

v
es /s/ 76.90 (7.86) 65.37 (7.84)

/sh/ 77.47 (7.56) 66.66 (9.40)

/f/ 72.44 (6.24) 64.70 (10.43)

Overall 75.60 65.58
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Fig. 1. Illustrative narrowband spectrograms of sustained /i/ and /sh/

utterances performed by ALS, PD and HC subjects

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on November 02,2023 at 05:52:07 UTC from IEEE Xplore.  Restrictions apply. 



/s/ /sh/ /f/

ALS PD HC ALS PD HC ALS PD HC

0

0.5

1

1.5

V
o
ic

ed
 s

eg
m

en
t 

d
u

ra
ti

o
n

 (
se

c)

Fig. 2. Distributions of durations of voiced segments detected in

different SFs produced by ALS, PD and HC subjects; durations in

ALS and PD cases are longer than those of HC at 1% significance

level as per Wilcoxon ranksum test

tract the pitch estimates of SFs at 100 Hz using the PRAAT software

[24] with default pitch settings. The voiced segments present in the

SFs are then identified as the segments of contiguous finite non-zero

pitch values which are surrounded by zero pitch frames. Figure 2

shows the distributions of the durations of these voiced segments

for ALS, PD and HC classes. Ideally no voicing should be present

in the utterances of voiceless fricatives performed by HCs. How-

ever, voiced segments were actually detected in some of the HC SFs.

Manual inspection confirmed those as algorithmic errors, which cer-

tainly would occur in the cases of ALS and PD also. To maintain the

fairness of comparison, we report durations of all segments which

were detected as voiced. Wilcoxon ranksum test [25] at 1% sig-

nificance level on the voiced segment durations suggests that ALS

and PD SFs have significantly longer voiced segments, and, hence,

higher degree of unwanted voicing, than HC SFs.

4.2. Source - Filter Analysis

Figure 3 plots the ALS/PD vs. HC classification accuracies, aver-

aged over all SVs and over all SFs, obtained using S-MFCC and F-

MFCC estimated with varying LPC orders. It can be observed that,

at lower LPC orders, S-MFCC outperforms F-MFCC for both SV

and SF in case of both classification tasks, while F-MFCC achieves

better performance at higher LPC orders. This is expected because

at high LPC orders, more detailed structures are captured in the fil-

ter estimate and the source estimate becomes nearly white. Figure 3

further shows that, with S-MFCC, the obtained accuracies averaged

over all SFs (plotted in black) are higher than those averaged over

all SVs (plotted in blue) at most LPC orders for both classification

tasks (except LPC order 128 in ALS vs. HC case). The trend is same

for F-MFCC as well at all LPC orders except 8 in PD vs. HC case.

The altered vocal tract shape due to restricted articulatory mobility

and the impaired constriction formation might be responsible for the
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Fig. 3. Mean classification accuracies (in %) over all SVs and those

over all SFs obtained using S-MFCC and F-MFCC estimated with

varying LPC orders

Table 4. Mean classification accuracies in % (SD in bracket) ob-

tained using intra- and inter-phoneme decision-level fusion

Fusion scheme ALS vs. HC PD vs. HC

In
tr

a /i/+/i/+/i/ 81.83 (13.35) 80.03 (11.96)

/s/+/s/+/s/ 80.04 (8.58) 70.05 (13.19)

/sh/+/sh/+/sh/ 79.95 (8.90) 66.15 (11.36)

In
te

r

/i/+/s/+/sh/

(Distinct model)
82.02 (8.31) 75.67 (7.58)

/i/+/s/+/sh/

(Pooled model)
83.35 (5.93) 72.65 (9.63)

discriminative abilities of SF F-MFCC. The disturbed constrictions

might affect the air turbulence created at that site, thus influencing

source estimation. This, combined with the unwanted voicing added

to the voiceless fricatives by ALS and PD patients, may contribute

towards the discriminative cues embedded in S-MFCC of SFs.

4.3. Effect of Fusion

Comparison of Tables 3 and 4 reveals that intra-phoneme decision-

level fusion for /i/, /s/ or /sh/ achieves higher classification accuracy

than the corresponding single utterances in all cases except /sh/ in

PD vs. HC task where the performance remains nearly the same.

This highlights the varied nature of cues captured in different ut-

terances of a single phoneme. Inter-phoneme fusion provides fur-

ther improvement in accuracy than intra-phoneme case for ALS vs.

HC classification task. The pooled classifier model is observed to

perform better than distinct models for different phonemes. Pooled

model increases mean accuracy and reduces SD as compared to dis-

tinct model case, thus making the system more robust and efficient

at the same time. The superior performance of inter-phoneme fusion

over intra-phoneme case further emphasizes the complementary na-

ture of the cues present in different phoneme utterances. This is

evident because productions of different phonemes involve different

courses of movements of the articulators. Thus, combining them

broadens the scope of assessment of the articulators. However, no

performance gain over intra-phoneme fusion case of /i/ is observed

while using inter-phoneme fusion for PD vs. HC classification.

5. CONCLUSIONS

This work analyzes SFs in comparison with SVs for automatic

ALS/PD vs. HC classification. Phonemes involving constrictions

in the vocal tract (fricatives) or even close placement of tongue

and palate (/i/) are found to be better differentiators than the rela-

tively open ones. Presence of unwanted voicing in the utterances

of voiceless fricatives performed by the patient population further

contributes towards the classification capabilities of the fricatives.

Moreover, different phonemes are observed to capture complemen-

tary cues making inter-phoneme fusion the best choice for ALS vs.

HC classification. However, the same is not empirically true for PD

vs. HC case. Though we claim proximity of certain articulators to

be a prime factor, further verification is needed. Thus, an important

future direction for this work would be to derive some quantifying

measures of such proximity from the speech signals and to use those

directly for performing the classifications.
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