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ABSTRACT

Dysarthria due to Amyotrophic Lateral Sclerosis (ALS) affects

speech production. Even the elementary sustained vowel utterances

get impaired. For these, the impairments can be in achieving vowel-

specific articulatory configurations, reflected in static acoustic cues,

and/or in sustaining a configuration for a prolonged duration, re-

flected in dynamic cues. Such cues can further be attributed to

the vocal cord (source) and vocal tract (filter) involved in speech

production. This paper analyzes the relative contributions of these

static (captured through average spectral characteristics) and dy-

namic (captured through spectral variations over time) source and

filter cues toward automatic classification of ALS patients and

healthy subjects using sustained utterances of /a/, /i/, /o/ and /u/. Ex-

periments with 80 ALS patients and 80 healthy subjects suggest that

the source cues (static/dynamic) are not the primary discriminators.

For /i/, the static filter cues achieve the highest mean classification

accuracy of 76.66%, whereas, for /a/, /o/ and /u/, the dynamic fil-

ter attributes contribute the most attaining average accuracies of

66.29%, 73.03% and 70.27%, respectively. Hence, ALS patients

seem to face difficulties in forming the front closed vocal tract struc-

ture of /i/, whereas, holding the target vocal tract shape for long

appears to be the primary challenge in case of /a/, /o/ and /u/.

Index Terms— Amyotrophic Lateral Sclerosis, vowel, static,

dynamic, source-filter

1. INTRODUCTION

The neuro-degenerative Amyotrophic Lateral Sclerosis (ALS) dis-

ease impairs the speech musculature, among others, leading to

dysarthria. The speed and/or range of movements of lips, jaw,

tongue and velum get severely restricted [1, 2]. Poor laryngeal

control during phonation leads to erroneous voicing and abnormal

prosodic patterns like reduced pitch range [2]. Dysfunctions in

the respiratory and resonatory [2] sub-systems of speech are also

evident.

Sustained vowel (SV) productions get critically affected in

dysarthria due to ALS. According to the source-filter model [3],

during the production of a vowel sound, airflow from the lungs

passes through the vibrating vocal folds generating a quasi-periodic

(voiced) source signal (S) with minimal aperiodic components [4].

This signal then passes through the vocal tract which acts as a filter

(F) and produces the vowel sound. Specific vocal tract configu-

rations give rise to specific vowels. During an SV production, a

subject is supposed to prolong a vowel with correct pronunciation

while maintaining uniform pitch and loudness. Thus, it not only

∗These authors contributed equally to this work.

calls for achieving the target S and F configurations specific to a

vowel, but also for uniformly sustaining that designated structure

for a prolonged duration. Due to restricted muscular control, ALS

patients might face difficulties in accomplishing either/both of these

goals. They are often reported to make compensatory articulatory

movements to mimic targeted sounds [5]. This paper captures the

deformities in the gross S and F configurations through static cues

(ST) and the unusual temporal variations in these configurations

through dynamic cues (DY), as elaborated in Table 1. We aim to an-

alyze the relative discriminative capabilities of source-static (S-ST),

source-dynamic (S-DY), filter-static (F-ST) and filter-dynamic (F-

DY) cues for SV-based ALS vs healthy control (HC) classification.

Several acoustic analyses of vowels pronounced by ALS patients

are present in the literature. Lee et al. [6] have observed the vowel

/i/ to undergo the highest decline in intelligibility with increase in

dysarthria severity. Reduced acoustic vowel contrast owing to im-

paired tongue movements [7, 8] and frequent mis-identifications in

the height dimension of vowels due to limited tongue height con-

trol [9] are also reported in case of ALS subjects as compared to

HCs. Further, researchers have performed automatic ALS vs HC

classification using various acoustic cues derived from SVs, par-

ticularly /a/, /e/, /i/, /o/, /u/ and /æ/. Mel frequency cepstral coef-

ficients (MFCC) and log mel spectrograms have been explored in

[10, 11, 12, 13]. Along with MFCC, Vashkevich et al. [11] have an-

alyzed a wide variety of other features like jitter, shimmer, harmonic

structure etc. Tena et al. [14] have examined phonatory-subsystem

and time-frequency features. In [15], a 1D-convolutional neural net-

work (CNN) has been used for learning representations from raw

speech waveforms. Though all of S-ST, S-DY, F-ST and F-DY cues

have been implicitly incorporated in these approaches, none of these

works attempts to identify the relative utilities of these four types of

cues for the classification task at hand. There lies the contribution

of this paper. Thus, our aim is not to outperform the state-of-the-

art classification approaches, but to understand which cues play role

towards the discrimination.

We analyze four SVs - /a/, /i/, /o/ and /u/, for automatic ALS vs

HC classification. Mean of MFCC with delta coefficients (Mm) and

standard deviation (SD) of spectral amplitudes over time at the first

8 harmonic frequencies (Hd) are used as the ST and DY features, re-

spectively. Experimental validations using linear discriminant anal-

ysis (LDA) classifier confirm that these two features, when extracted

from the original SV utterances, can together encode the major dis-

criminative information present in the SVs, thereby helping the sim-

ple LDA classifier achieve similar level of classification accuracy

as state-of-the-art feature engineering based approaches [11] as well

as CNN-LSTM algorithms [10] (LSTM stands for long short term

memory). This substantiates the use of these two particular featuresIC
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Table 1. Description of static (ST) and dynamic (DY) cues present in source (S) and filter (F) components of dysarthric SVs

Description Potential reason Clinical sign Acoustic cues

S
ST

Unusual average characteristics

of source excitation

Impaired respiratory and

laryngeal function [16]

Weakened or strained

voice, hoarseness [17]

Mean harmonic-to-noise ratio,

average loudness

DY
Unusual temporal variations in

source excitation

Impaired laryngeal

control [2]

Difficulties in

controlling pitch [17]

Jitter, pitch

period entropy [11]

F
ST

Impaired vocal tract

configuration

Restricted

articulatory mobility [2]
Poor articulation [16]

Mean spectral envelope,

mean log-area ratio

DY
Unusual temporal fluctuations

in vocal tract configuration

Articulatory muscle

weakening [16]
Irregular articulation [16]

Temporal variations in

spectral envelope

as the representative ST and DY cues. To further capture these cues

specific to S and F components of SVs, we propose to manipulate

the SVs using the WORLD vocoder [4] in such ways that only the

required components are preserved in the modified utterances while

suppressing the redundant attributes. It is observed that the relative

discriminative capabilities of S-ST, S-DY, F-ST and F-DY cues are

vowel dependent. None of S-ST and S-DY cues of any SV is found

to be a major discriminator between ALS and HC groups. Among

the F cues, F-ST turns out to be the best discriminator in case of

/i/, while F-DY attributes perform the best for /a/, /o/ and /u/. Thus,

ALS patients seem to find it difficult to position the tongue in close

proximity of palate while uttering the front close vowel /i/, whereas,

maintaining the vocal tract structure for a long duration seems to be

the primary challenge in case of the other three vowels.

2. DATASET

Sustained utterances of /a/, /i/, /o/ and /u/ were collected from 80

ALS (50M, 30F) and 80 HC (62M, 18F) subjects at National Insti-

tute of Mental Health and Neurosciences (NIMHANS), Bengaluru,

India. The ALS and HC groups had ages in the ranges of 28 - 77 and

22 - 65 years, respectively. Three speech-language pathologists from

NIMHANS rated the dysarthria severity of the ALS patients follow-

ing the 5 point speech component of the ALSFRS-R scale [18]. The

mode of these three ratings was taken as the final severity. Equal

number of patients were recruited from each severity level. Upto 3

sustained utterances of a vowel were recorded from each subject to-

talling 858 and 842 utterances from the ALS and HC groups, respec-

tively. For both groups, nearly equal number of utterances belonged

to each vowel. The mean (SD) of durations of the utterances were

4.05 (2.29) and 5.71 (1.98) sec, respectively, for ALS and HC sub-

jects. All utterances were recorded at a sampling frequency of 44.1

kHz and then downsampled to 16 kHz. More details about the data

collection protocol and the recording setup are present in [15].

3. METHOD

The proposed method of extracting ST and DY cues associated with

the S and F components of SVs comprises four steps, namely, de-

composition, modification, synthesis and feature extraction, as illus-

trated in Figure 1. The first three steps are explained next, followed

by the choice of the specific ST and DY features to be considered.

First, an SV utterance is decomposed into fundamental fre-

quency (F0), spectral envelope (SP) and aperiodicity (AP) compo-

nents using the WORLD analyzer [4]. Different types of modifica-

tions, as listed next, are then applied to these components to retain

only the required attributes in the signal synthesized subsequently.

1. To remove the effect of F from an SV utterance, the estimated

spectral envelope is modified to 1s in all frequency bands. Speech is

WORLD
Analyzer

Mean

Mean

WORLD
Synthesizer

WORLD
Synthesizer

WORLD
Synthesizer

F0

AP

SP

F0 = 0

SP = 1
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1
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1

Fig. 1. Proposed method for extracting ST and DY cues from SV

utterances and their S and F components; here, AP and SP refer to

aperiodicity and spectral envelope, M1
m and H1

d refer to Mm and Hd

computed from the middle 1 sec of an utterance and 1 denotes a

matrix with all entries as 1

then synthesized by WORLD synthesizer using the modified spec-

tral envelope along with the unchanged F0 and aperiodicity. This

makes F allpass in nature, and hence, the modified signal captures

only S without any influence of the vocal tract. ST and DY features

obtained from this modified utterance serve as S-ST and S-DY cues.

2. To extract F information without any influence of S, we devoice an

SV utterance by replacing the F0 estimates obtained from WORLD

analyzer with 0s and the aperiodicity for all frequency bands with 1s

[19]. Speech is then synthesized by WORLD synthesizer with the

modified F0 and aperiodicity along with the unchanged spectral en-

velope. This makes S white throughout the utterance while retaining

the F characteristics. ST measures computed from this modified sig-

nal serve as F-ST cues.

3. Lastly, we replace the F0 and aperiodicity estimates obtained from

WORLD analyzer with their respective mean values over the mid-

dle 1 sec of the utterance. Speech is then synthesized by WORLD

synthesizer with the modified F0 and aperiodicity along with the un-

changed spectral envelope. Thus, S profile is made constant through-

out this modified speech, while variations in F are preserved. DY

cues extracted from this signal capture F-DY attributes.

We also extract ST and DY features from the original SV utter-

ances, referred as O-ST and O-DY, respectively, which capture cues

associated to S and F components together. All the cues described

above are used individually to perform ALS vs HC classification in

a vowel-specific manner. LDA is used as the classifier in all cases.

Choice of static and dynamic cues: Vashkevich et al. [11] have

explored an extensive set of SV features for ALS vs HC classifica-

tion which includes cues of both ST and DY natures. We consider

the same set excluding two features - distance of spectral envelopes
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and convergence of second formants of /a/ and /i/, as these cannot

be mapped to individual vowels. Among this adopted 64D feature

pool, we group mean harmonic-to-noise ratio (H/Nm) (1D), mean

glottal-to noise excitation ratio (Gm) (1D), mean spectral amplitudes

over time at the first 8 harmonic frequencies (Hm) (8D) and Mm

(24D) as ST cues because they capture the average characteristics

of the speech signals. H/Nm and Gm quantify average noise exci-

tation properties, whereas, Hm and Mm record the average spectral

profile. The remaining features, namely, jitter (JT) (4D), shimmer

(SH) (5D), directional perturbation factor (DPF) (1D), SD of glottal-

to noise excitation ratio (Gs) (1D), phonatory frequency range (PFR)

(1D), pitch period entropy (PPE) (1D), pathological vibrato index

(PVI) (1D), Hd (8D) and RelH (Hr) (8D), are clubbed in the DY

group as these are descriptive of the temporal variations in speech

attributes. JT and DPF capture perturbations in F0. SH estimates

amplitude perturbations in the speech signal. PFR, PPE and PVI

encode modulation properties of F0. Gs measures the variations in

the noise excitation, whereas, spectral variations are quantified by

Hd and Hr. We perform vowel-specific ALS vs HC classification us-

ing each of these features separately. The feature having the highest

average classification accuracy over the four vowels is then chosen

from each of ST and DY groups. Mm and Hd emerge as the best

performing features in their respective groups (refer Section 5), and

hence, are considered as the representative ST and DY cues for all

experiments. Following [11], we consider the complete SVs for fea-

ture computation while selecting the best ST and DY cues. However,

the two best features derived from only the middle 1 sec of the utter-

ances (denoted as M1
m and H1

d) are considered subsequently. This is

because the most stable articulatory configuration, without transient

variations, is expected to be attained during the middle portion. If an

SV utterance lasts ≤ 1 sec, then we consider the entire utterance.

4. EXPERIMENTAL SETUP

Feature Extraction

To compute the features taken from [11], we use the implementa-

tions given by the authors (https://github.com/Mak-Sim/Troparion).

However, the implementations for H/Nm and the harmonic measures

are not available. So, we calculate H/Nm in the PRAAT software [20]

with pitch range set to 50-450 Hz and all other parameters fixed at

their default values. For computing the harmonic features, we follow

the steps mentioned in [11] with the only exception that we sample

the spectral amplitudes at (p×16) bins, where p = 1, 2, ..., 8. These

bins approximately correspond to the first 8 harmonics of F0.

To estimate S-ST, S-DY, F-ST and F-DY cues, an SV utterance

is decomposed, modified and synthesized using WORLD, as elabo-

rated in Section 3. During decomposition, F0 estimates of speech are

obtained with a frame period of 5 ms using IRAPT algorithm [21].

The floor and ceiling frequencies of the F0 estimation range are set

to 50 Hz and 450 Hz, respectively, to match with the settings in [11].

Spectral envelope and aperiodicity are estimated using CheapTrick

[22] and D4C [23] algorithms, respectively. M1
m and H1

d are finally

extracted from the modified utterances.

Evaluation Protocol

All experiments are performed in the 5-fold cross-validation setup.

Each disjoint fold contains equal number of subjects, and hence

nearly equal number of utterances of each vowel, from ALS and

HC classes. The distributions of age, gender and dysarthria severity

are similar across the folds. We report the mean and SD of classifi-

cation accuracies obtained in the 5 folds as the performance metrics.

Moreover, Wilcoxon signed-rank test [24] at 1% significance level

is carried out to determine if the classification accuracies obtained

using different feature sets are significantly different. For that, sub-

jects from the test fold in each iteration are divided into 4 random

groups of equal sizes. The 20 classification accuracies thus obtained

are considered for the signed-rank test.

5. RESULTS AND DISCUSSION

Determining ST and DY cues: Figure 2 illustrates the ALS vs HC

classification accuracies obtained in the cases of the four vowels

while using individual ST and DY features adopted from [11]. Here,

the features are computed from the complete durations of the origi-

nal SV utterances. Among the ST group, Mm is found to achieve the

highest average accuracy of 68.13% over the four vowels. Hd attains

the highest mean accuracy of 70.81% over all vowels among the DY

group. Hence, these two features are selected as the representative

ST and DY cues. As mentioned in Section 3, the middle 1 sec of the

sustained utterances are expected to better capture the stable ST and

DY patterns without any transient effect. It can be observed from the

first four rows of Table 2 that the classification accuracies obtained

using M1
m and H1

d extracted from the middle 1 sec of the original SVs

are statistically similar to those achieved using Mm and Hd computed

from the complete durations of the same utterances. However, the

SD of accuracies are lower in most cases while considering only the

middle 1 sec of SVs as compared to the entire utterances. That is,

considering only the stable segments of speech enhances the consis-

tency in the performance as the transient artifacts are minimized in

this case. However, even after considering only the middle 1 sec of

the utterances, high SD of classification accuracies are obtained in

some cases during the current and subsequent analyses. This is due

to the small size of the dataset considered in this work.
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Fig. 2. Mean ALS vs HC classification accuracies (SD in error bar)

obtained using different ST (blue) and DY (red) cues extracted from

complete durations of SVs; accuracies averaged over all vowels are

shown on top of each group of bars; * indicates the features having

the highest average accuracy over all vowels among each of ST and

DY groups

Table 2. Mean ALS vs HC classification accuracies in % (SD in

bracket) obtained using representative ST and DY cues of original

SVs as compared to baseline feature sets; here * indicates that H1
d

outperforms M1
m as per signed-rank test

Features
Vowels

/a/ /i/ /o/ /u/

Mm 68.72 (6.50) 77.39 (12.14) 64.56 (7.27) 61.86 (11.78)

Hd 69.71 (5.64) 73.20 (8.09) 70.60 (5.42) 69.74 (11.70)

M1
m (O-ST) 62.24 (7.35) 75.75 (10.92) 64.12 (7.41) 58.80 (6.55)

H1
d (O-DY) 73.92 (3.20)* 71.69 (4.50) 75.57 (2.44)* 68.49 (3.28)

M1
m + H1

d 70.80 (5.20) 79.37 (9.70) 74.28 (7.29) 71.62 (8.29)

Baseline-64D
(from entire
utterance)

73.76 (8.36) 81.00 (5.63) 73.22 (6.33) 73.24 (3.28)

Baseline-64D
(from middle

1.5 sec)
73.85 (5.09) 80.74 (4.97) 70.81 (9.78) 71.36 (6.87)
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Comparison with baseline: We compare the performances of M1
m

+ H1
d and the baseline 64D feature set computed from the entire SV

utterances. However, for fair comparison, the baseline should also

be extracted from the middle 1 sec of the utterances. But in doing

so, PVI computation with the implementation given by the authors

of [11] leads to 0 values for all utterances. To avoid this issue, we

proceed to compute all features from the middle 1.5 sec of the ut-

terances to form a second baseline. As shown in the last three rows

of Table 2, M1
m + H1

d can achieve classification accuracies which are

statistically equivalent to those obtained using the baseline feature

sets computed from both entire utterances and middle 1.5 sec of the

utterances. That means, only these two features together can cap-

ture discriminative cues to the same extent as the much larger 64D

feature set. The performance of M1
m + H1

d is also found to be compa-

rable with the state-of-the-art MFCC + CNN-LSTM approach [10]

which achieves the mean (SD) of classification accuracies (in %) as

77.82 (6.12), 68.62 (5.13), 74.19 (4.80) and 64.96 (8.87) for /a/, /i/,

/o/ and /u/, respectively. In fact, as per the signed-rank test, M1
m + H1

d

significantly outperforms MFCC + CNN-LSTM in case of /i/. Hence

it is justified to use only M1
m and H1

d as the representative ST and DY

features, respectively, for further experimentations.

Comparison of O-ST and O-DY features: The two features M1
m

and H1
d extracted from the middle 1 sec of the original SV utterances

serve as O-ST and O-DY cues, respectively, as shown in Figure 1.

Table 2 tells that the relative contribution of O-ST and O-DY cues to-

wards ALS vs HC classification is vowel dependent. This is expected

as pronunciations of different vowels require different articulatory

involvements. O-ST attribute achieves higher average classification

accuracy than O-DY in case of the front close vowel /i/ indicating

that the gross articulatory configuration for /i/ differ predominantly

between ALS and HC subjects. However, the performance of O-DY

is also not statistically inferior. Hence, the ALS patients also seem

to introduce some degrees of unwanted fluctuations in the articula-

tory configuration while sustaining /i/. In the cases of /a/, /o/ and /u/,

O-DY outperforms O-ST. For /a/ and /o/, the superiority of O-DY

is statistically significant. Thus in these cases, the major differences

between ALS and HC utterances seem to lie in the extent of varia-

tions in the target configuration over the course of an utterance.

Comparison of ST and DY cues of S and F: Next we proceed to

accredit the discriminative capabilities of O-ST and O-DY cues to

those of S-ST, F-ST and S-DY, F-DY cues, respectively. Vowel-

wise classification performances of these four types of cues are listed

in Table 3. For /i/, the highest average classification accuracy is

achieved using F-ST, which significantly outperforms S-ST. Though

F-DY also significantly outperforms S-DY for /i/, the mean perfor-

mance of F-DY is lower than that of F-ST. On the other hand, F-

DY features attain the best average classification accuracies for the

remaining vowels. For /o/ and /u/, the superiority of F-DY over S-

DY is statistically significant as well. These observations might sig-

nify that the ALS subjects find it difficult to achieve the target front

Table 3. Mean ALS vs HC classification accuracies in % (SD in

bracket) obtained using representative ST and DY cues of S and F

components of SVs; here # and † indicate respectively that F-ST

significantly outperforms S-ST and F-DY significantly outperforms

S-DY as per signed-rank test

Features
Vowels

/a/ /i/ /o/ /u/

S-ST 55.27 (2.82) 61.85 (7.83) 56.32 (5.33) 55.82 (8.26)

S-DY 62.11 (2.68) 57.90 (5.86) 60.00 (4.59) 57.18 (5.16)

F-ST 60.25 (6.57) 76.66 (12.90)# 64.27 (6.55) 63.51 (6.60)

F-DY 66.29 (8.43) 68.86 (1.91)† 73.03 (3.49)† 70.27 (5.27)†

Table 4. Mean ALS vs HC classification accuracies in % (SD in

bracket) obtained using F-DY cues of mismatched utterances

F0 + aperiodicity
/a/ /i/ /o/ /u/

sp
ec

tr
a
l

en
v
el

o
p

e /a/ - 66.85 (6.03) 75.13 (3.85) 76.93 (2.82)

/i/ 73.08 (2.49) - 69.57 (6.47) 70.75 (3.23)

/o/ 74.37 (4.38) 66.55 (3.73) - 73.07 (4.22)

/u/ 71.22 (4.70) 69.70 (4.43) 74.40 (6.49) -

closed vocal tract configuration of /i/, possibly due to the impaired

tongue height control as reported in [9]. For /a/, /o/ and /u/, maintain-

ing the required vocal tract structure all along a prolonged utterance

might be most difficult, possibly due to muscle weakening. The in-

ferior performances of S-ST and S-DY features might suggest that

the source excitation is less discriminative between ALS and HC ut-

terances. Nonetheless, some impairments indeed exist in the source

excitation of ALS SVs which lead to ALS vs HC classification ac-

curacies above the chance level while employing S-ST and S-DY

cues.

Effect of harmonic locations: The harmonic locations (attribute

of S) are the frequencies at which the speech spectrum is sampled

to compute the DY H1
d cue. These harmonics are kept constant

throughout the utterance during F-DY computation, thereby nulli-

fying the DY effects of S. Since F-DY cues turn out to be the pri-

mary discriminator between ALS and HC groups in case of three

out of four vowels, we proceed to investigate further if the loca-

tions of the harmonics (though constant) used for obtaining F-DY

cues play any role towards the discriminative capabilities inherent

in the feature. For this purpose, we decompose the original SV ut-

terances using WORLD, as described in Section 3, and synthesize

mismatched utterances by replacing the obtained F0 and aperiodic-

ity estimates with the average F0 and aperiodicity over the middle

1 sec of some random utterance of a different vowel while keeping

the spectral envelope unchanged. H1
d is then extracted from these

mismatched utterances. Table 4 shows that F0 and aperiodicity of

/a/, /o/ and /u/ when used with the spectral envelope of any vowel for

F-DY computation lead to mostly similar levels of ALS vs HC clas-

sification accuracies, while F0 and aperiodicity of /i/ always have

inferior performance. Hence, the locations of the harmonics, or in

other words, the frequencies at which the spectrum is sampled, are

indeed important for capturing F-DY attributes.

6. CONCLUSION

This paper analyzes the SV-based ALS vs HC classification from the

perspective of static and dynamic cues of source and filter compo-

nents of speech. Depending on the vowel at hand, different cues are

found to capture predominant discriminative information. In case of

/i/, static filter cues are observed to be the best discriminator among

the four types of features. However, for /a/, /o/ and /u/, dynamic fil-

ter cues achieve the highest mean classification accuracies. Achiev-

ing the vocal tract configuration involving proximal placement of

the tongue and palate, specific to the front close vowel /i/, seems to

get difficult for the patients having ALS-induced dysarthria. On the

other hand, maintaining a constant vocal tract shape seems to be-

come the primary hurdle in the cases of the other three vowels - /a/,

/o/ and /u/. An interesting future direction for this work would be

to analyze the effect of increasing dysarthria severity on the ST and

DY cues under consideration.
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