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ABSTRACT

Dysarthria due to Amyotrophic Lateral Sclerosis (ALS) and
Parkinson’s disease (PD) impacts both articulation and prosody in
an individual’s speech. Complex deep neural networks exploit these
cues for detection of ALS and PD. These are typically done using
recordings in laboratory condition. This study aims to examine
the robustness of these cues against background noise and model
complexity, which has not been investigated before. We perform
classification experiments with pitch and Mel-frequency cepstral co-
efficients (MFCC) using models of three different complexities and
additive white Gaussian noise in four signal-to-noise-ratio (SNR)
conditions. The findings are as follows: 1) In clean condition,
pitch performs similar to MFCC across most model complexities
considered, suggesting that one-dimensional pitch pattern provides
discriminative cues for the classification to an extent equal to that
of multi-dimensional MFCC, 2) Similar trend is observed in noisy
cases when classifiers are trained and tested in matched noise and
SNR conditions, 3) When the classifiers trained on clean data are
applied in noisy cases, pitch based average classification accura-
cies are found to be 20.09% and 24.73% higher than those using
MFCC for ALS vs. healthy and PD vs. healthy, respectively, sug-
gesting robustness of pitch based classifier against noise and model
complexity.

Index Terms— Amyotrophic Lateral Sclerosis, Parkinson’s dis-
ease, Pitch, Mel-frequency cepstral coefficients, Model complexity,
Noise.

1. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) [1] and Parkinson’s disease
(PD) [2] are incurable neuro-degenerative disorders which affect
muscle movements. Early detection is critical in both cases for
timely commencement of therapeutic measures which can prolong
the life expectancy of the patients and enhance the quality of their
lives. Unfortunately, there exists no single blood or laboratory test
that can confirm ALS or PD. Diagnosis is done based on subjective
assessment of symptoms and medical histories, along with various
neurological and physical examinations. Thus the process is highly
time expensive. Diagnosis of ALS based on El Escorial criteria
[3] requires a median diagnosis time of 14 months [4], where the
average life expectancy of these patients is only 2-5 years from the
time of disease onset [5]. Moreover, the clinicians’ subjectivity and
perception being involved, the diagnosis process may be susceptible
to various sources of errors and biases. Thus, accurate automated
diagnostic tool is a need of the hour.

Dysarthria is experienced by almost all individuals suffering
from ALS and PD, with it being the early sign of ALS in about
30% of the patients [6, 7]. Different aspects of speech functions in-
cluding articulation, respiration, phonation and prosody are reported
to get affected in these diseases [8, 9]. Various cues descriptive
of these speech components have been studied in the literature for
classifying healthy controls (HC) and patients with ALS/PD. Deep
neural network (DNN) based classifiers can exploit the information
present in these cues to perform the classification with high degree
of accuracy. Mel frequency cepstral coefficients (MFCC), represen-
tative of spectral characteristics and articulation, has been widely
used for this purpose [10, 11, 12]. Suhas et al. [10] employed
dense neural network to perform the classification, whereas Mal-
lela et al. [11] explored 1D-convolutional neural network (CNN)
and long short term memory (LSTM) based classifier using transfer
learning approach. Log Mel spectrograms have been found to per-
form better than MFCC in the context of 2D-CNN based automatic
classification and severity prediction of ALS and PD [13]. Cepstral
separation difference (CSD) indicative of phonation characteris-
tics and spectral dynamics together with fundamental frequency
variation as markers of respiration and prosody have been used in
[12] for PD classification and its severity prediction. The authors
employed random forest classifier in this work. Vashkevich et al.
[14] have proposed novel features based on analysis of the envelope
and formant structures of vowels for automatic diagnosis of bulbar
ALS. In a recent work, Mallela et al. [15] have achieved very high
classification performance by directly using raw speech waveform
in a CNN-Bidirectional LSTM based framework.

Although the DNN based algorithms described above are re-
ported to achieve high degree of classification accuracy, these mod-
els are very expensive in terms of both run-time and memory require-
ment. Hence powerful computing resources are crucial for evaluat-
ing these models, which imposes restrictions on the deployment of
such models in practice. Low complexity classification models suit-
able for running on-device in mobile phones or general purpose com-
puters might be more appropriate in order for it to be useful to the
majority of the population. Behaviour of different speech cues under
the constraint of low complexity classifiers is not well analyzed yet.

Experiments related to the existing classification methods have
been mostly carried out on clean speech recorded in controlled and
noise-free laboratory or hospital environments. However, presence
of background noise in the speech data is inevitable while deploy-
ing these systems in practical scenarios like home-based monitoring.
Noise often buries or alters the distinctive information present in the
signal, thereby leading to mis-classification which may prove to be
fatal in cases. Robustness of the speech cues against different vari-
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ants of noise is yet another unexplored area in this field of research.
This work aims to explore the behaviour of different speech cues

under the influence of background noise and the constraint of low
complexity classifier. We particularly focus on pitch and MFCC for
this purpose. The suitability of MFCC for classification of HCs and
patients with ALS/PD is already well established. Pitch, on the other
hand, has not been explicitly used as a feature of speech in this con-
text, though it has been reported to get affected as a prosodic compo-
nent of speech in these diseases [16, 17]. We experiment with these
two speech cues using CNN-LSTM classifier [11] of three differ-
ent levels of complexity at four different signal-to-noise ratio (SNR)
conditions. Though MFCC is proven to perform well in literature,
it is high dimensional and prone to alter in additive noise condi-
tions. Pitch, on the contrary, is single dimensional and noise robust
pitch estimation algorithms like PEFAC [18] and SWIPE [19] exist.
Hence, pitch could be better suited under the constraints of noise and
model complexity. We do not consider fusion of multiple features in
this work as that increases the computational complexity and, hence,
is less suitable for resource constrained applications.

2. DETAILS OF THE STUDY

We consider two different classification tasks in this study, namely,
ALS vs. HC and PD vs. HC classifications, the features and classi-
fiers for which are summarized in the subsections below along with
various noise conditions and classifier complexities.

2.1. Features

Pitch, associated with prosody, and MFCC, representative of spec-
tral properties, are considered as features for classification in this pa-
per. Pitch pattern captures speaking rate along with other prosodic
features. Since both ALS and PD lower the speaking rate of an in-
dividual, cues related to these diseases can be learned from pitch
patterns using data-driven DNN models. Another typical symptom
of these two diseases is muscle weakening. This affects the precise
movements of articulators like lips and tongue, resulting in improper
vocal tract shape, thereby altering spectral characteristics. MFCC is
used to learn cues indicative of this aspect of the impairment.

2.2. Classifier

A CNN-LSTM based deep neural network classifier, following [11],
is adapted in this work. ALS and PD affect the paralinguistic char-
acteristics of speech in a suprasegmental level. The CNN-LSTM
model can extract these suprasegmental features from frame level
acoustic features in a data-driven manner. The classifier, as shown
in Fig. 1, operates on feature chunks obtained from speech seg-
ments with overlapping frames. The initial 1D-CNN layer, followed
by maxpooling, extracts local and time-invariant patterns from frame
level acoustic features using temporal convolution. The temporal dy-
namics of the feature sequence is then captured by the LSTM layer.
The hidden state outputs of the LSTM at the last frame index are
then passed through a dense layer with softmax activation to obtain
the decisions (class labels). During inferencing, majority voting is
performed over all segments of test speech utterance.

2.3. Classifier Complexity

High model complexity in terms of both memory and runtime be-
comes a major concern while deploying complex deep neural net-
work models in systems with limited computational resource like
mobile phones. The memory complexity is quantified by the number

Feature
extraction

CL ML LL DL

Majority
voting

MFCC/Pitch Feature
Chunks

CNN-LSTM 
Classifier

Decisions 
(0,1,1)

ALS/PD

HC

Fig. 1. ALS/PD vs HC classification system; here CL: CNN layer,
ML: Maxpooling layer, LL: LSTM layer, DL: Dense layer

of parameters (#params) of the network, while the time complexity is
measured as the number of floating point operations (FLOPs) needed
by the network. In this work, we analyze CNN-LSTM models of
three different levels of complexity - low, medium and high. These
are obtained by varying number of filters in the CNN layer, number
of LSTM layers as well as the number of units in each LSTM layer.

2.4. Noise Conditions

Speech recordings obtained outside controlled environment are
prone to various background noises, thus requiring the ALS/PD pre-
diction system to be noise-robust. We study the relative suitability
of pitch and MFCC features for such noise-robust classification. We
consider two different settings in this context, matched and mis-
matched train-test conditions. In matched case, the noise and SNR
of the data used in training and testing the classifier are matched. In
case of mismatched condition, classifier trained with clean data is
used to test both clean and noisy test samples. Although the matched
condition is expected to produce better classification accuracy, we
consider the mismatched case to examine the generalization ability
of the classifier to unseen environmental conditions. This is par-
ticularly useful as it is not practically feasible to train classifiers in
numerous possible noise types and SNR conditions.

3. DATASET

Speech data used in this work were collected at National Institute
of Mental Health and Neurosciences (NIMHANS), Bengaluru, In-
dia. The data collection protocol was reviewed and approved by the
Ethics committee of NIMHANS. Each subject signed a consent form
prior to the data collection. Table 1 summarizes the gender and age
statistics of the subjects of three classes, namely ALS, PD and HC,
who participated in the data collection sessions. Diagnosis of ALS
(El Escorial criteria) or PD for the subjects considered in this work
was made by Neurologists at NIMHANS. The subjects had six dif-
ferent native languages, namely, Bengali, Hindi, Odiya, Tamil, Tel-
ugu and Kannada, with approximately equal proportion of subjects
belonging to each language. Spontaneous speech recordings were
collected from each subject as they talked about a festival they cel-
ebrate and a place that they have recently visited for approximately
one minute each in their native language. The subjects were given a
few minutes of preparation time before they started. Four different
speech tasks namely spontaneous speech, sustained phoneme pro-
duction, diadochokinetic task and image description task have been
considered in literature [10, 11, 15]. However, in this work we con-
sider only spontaneous speech since pitch modulation during this

Table 1. Gender and age details of subjects

Condition Gender Age range
(years)#Male #Female

ALS 38 21 36 - 75
PD 45 14 35 - 79
HC 44 16 22 - 53
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task happens naturally as the subject speaks unlike other tasks where
the pitch pattern is primarily influenced by the target stimulus of the
task. The speech data were recorded at 44.1 kHz using Zoom H-6
recorder with XYH-6 stereo X/Y capsule high quality unidirectional
microphone [20] from a distance of 2 feet from the subject. The data
were then downsampled to 16 kHz for all further processing. A total
of 5.62 hours of recordings were obtained.

4. EXPERIMENTAL SETUP

4.1. Pitch Estimation

Two well known pitch estimation algorithms - SWIPE [19] and PE-
FAC [18], are used to estimate pitch values every 10 ms. We partic-
ularly use the SWIPE’ variant [19] in this work, though it is referred
to as SWIPE in this work. SWIPE is set to estimate pitch by search-
ing in the range of 75-500 Hz with a resolution of 48 steps per oc-
tave. The spectrum is computed using Hann window with 50% over-
lap and sampled every 1/20th of equivalent rectangular bandwidth
(ERB). Pitch estimates with strength lower than 0.2 for clean speech
and 0.15 for noisy speech are treated as undefined and correspond to
unvoiced/silence regions. In case of PEFAC, a pitch estimate is con-
sidered to correspond to unvoiced/silence region if the probability of
that frame being voiced is less than 0.3 for clean speech and 0.35 for
noisy speech. In case of both algorithms, the pitch estimates for un-
voiced/silence regions are replaced by 0s. The pitch contours in the
voiced regions are further smoothed using 5-point moving average.

4.2. MFCC Computation

MFCC features are computed using 20 ms frame length with 10 ms
overlap. We use 13-dimensional MFCC along with first and sec-
ond order differences resulting into a 39-dimensional feature vector.
KALDI speech recognition toolkit [21] is used for this purpose.

4.3. Model Configurations and Noise Conditions

We consider CNN-LSTM classifiers having three different levels of
complexity - low, medium and high. At each level, the model ar-
chitectures for both pitch and MFCC are tuned by optimizing the
validation accuracy, while at the same time maintaining the #params
and FLOPs close in case of both features. Fig. 2 shows the exact
configuration adapted in each case. For instance, the medium com-
plexity model for pitch has an initial 1D-CNN layer (CL) with 35
filters (NF) each of size 20 (FS). ReLU is used as the non-linear ac-
tivation here. This layer thus corresponds to a total of 735 weights
and bias parameters. This is followed by a maxpooling layer (ML)
that performs the pooling operation over a window size of 4 (PS).
The subsequent LSTM layer (LL) has 32 cells, thus accounting for
8704 parameters. The final dense layer (DL) with 2 units and soft-
max activation adds another 66 parameters. Hence this architecture
involves a total of 9505 parameters, all of which are estimated during
training. It is to be noted here that LL contributes the most towards
the total parameter count. FLOPs count for each model configura-
tion is also mentioned in the figure.

In order to simulate noise conditions, the white Gaussian noise
is added to each speech utterance at SNRs of 0, 5, 10 and 20dB.

4.4. Train-Test Configuration

Experimental evaluation is done in a 5-fold cross validation setup.
All subjects are evenly divided into 5 groups, each comprising al-
most equal number of subjects from ALS/PD and HC classes. Each
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Fig. 2. Configurations of CNN-LSTM models used with pitch and
MFCC for different levels of complexity; here CL: CNN layer, ML:
Maxpooling layer, LL: LSTM layer, DL: Dense layer, FS: Filter size,
NF: Number of filters, PS: Pooling window size, NC: Number of
LSTM cells

group is balanced w.r.t. age, language and disease severity. In ev-
ery fold of cross validation, data of 3 groups of subjects are used
in training while data of 1 group are used in validation. The re-
maining group is used for testing. Thus, testing is done in unseen
subject condition. Speech features (pitch/MFCC) are chunked into 2
sec segments with 1 sec overlap. The chunked data are then used for
training and testing the CNN-LSTM models. The models are trained
using binary cross entropy loss function and Adam optimizer with a
learning rate of 0.001. Training is done for a maximum of 60 epochs.
Early stopping based on validation loss with a patience of 5 is em-
ployed for regularization purpose. Batch size is kept at 32. Mean and
standard deviation (SD) of classification accuracy over the 5 folds
of evaluation are used as the performance metrics. Wilcoxon signed
rank test [22] is performed to examine if the classification accuracies
obtained using pitch and MFCC are significantly different across 5
folds. For this purpose, test cases from all 5 folds are divided into
15 random groups of equal sizes and classification accuracies in all
of these groups are considered. The classification accuracies using
pitch and MFCC are reported to be significantly different if the ob-
tained p-value from the Wilcoxon signed rank test is less than 0.05.

5. RESULTS & DISCUSSION

Fig. 3 shows the classification accuracies for two classification tasks
considered, e.g. ALS vs. HC and PD vs. HC, under different settings
of model complexity and noise conditions. Fig. 3(a) illustrates the
results for matched train-test condition. It can be observed that the
average accuracies obtained using the pitch estimated by SWIPE are
higher than those obtained for the pitch estimated by PEFAC under
all cases of model complexity and noise conditions in both classifi-
cation tasks. This suggests SWIPE to be more appropriate for pitch
estimation for the classification task at hand. It has been reported in
[23] that the voicing decision error made by PEFAC is higher than
that of SWIPE under both clean and additive white Gaussian noise
conditions. Since speaking pattern is expected to carry important
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Fig. 3. Classification performance for varying model complexity and
noise condition; SD of accuracy is indicated by error bar; here red
stars (?) indicate the cases where performance of pitch (SWIPE) and
MFCC differ at 5% significance level (i.e., p < 0.05 in Wilcoxon
signed rank test)

information for ALS/PD vs. HC classification, the erroneous voic-
ing decisions might lead to an inferior classification performance
using PEFAC than SWIPE. Hence, we consider SWIPE only for the
rest of the experiments and discussion. Wilcoxon signed rank test is
also performed between accuracies obtained using MFCC and pitch
computed by SWIPE. It can be observed from the figure that un-
der clean condition, MFCC outperforms pitch in case of high and
medium complexity models for ALS vs. HC classification. In all
other cases, both features achieve similar performances. This fur-
ther indicates that though pitch is a one-dimensional feature, it is
as informative as MFCC for these particular classification tasks in
most cases, especially when low complexity classifiers are consid-
ered. With decrease in SNR level, mean accuracies obtained by both
pitch and MFCC drop for both ALS vs. HC and PD vs. HC classi-
fications in most of the cases. Although the difference in the perfor-
mances obtained by the two features under the influence of noise is
not statistically significant here, in case of low complexity models,
drop in the performance of pitch is less than that in case of MFCC.
Moreover the SD of accuracy is much higher for MFCC, which in-
dicates pitch based classifiers to be more consistent under noise and
complexity constraints.

Fig. 3(b) presents the classification accuracies obtained under
mismatched train-test configuration. It can be observed that the av-
erage performance obtained using pitch in this case is similar to that
obtained in case of matched train-test setting. However, performance
of MFCC drops w.r.t. those achieved in matched case. It can further
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Fig. 4. Illustration of pitch and MFCC obtained from a 10 sec speech
segment of an ALS patient under clean and 0dB SNR conditions

be noticed that the average classification accuracy using pitch re-
mains mostly unchanged with decreasing SNR levels, whereas per-
formance using MFCC deteriorates drastically as the level of noise
present in the signal increases. This trend is present in the case of all
model complexities considered for both ALS vs. HC and PD vs. HC
classifications. This indicates the inherent robustness of the pitch es-
timates to the background noise. This is attributed to the noise robust
nature of the pitch extraction algorithm considered (SWIPE). The
pitch trajectories obtained under noisy and clean conditions are rea-
sonably similar, leading to similar test performances when the clas-
sifier models trained with clean data are used. However, MFCC gets
severely affected by additive noise, leading to significantly different
feature estimates obtained during clean and noisy speech conditions.
Due to the change in the feature estimates under noisy condition, the
classifier model trained with clean data fails to make correct classifi-
cations in noisy case. Fig. 4 provides an evidence for the reasoning
above. Figure illustrates a 10 sec segment of speech data recorded
from an ALS patient. The data is examined under clean and 0dB
SNR conditions. It can be observed that the pitch trajectories ob-
tained in both cases appear similar. On the contrary, changes in the
MFCC values are visually noticeable. These observations suggest
that pitch equips the classifiers with better generalization abilities to
different SNR conditions in case of both ALS vs. HC and PD vs.
HC classifications.

6. CONCLUSION
This work presents a comparative study of the performance of two
different speech features - pitch and MFCC for the purpose of clas-
sifying HC and patients with ALS and PD under two limiting condi-
tions - low complexity classifiers and presence of background noise.
Pitch is observed to provide similar level of distinctive information
as MFCC in clean and matched train-test conditions. In case of mis-
matched train-test, pitch is found to be more noise robust and pro-
vides the classifiers with better generalization ability to unseen SNR
conditions. Since no language specific bias is introduced in the ex-
perimental design, the results are expected to hold for all native lan-
guages. In future, we would like to examine the noise robustness of
different speech features in various additive noise conditions as well
as real noisy recordings. Future work for this study would also in-
volve experimentation using denoising algorithms in both matched
and mismatched cases.
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