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Abstract

Goodness of pronunciation (GoP) is typically formulated with
Gaussian mixture model-hidden Markov model (GMM-HMM)
based acoustic models considering HMM state transition prob-
abilities (STPs) and GMM likelihoods of context dependent
phonemes. On the other hand, deep neural network (DNN)-
HMM based acoustic models employed sub-phonemic (senone)
posteriors instead of GMM likelihoods along with STPs. How-
ever, each senone is shared across many states; thus, there is
no one-to-one correspondence between them. In order to cir-
cumvent this, most of the existing works have proposed modifi-
cations to the GoP formulation considering only posteriors ne-
glecting the STPs. In this work, we derive a formulation for the
GoP and it results in the formulation involving both senone pos-
teriors and STPs. Further, we illustrate the steps to implement
the proposed GoP formulation in Kaldi, a state-of-the-art au-
tomatic speech recognition toolkit. Experiments are conducted
on English data collected from Indian speakers using acoustic
models trained with native English data from LibriSpeech and
Fisher-English corpora. The highest improvement in the corre-
lation coefficient between the scores from the formulations and
the expert ratings is found to be 14.89% (relative) better with
the proposed approach compared to the best of the existing for-
mulations that don’t include STPs.

Index Terms: Goodness of pronunciation, Pronunciation eval-
uation, DNN-HMM acoustic model, Computer-aided pronunci-
ation training.

1. Introduction

English is a commonly used language for business [1] and
cross-cultural communications. In the process of learning En-
glish, non-native English learners could benefit from Computer-
aided pronunciation training (CAPT) [2], instead of relying on
a handful of available human teachers [3]. CAPT helps the non-
native learners by automatically evaluating their pronunciation.
There is a large number of research works on CAPT to evalu-
ate the non-native learner’s pronunciation. Most of these works
assumed that acoustic properties in the learner’s pronunciation
are similar to a native English speaker’s acoustics when their
pronunciation quality is high and vice-versa. Considering this,
for each phoneme’s in a learner’s utterance, a representative
score was proposed based on two approaches — 1) likelihood
of uttered phoneme given the phoneme model trained with na-
tive English speakers’ acoustics [4-6], 2) posterior probability
of the phoneme models given uttered phoneme speech acous-
tics [7], called as goodness of pronunciation (GoP). Between
the two, the score computed based on GoP has been shown to
be effective in most of the CAPT related works [8].

Witt et al. [7] defined GoP and computed a score from the
formulated GoP using Gaussian mixture model-hidden Markov
model (GMM-HMM) based native acoustic models. Following
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this, most of the works made improvements either by proposing
variants to the GoP based formulation or by improving qual-
ity of the native acoustic models. In the works related to the
former, Zhang et al. [9] used scaled log-posteriors in place of
posteriors to compute the score. Luo et al. [10] formulated the
GoP using the selected state sequence obtained from forward-
backward algorithm. Wang et al. [11] used the GoP formula-
tion proposed by Witt et al. [7] with error pattern detectors in
phoneme mispronunciation diagnosis task. On the other hand,
in the works related to improving the quality of native acoustic
model, several techniques were used including discriminative
training algorithms such as maximum mutual information esti-
mation (MMIE) [12], minimum classification error (MCE) [13],
minimum phone error (MPE) and minimum word error (MWE)
[14]. However, the improvements with these were found to be
limited [15, 16].

Recent works showed that the pronunciation evaluation
based on the score computed using deep neural network (DNN)-
HMM based acoustic models has a significant performance im-
provement compared to that using GMM-HMM based acous-
tic models [17]. This could be because of the better modelling
strategies in DNN-HMM, which results in significant improve-
ment in the word error rate (WER) compared to those obtained
with GMM-HMM models [18]. Following this, most of the
works used DNN-HMM acoustic models in the score compu-
tation. However, the DNN-HMM models involved with sub-
phonemic (senone) posterior probabilities and those cannot be
mapped directly with HMM state transition probabilities be-
cause each senone is shared across many states [19]. Due to this,
DNN-HMM based formulations introduced variants to the GoP
without considering transition probabilities [17,20-22]. Wen-
ping et al. computed the scores using senone posterior proba-
bility [17]. They also proposed another score by including the
senone prior probabilities [20]. Further, the score as well as
the features computed based on these score were used in the
mispronunciation detection [23] considering transfer learning
approach and pronunciation evaluation [22].

Most of the existing DNN-HMM based works heuristi-
cally neglect the transition probabilities. However, the effect
of these probabilities are not explored in the score computation
in the pronunciation evaluation. In order to address these, in
this work, we derive a formulation for GoP under DNN-HMM
based setup using both the senone posterior probabilities and
transition probabilities. In addition, we show the feasibility
of the proposed formulation even when each senone is shared
across many states by implementing it in Kaldi [24], a state-
of-the-art open resource automatic speech recognition toolkit.
Experiments are conducted on the data collected from the In-
dian learner’s considering correlation coefficient between the
scores from GoP formulations and the human expert ratings as
the performance measure. In the experimentation, we consider
two native DNN-HMM acoustic models trained with the speech
data from LibriSpeech (LS) [25] and Fisher-English (FE) [26]
corpus. For the comparison, we consider three GoP formula-
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tions suggested in the work proposed by Wenping et al. [17,20]
and Huang et al. [22] as the baseline, which do not include tran-
sition probabilities in their formulation. The correlation coeffi-
cients obtained with the proposed GoP formulations are found
to be 0.637 and 0.409, which are 2.91% and 14.89% higher than
the best among all the three baselines using the LS and FE based
native models respectively.

2. Proposed approach
2.1. DNN-HMM modeling

In a Context-Dependent (CD) DNN-HMM [27] based acoustic
model, the DNN output layer represents the posterior probabil-
ity, P(s|0) of each senone, (s) given the uttered acoustic obser-
vation sequence O. The total number of output nodes in DNN
is equal to the total number of senones. Each HMM represents
a left-to-right three state model. HMM states encode acoustic
characteristics of senones. Typically, in the left-to-right HMM,
each state is connected to itself by a self-loop transition proba-
bility and to the next state by a cross-state transition probability.
It is observed that in a DNN-HMM acoustic model, due to state
sharing of HMMs, each senone can be associated with many
state transition probabilities. Hence, it is non-trivial in DNN-
HMM acoustic model to obtain a one-to-one correspondence
from senone to state transition probability.

2.2. Basic GoP and its formulation

As proposed by Witt et al. [7], the GoP was defined for each
phoneme p as follows:

GoP(p) = | log P(p/0)| 1)
which is the duration normalized absolute log of posterior prob-
ability of phoneme p given the acoustic observation sequence
O = {04,V1 < t < T} belonging to a speech segment
of the phoneme p, where, T is the total number of frames in
the phoneme segment. They showed the effectiveness of the
GoP for pronunciation evaluation formulated with GMM-HMM
acoustic model as follows:

P(Olp)P(p)
> 4o P(Olg)P(q)

where @ is the complete phoneme set, P(p) is the prior of
phoneme p and P(O|p) is the likelihood of acoustic segment O
given phoneme p. Typically, this equation is formulated based
on forward-backward algorithm [20].

However, in the recent past, DNN-HMM acoustic mod-
els were shown to be effective than the GMM-HMM models
in speech recognition. Considering this and the effectiveness
of the GoP in the pronunciation evaluation, different approxi-
mated formulations were proposed to implement the GoP us-
ing DNN-HMM models. This could be because of the com-
plexity involved in formulating likelihood at the phoneme level
as in Equation 2, in terms of senone posterior and transition
probabilities. Instead, in this work, we derive a formulation for
GoP as defined in Equation 1 in terms of senone posterior and
transition probabilities and show that it can be implemented in
Kaldi toolkit. We also provide a python wrapper to compute
the score from the GoP formulation considering DNN-HMM
models from the toolkit'. Availability of this open-source im-
plementation would contribute to the CAPT related research.

@

log P(p|0)' = 1 ‘log

1
T T

1 https://github.com/sweekarsud/Goodness-of-Pronunciation
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2.3. Proposed formulation

Similar to the existing works on the GoP formulation using
DNN-HMM models, we obtain the senone sequence S =
{st,V1 <t < T} in a phoneme segment p with observation
sequence O using forward-backward algorithm [17]. Assuming
that the senone sequence s is known, the posterior probability
P(p|0) in the GoP in Equation 1 can be written in terms of the
senone sequence s and acoustic sequence O as follows:
P(p|0) = P(S|O) = P(Sl, 82, .euy ST|017 027 ceny OT) (3)
In the typical left-to-right HMM, the current state only depends
on the previous state and the current observation is associated
only with the current state. Considering this left-to-right as-
sumption [28], Equation 3 can be simplified as follows:

P(s1|01) P(s2|02, s1)

P(p|0) = P(51|01,0x, ...,01) P(52|01, Oa, ..., Or, 51)
P(s3,54, ..., 57|01, Oa...,Or, 51, 52)

T
- p(sl‘ol) HP(St‘OhSt—l)

t=2

C))

The product term in Equation 4, P (s¢|O¢, s¢—1) can be written

as:

P(St, Oz|St_1)
P(Ot|8t71)

The numerator in Equation 5 can be rewritten as
P(st|st—1)P(O¢st, St—1). Considering the assumption
of the current acoustic observation (O;) is associated with
only the current state, P(O¢|st, si—1) and P(O¢|si—1) (the
denominator in Equation 5) can be written as P(O|s;) and
P(O¢) respectively. Following this, we apply Bayes’ rule
which results in Equation 6.

P(s¢|O¢, 5:-1) = 5)

P(O¢st)
P(O¢)

P(s¢|O¢)

=P o)
(stlst—1) P(s0)

Q)

Substituting Equation 6 in Equation 4 gives the following equa-

tion:

P(st\Ot, St—l) = P(St‘st—l)

P(St'Ot) tlf[QP(st|st_1)

=

P(plO) =

— @)
[1 P(s¢)
t=2

In Equation 6 and 7, the term P(s;) is the prior probability of

senone. Assuming all senones are equally likely and incorpo-
rating Equation 7 in Equation 1 results in as:

T
GoP(p) = % {ZlogP(sJOt)
t=1
- (3
+ Zlogp(sﬂst,l) +(T'—1)logn

t=2

where n is the total number of senones in the DNN-HMM
acoustic model. From the equation, it is observed that the GoP
formulation involves both the senone posterior probabilities and
transition probabilities.

2.4. Relation with existing DNN-HMM based works

In the literature, there are three major works that formulate the
GoP based on DNN-HMM acoustic model. From each of these
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Figure 1: Block Diagram of Proposed GOP method Implemen-
tation

works, we consider the equation that has the highest perfor-
mance and discuss the relation between them and the proposed
GoP formulation. We also compare the effectiveness of the pro-
posed GoP formulation with them.

Wenping et al. [17] formulated the GoP as:

T T
1
GoP(p) = T E logP(Ot\p)f{qegaf#}E log P(O¢lq)| (9)
t=1 ’ t=1

The term P(O¢|p) is the frame based likelihood of acoustic
observation O; given phoneme model p. The second term in
the equation is heuristically simplified from the denominator in
Equation 2. Moreover, it is easy to observe that in Equation 9
there is no transition probability involved in the formulation un-
like the proposed GoP. The same authors in another work [20]
have proposed the GoP formulation considering senone poste-
riors and priors as:

T

:%Zlog

t=1

P(Sz ‘Ot)

GoP(p) Plst)

10)

Further, Huang et al. [22] considered the GoP formulation as
below proposed by Wenping et al. [21]:

T
GoP(p) = % > “log P(s:|0:) (11)
t=1

Comparing 10 and 11, Equation 10 is related to the proposed
GoP formulation without considering transition probabilities
and no assumption on senone prior was considered as in Equa-
tion 8. Further, Equation 11 is obtained by removing senone
priors and transition probabilities.

2.5. Implementation aspects

In order to implement the proposed GoP formulation using
Kaldi toolkit, we follow the four steps illustrated in Figure 1. In
the first step, we compute 40 dimensional mel frequency cep-
stral coefficients (MFCC) and 100 dimensional i-vector from
non-native speech signal of a phoneme segment and consider it
as the acoustic observation sequence. In the second step, we ob-
tain posterior probabilities for all set of senones in the acoustic
model with DNN based script>. Further, for the spoken utter-
ance, we obtain senone sequence that are encoded in a sequence
of fine grained HMM states, typically known as transition-id’s
[29], using forward-backward algorithm with aligner script’. In
the third step, we decode the senone sequence and its respective
transition probabilities from the transition-id sequence using a
look-up table which contains the mapping between transition
id’s and senones. We obtain the look-up table using show tran-
sition script*. Following this, we obtain posterior probabilities
for the decoded senone sequence selected from the senone pos-
terior probabilities. In the fourth step, we obtain the proposed

2htlps://github.com/kaldi—asr/kaldi/blob/ma\ster/src/nnethin/rmet—am—comput&cc
3htlps://github.com/kaldi»asr/kaldi/blob/master/egs/wsj/sS/steps/online/nnet2/align4sh
4htlps://github.com/kaldi»asr/kaldi/blob/master/src/bin/show-trzmsitions.cc
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GoP formulation in Equation 8 using the transition and selected
senone probabilities sequence.

3. Database

In this work, we consider a read English corpus collected from
16 Indian learners who were in the spoken English training at
the time of the recording. Due to the language diversity in In-
dia, we consider the learners from six different native languages
— Malayalam (MAL), Kannada (KAN), Telugu (TEL), Tamil
(TAM), Hindi (HIN) and Gujarati (GUJ). There are a total of
4 (3+1), 5 (1+4), 3 (2+1), 2 (2+1), 1 (0+1) and 1 (0+1) speak-
ers (male + female) from each of these languages respectively.
All the learners were either undergraduate or postgraduate stu-
dents whose age ranges from 19 to 25. Each learner read 800
stimuli out of which 415 are single word stimuli and 385 are
multiple word stimuli. Thus, a total of 12800 utterances are
present in the corpus. A spoken English expert manually rated
each utterance on a scale of 5 to 1, where the rating 5, 4, 3, 2
and 1 indicates there is negligible, low, average, considerable
and high native language influence in the learners pronuncia-
tion respectively. The expert is a spoken English trainer with an
experience of 25 years. In all the ratings of 12800 utterances,
2585, 2656, 2957, 2364 and 2238 utterances are assigned with
rating 1, 2, 3, 4 and 5 respectively. Further, in order to know the
consistency of the expert, we randomly repeat 1200 utterances.
The expert is found to have more than 70% consistency in the
ratings of repeated stimuli.

Further, for learning native acoustic models, we use speech
data from LS and FE corpora. The LS corpus contains 960
hours of data in the train set. The LS data is read speech
recorded from 2238 native English speakers. On the other hand,
the FE data is telephonic conversational speech recorded from
12401 native English speakers. This data contains 1600 hours
in the train set.

4. Experimental results
4.1. Experimental setup

We consider the GoP formulations in Equation 9, 10 and 11
taken from the existing works as the baseline formulations, re-
ferred to as BL-1, BL-2 and BL-3 respectively. We consider
Pearson correlation coefficient [30] between the scores from the
GoP formulations and expert ratings as the measure. In general,
the scores are defined at phoneme level [7]. However, in this
work, we require a score representing the entire utterance con-
taining single and multiple words. Following the work by Wen-
ping et al. [17] we compute the scores for single word utterances
by averaging the scores of all phones in the word. Similarly, the
scores for multiple word utterances are computed by averaging
the scores of all the words in the utterance. We consider two
DNN-HMM based acoustic models separately trained with LS
and FE data from LS Corpus [25] and FE Corpus [26]. We use
Kaldi toolkit [24] to train both the DNN-HMM acoustic mod-
els considering the architecture as provided in Dan’s (Daniel
Povey) recipe [31]. From these models, it is observed that the
DNN output dimensions are found to be 5745 and 7864 respec-
tively in the LS and FE based acoustic models.

4.2. Results and discussion

Table 1 shows the correlation coefficient computed between the
expert ratings and the scores from GoP formulations obtained
from the three baselines and the proposed approach. The corre-
lation coefficients are computed considering male (M), female
(F) and all (A) the speakers respectively using two native acous-



tic models trained with LS and FE data respectively. From
the table, it is observed that the correlation coefficient obtained
from the proposed formulation is higher than that from all the
three baselines for both the acoustic models across male, female
and all speakers. This indicates that the proposed GoP formula-
tion is better than all the three baseline formulations.

Table 1: Correlation coefficient between the scores obtained
from the GoP formulations and the expert ratings with differ-
ent acoustic models considering male (M), female (F) & all (A)
the speakers

for multiple words, the correlation coefficient of the proposed
approach is comparable with Baseline 2 & 3. This indicates the
benefit of using the proposed approach for single and multiple
words. From the table, it is also observed that the correlation
coefficient is greater for single word than multiple words for all
the three baselines and the proposed formulation. This could
be because, in multiple word level scoring, the scores obtained
from all the words are considered with uniform weights; how-
ever, that may not be the best strategy.

Table 3: Correlation coefficient between the scores obtained
from the GoP formulations and the expert ratings with different

BL-1 BL2 BL3 PA acoustic models calculated across different native languages
LS FE LS FE LS FE LS FE
M | 0.468 | 0.305 | 0.623 | 0.358 | 0.637 | 0.401 | 0.653 | 0.452 BL-1 BL-2 BL-3 PA

F | 0.434 | 0.266 | 0.593 | 0.306 | 0.605 | 0.343 | 0.624 | 0.396 LS FE LS FE LS FE LS FE
A 10453102731 0.606 | 0316 | 0.619 | 0.356 | 0.637 | 0.409 MAL | 0.425 | 0.221 | 0.585 | 0.289 | 0.606 | 0.334 | 0.631 | 0.394
KAN | 0.421 | 0.241 | 0.592 | 0.271 | 0.605 | 0.317 | 0.621 | 0.368

. . . . TAM | 0.442 | 0.230 | 0.603 | 0.281 | 0.619 | 0.340 | 0.650 | 0.418

The correlation coefficient is higher for the proposed ap- TEL 10515 | 0344 1 0.663 1 0409 [ 0.671 | 0.436 | 0.679 | 0.475
proach and this could be because the proposed approach con- HIN | 0.439 | 0312 | 0.554 | 0.329 | 0.563 | 0.359 | 0.584 | 0.412
siders transition probabilities and senone state posteriors. The GUJ | 0.398 | 0.275 | 0.551 [ 0.241 | 0.550 | 0.271 | 0.561 | 0.316

lower correlation coefficient obtained by Baseline 2 & 3 com-
pared to the proposed approach could be because both Baseline
2 & 3 ignores the transition probabilities. This indicates the
importance of transition probabilities in GoP formulation. Ad-
ditionally, a higher correlation coefficient for Baseline 3 com-
pared to the other two baselines could be because Baseline 3
ignores senone priors unlike Baseline 2 which considers senone
priors. It is also observed that Baseline 1 has got the least
correlation coefficient among the three baselines and the pro-
posed approach and this indicates that using the senone pos-
terior based GoP formulation yields better results than using
the likelihood based GoP formulation. From the table, it is
observed that the correlation coefficients are higher for all the
three baselines and proposed method in the case of acoustic
model trained with LS than FE data. This could be because
LS corpus is recorded in read speech condition which matches
with data considered in this work which is also recorded in read
speech condition. However, FE corpus is recorded in telephonic
conversational condition and hence a lower correlation coeffi-
cient is observed. It is interesting to observe that the correlation
coefficient is higher for all the male speakers’ speech.

Table 2: Correlation coefficient between the scores obtained
from the GoP formulations and the expert ratings with differ-
ent acoustic models for multiple words (MW) and single words
(SW)

BL-1 BL-2 BL-3 PA

LS
0.4687
0.5229

FE
0.3603
0.4314

LS
0.5286
0.6111

FE
0.3913
0.4914

LS
0.5283
0.6263

FE
0.4002
0.5015

LS
0.5210
0.6272

FE
0.4099
0.5072

MW
SW

Table 2 shows the correlation coefficient computed between
the expert ratings and the scores from GoP formulations ob-
tained from the three baselines and the proposed approach.
The correlation coefficients are computed considering multi-
ple words and single word separately using two native acoustic
models trained with LS and FE data respectively. From the ta-
ble, it is observed that the correlation coefficient obtained from
the proposed approach is higher than that from all the three
baselines for both the acoustic models considering single word.
This indicates that the proposed approach is better than all the
three baseline schemes for single word. It is also observed that
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Table 3 shows the correlation coefficient computed be-
tween the expert ratings and the scores from GoP formulations
obtained from the three baselines and the proposed approach.
The correlation coefficients are computed considering six
different native language having sixteen different speakers
using two native acoustic models trained with LS and FE data
respectively. From the table, it is observed that the correlation
coefficient obtained from the proposed approach is higher
than that from all the three baselines for both the acoustic
models across six different native languages. This indicates
that the proposed method is better than all the three baseline
formulations irrespective of the native language of the learners.
In the table, it is observed that the correlation coefficient for
all the six native languages across all the speakers are closer
to the correlation coefficients mentioned in Table 1. However,
in the case of HIN and GUJ native language speakers it is
observed that the correlation coefficient is not similar to the
overall correlation coefficient mentioned in Table 1 and this
could be because both the native language speakers are female
and, as already stated, female speakers have a lower correlation
coefficient compared to the male speakers.

5. Conclusion

Considering the basic GoP definition, we derive a formulation
for implementing in DNN-HMM based native acoustic model,
which involves senone posterior probabilities and HMM state
transition probabilities. Unlike the existing works, we observe
that the derived formulation results in the product of senone
posterior and transition probabilities. Further, to address the
non-triviality of one-to-one correspondence between senones
and the states, we illustrate the step-by-step implementation
of the proposed GoP formulation. Experiments with the non-
native English data collected from Indian learners reveal that
the scores computed from the proposed GoP formulation bet-
ter correlates with expert ratings compared to that from three
baselines. Further investigations are required to develop bet-
ter strategies for improving the performance under mismatched
speech conditions in the native and non-native data. Future
works also include analysis of trade-offs between the improve-
ments and computational efforts involved in the proposed and
the baseline approaches using multiple speech corpora.
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