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ABSTRACT

A typical solution for the speech rate estimation consists of two
stages, which involves first computing a short-time feature contour
such that most of peaks of the contour correspond to the syllable
nuclei followed by the detection of the peaks of the contour corre-
sponding to the syllable nuclei. Temporal correlation selected sub-
band correlation (TCSSBC) is often used as a feature contour for
the speech rate estimation in which correlation within and across
a few selected sub-band energies are computed. In this work, in-
stead of a fixed set of sub-bands, we learn them in a data-driven
manner using a dictionary learning approach. Similarly, instead of
the energy contours, we use the activation profile from the learned
dictionary elements. We found that the peaks detected from the
data-driven approach significantly improve the speech rate estima-
tion when combined with the traditional TCSSBC approach using a
proposed peak-merging strategy. Experiments are performed sep-
arately using Switchboard, TIMIT and CTIMIT corpora. Except
Switchboard, the correlation coefficient for the speech rate estima-
tion using the proposed approach is found to be higher than those by
the TCSSBC technique – 3.1% and 5.2% (relative) improvements
for TIMIT and CTIMIT respectively.

1. INTRODUCTION

Automatic speech recognition (ASR) accuracy has been often shown
to improve by using estimated speech rate [1] [2], which results in
better human computer interface in the applications such as com-
puter assisted language learning (CALL) and fluency analysis [3]
[4]. Typically, speech rate is estimated by counting the number of
speech units per second. Most of the existing works in the literature
use syllable as the speech units [1] [5] [6]. The speech rate estima-
tion usually involves identification of the syllable nuclei locations
followed by syllable rate computation [7]. Generally the approaches
for the speech rate estimation are based on either acoustic feature [1]
[5] [6] [7] or ASR based recognition systems [3] [4] [8] [9]. The
ASR based methods involve decoding the speech signal into pho-
netic/syllabic transcription, following by the speech rate estimation.
However, ASR systems are not very reliable in the presence of noise
as well as for spontaneous speech especially where reference tran-
scription is not available [5]. Due to error in recognition, speech
rate based ASR model would accumulate the errors in recognition.
In such scenarios, acoustic feature based speech rate estimation is
preferred [1] [2].

A typical acoustic feature based approach consists of two steps:
1) computing a short-time feature contour such that most of the
peaks correspond to the syllable nuclei locations, 2) detecting the

peaks in the contour belonging to the syllable nuclei. For exam-
ple, Pfau et al. estimated the vowel locations based on prominent
peak locations in the smoothed loudness contour [10]. A Hilbert-
envelope-based contour was used by Zhang et al. to estimate the
syllable nuclei [11]. Landsiedel et al. proposed a contour based on
long-short-term-memory neural-networks [12]. Similarly, Jong et
al. used intensity-based envelope with simple peak counting based
on voicing decisions to estimate speaking rate [13]. Wang et al. in-
troduced a method by proposing a feature contour “temporal correla-
tion and selected sub-band correlation (TCSSBC)”, which involves
computing a spectral and temporal correlation [14]. As described
by Dekens et al. [15], the TCSSBC achieves the highest speech rate
estimation accuracy among other features.

The TCSSBC exploits formant-like structures by using 19 fixed
sub-band energy profiles. Temporal correlation and spectral corre-
lation (referred to as spectro-temporal correlation (STC)) are com-
puted on the selected sub-band energies to maximize the peaky na-
ture of the feature contour around the syllable nuclei. We hypothe-
size that instead of representing the spectral structures with a fixed
set of sub-band energies, learning those structural information in a
data-driven manner would be more effective. We observe that the
TCSSBC contour is often not peaky at the syllable nuclei because
the sub-band energy based representation is generic [16] in the sense
that it does not explicitly utilize the spectral structure of the acoustics
near the syllable nuclei. In contrast to a generic representation using
a fixed set of sub-bands, we aim to obtain representation based on the
spectral structure of selected acoustic units within syllable in a data-
driven manner. For learning the structural information of speech
spectra we use non-negative matrix factorization (NMF) in which a
set of bases (called dictionary) is learnt. The NMF has the ability to
learn the dictionary elements that capture intrinsic parts/structures in
the high-dimensional data [17]. This property has motivated us to in-
vestigate usefulness of the NMF in the speech rate estimation. A typ-
ical approach of NMF involves two steps – 1) learning a dictionary
matrix from the training data vectors that represents data structures,
2) representing new data vector sequence as a linear combination of
the dictionary elements using a set of activation weights [18].
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Fig. 1. Illustrative example for analyzing STC from synthetic matri-
ces with different sparsity and consistency values



We, in this work, compute a feature contour based on STC using
the activation matrix obtained from NMF. For a good quality speech
rate estimation, the feature contour should have a peak in every syl-
lable. This in turn requires that near the expected peak location of
the feature contour, the activation matrix is less sparse in each col-
umn & highly consistent in each row and near the valleys of the fea-
ture contour, the activation matrix is sparse and less consistent. In
Figure 1, we illustrate this observation using five synthetic matrices
each spanning 60 columns and the feature contours obtained from a
large matrix concatenating those five by applying STC (equation 1
and 2 proposed by wang et al. [14]). Ith synthesized matrix is de-
noted by S-i (shown above the top row in Figure 1), for which only
i elements in every column is non-zero. With increasing i, i.e., de-
creasing sparsity, we synthesize the matrices such that they are more
consistent in each row indicated by green horizontal stripes. These
consistent patterns are clearly seen in S-5 matrix indicated by green
horizontal stripes. The different values of STC for different matrices
suggest that the dictionary should be learnt in such a way that the
activation matrix for a test utterance is less sparse and more consis-
tent near the expected peak location within a syllable and sparse and
less consistent in the remaining portion of the syllable. This could
result in peaky feature contour in the targeted portion of the syllable.
A generic dictionary learnt from speech spectra of different sound
categories is found to be inappropriate for this purpose.

We, in this work, consider learning dictionaries from frames
of four different types of acoustic categories. We perform STC on
the activation matrix for computing feature contour called NMF-
TCSSBC. Peaks in the NMF-TCSSBC are detected by following
the steps of peak detection strategy proposed by Wang et al. [5]. We
propose a peak merging technique to combine the detected peaks
from the NMF-TCSSBC with the detected peaks from the TCSSBC.
The effectiveness of the proposed dictionary based (DB) approach
is demonstrated using three large corpora, namely, Switchboard
(SWBD) [19], TIMIT [20] and CTIMIT [21]. Experiments for the
speech rate estimation are performed on each corpus separately. The
proposed DB speech rate estimation achieves better performance in
comparison to the TCSSBC.

2. DATABASE

We use ICSI SWBD [19], TIMIT [20] and CTIMIT [21] corpora
for all experiments in this work. SWBD is a spontaneous speech
corpus consisting of sentences spoken by 370 speakers with a wide
range of speech rate, ranging from 1.26 to 9.2 syllables per second.
The audio in the SWBD corpus was collected through the telephone
channel. A subset of 7300 audio segments, each of duration greater
than 200ms, is used for our experiments. TIMIT is a read speech
database, which has phonetically balanced 6300 sentences spoken
by 630 speakers with a speech rate ranging from 1.44 to 8 syllables
per second. All sentences from the TIMIT are used for our experi-
ments. CTIMIT corpus is similar to TIMIT except that the audio was
collected through the cell phone channel under various noisy condi-
tions. All 3370 sentences from the CTIMIT, spoken by 630 speakers,
are used for our experiments. The speech rate in the CTIMIT sen-
tences ranges from 1.87 to 8 syllables per second. Using the avail-
able phonetic transcriptions, silent segments in the initial and final
parts of each sentence of all corpora are removed.

3. PROPOSED DICTIONARY BASED APPROACH

The steps involved in the proposed DB speech rate estimation are
described with the help of a block diagram in Figure 2. The block

diagram has two major stages – a) feature contour (NMF-TCSSBC)
computation; b) merging based peak estimation. The feature com-
putation stage generates smoothed NMF-TCSSBC (x(n) where n is
the frame index) from the speech signal using three steps. The first
step computes magnitude spectrogram (V ) of the speech signal. In
the second step, the activation matrix H is computed from V using
a dictionary W , which is learnt from the training speech spectra us-
ing NMF. The last step computes the NMF-TCSSBC fromH matrix
using equations 1 and 2 proposed by wang et al. [14]. This is fol-
lowed by smoothing of the contour using a low-pass filter. In the
second stage, peaks are detected from the smoothed NMF-TCSSBC
contour using voicing decision. In second stage, peaks are also es-
timated using TCSSBC following the work on robust speech rate
estimation (RSRE) [5]. The peaks from NMF-TCSSBC and RSRE
are finally merged to compute the speech rate. The details of the
dictionary learning and the main steps in two stages are discussed in
the following sub-sections.

Fig. 2. Block diagram summarizing the steps of the proposed DB
approach for speech rate estimation
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Fig. 3. Illustrative example to compare the dictionaries learnt from
vowels and all speech frames.

3.1. Dictionary learning using NMF

The dictionary is learnt from the training speech spectra using NMF
in which the non-negative magnitude spectrogram matrix V is fac-
torized as the product of two low rank (r) non-negative matrices
(≈ W × H). The W is called a basis or dictionary matrix, that
captures the structural bases of the training speech spectra. The H
is called weight or activation matrix, that contains the activations of
the projections of V on to the W matrix. The activations carry rich
information about the spectra of segments, which are acoustically



similar to the ones used for training the dictionary W . This is il-
lustrated with the help of Figure 3. The figure shows the factored
matrices obtained from a spectrogram belonging to the vowel oU us-
ing two different W matrices – a) dictionary learnt from the vowel
regions b) dictionary learnt from frames of all sound categories. In
the Figure 3a, the H has consistent activations across all the frames
and is less sparse, hence it results in high STC over all frames. In
contrary to this,H in Figure 3b has less consistent and sparse pattern
since a generic dictionary is used in this case. Though the W in the
Figure 3 is learnt from the vowel regions, we experiment with differ-
ent acoustic categories corresponding to broad phonetic classes and
determine the best one experimentally. Once W is learnt, the mag-
nitude spectrogram of the test utterance is factorized using NMF by
keepingW fixed. The obtainedH matrix used in the NMF-TCSSBC
computation.

3.2. NMF-TCSSBC

For computing NMF-TCSSBC using H matrix, we follow the steps
outlined by Wang et al. [14] for computing TCSSBC. We consider
r rows of H matrix as r sub-band energies and compute the NMF-
TCSSBC using the following steps – 1) apply the temporal correla-
tion on r rows; 2) selectM rows out of r rows with highest temporal
correlation and 3) compute correlation across the M rows. How-
ever, the resultant NMF-TCSSBC can have noisy peaks, referred to
as spurious peaks [5] [7]. We perform smoothning using Gaussian
window of length Ls with variance (σs) to remove spurious peaks
prior to peak detection.

3.3. Voicing based peak detection

Even after smoothing the NMF-TCSSBC contour, all peaks of the
contour might not belong to syllable nuclei. The peaks belonging to
syllable nuclei, called as syllabic peaks, are required to be detected
effectively by discarding other peaks not belonging to syllable nu-
clei, called as non-syllabic peaks. In this work for detecting syllabic
peaks in the NMF-TCSSBC contour, we use the peak detection strat-
egy followed in RSRE method, consisting of the following steps –
threshold (Tr) on the peak height with respect to neighboring largest
minima; threshold (Tdur) on minimum duration between the two
neighboring peaks; discarding the peaks belonging to the unvoiced
regions. The detected number of peaks might not be equal to the
number of syllables. The mismatch between the number of detected
peaks and the number of syllables also happens with other existing
techniques too [5] [7] [14]. However, the proposed DB method is
found to be complementary to the RSRE method in the sense that it
detects peaks which are not detected by the RSRE method. This is
illustrated with the help of an exemplary sentence Don’t ask me to
carry an oily rag like that taken from the CTIMIT corpus shown in
Figure 4. The figure shows the peaks detected by the proposed DB
method (magenta) and the RSRE method (green). In the figure, the
proposed DB approach detects extra peak at the syllable S9 where
the RSRE fails to detect. In such cases, merging the detected peaks
of proposed DB approach with those from RSRE in an effective way
could improve the speech rate estimation performance.

3.4. Peak merging

We propose a method to merge the syllabic peaks detected by RSRE
and proposed DB method. Although both methods may detect one
peak each within a syllable, the peak locations might not coincide.
For example, in the Figure 4 the detected peaks belonging to the syl-
lables S1 – S8, S10 – S12 do not fall at the same locations. Although
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Fig. 4. Illustrative figure for explaining the complementary nature of
the peaks detected from DB and RSRE methods. Si denotes the ith

syllable.
Algorithm 1 Peak merging algorithm

1: Inputs window length: Lw, peak location sets: X =
{x1, x2, ......, xN} and Y = {y1, y2, ......, yM},

2: Initialization: V = Y
3: for each location k in Y do

k∗ = argmin
i
|xi − yk|

4: if (xk∗ − Lw) ≤ yk ≤ (xk∗ + Lw) then
V = V \{yk}

5: end if
6: end for
7: Z = X ∪ V

their locations do not exactly match, they are closer compared to the
peaks of two neighboring syllables. Such proximity in locations are
indicated within cyan color boxes shown in the Figure 4. The peaks
in each box are merged in the proposed peak merging algorithm. The
steps involved in the peak merging are given in the Algorithm 1. The
window length (Lw) used in the algorithm is determined experimen-
tally. Following the steps in the algorithm, peak locations Z are
obtained by merging the peaks from the RSRE method (X ) and the
proposed DB method (Y ).

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

We consider the Pearson correlation coefficient (ρ) between the esti-
mated syllable rate and the ground truth syllable rate for every sen-
tence as the objective measure for evaluating the performance of
the proposed DB approach. We consider RSRE technique as the
baseline for the speech rate estimation. We learn NMF dictionar-
ies for SWBD and TIMIT separately using training sets consisting
of 100 audio segments selected randomly from each corpora. For
the factorization, we use ‘nmf kl’ function from the NMFlib v0.1.3
library [22] [23]. In the case of CTIMIT, we used the TIMIT dic-
tionary, because CTIMIT is the noisy audio data re-recorded from
the TIMIT1. For each corpus, 10 percent of randomly selected au-
dio utterances are considered as the development sets for all three
corpora. We learnt hyper-parameters – r, Gaussian window param-
eters (length Lt, variance σt) used in temporal correlation, Ls, σs,
Tr , Tdur and Lw – separately for each corpus such that ρ values
are maximized on the respective development set. Using these pa-
rameters, the performance is computed on test set containing entire
corpus data excluding the training and development sets.

4.2. Hyper-parameter optimization

We experiment with learning dictionaries using frames from differ-
ent categories of sounds. We choose regions belonging to vowels,

1Typically in the speech enhancement, NMF dictionaries are learnt from
the clean audio and then later those are used for the enhancement of noisy
data



Table 1. Optimal ρ values from the DB approach using the dictio-
naries leaned from different sound categories

vowels fricatives stops nasals
TIMIT 0.6137 0.5676 0.5779 0.5646

CTIMIT 0.3699 0.3529 0.3592 0.3628

Table 2. Hyper-parameters values optimized on the development set
of all corpora.

r Lt σt M Ls σs Tdur Tr Lw

TIMIT 15 3 1.6 5 5 1.5 15 25 5
CTIMIT 15 3 1.2 3 9 1.3 11 25 5
SWBD 15 3 1.6 7 7 1.5 9 25 9

fricatives, nasals and stops separately. Note that in ICSI SWBD,
no phonetic transcription is available and hence, we do this ex-
periment only on TIMIT and CTIMIT corpus. For SWBD, we
use voiced regions for learning dictionaries. Using each dictionary
ρ values are computed on the development set by optimizing the
hyper-parameters. The maximum ρ values obtained for each case
are shown in the Table 1 for TIMIT and CTIMIT. From the table
it is clear that ρ is maximum for both TIMIT and CTIMIT, when
the dictionary is learnt from the vowel regions. This is consistent
with the findings from Jiahong et al [8] and Thilo et al [10]. They
suggested that the acoustic properties of vowels correspond to the
syllable nuclei hence vowel rate corresponds directly to syllable rate.
The effectiveness of the vowel dictionary is also explained using an
illustrative plot in the Figure 5 by taking an exemplary segment
from the TIMIT corpus with the transcription ‘Don’t ask me to’.
Figure 5a and 5b indicate the H matrices obtained with vowel and
stops dictionaries respectively. The figure suggests that using vowel
dictionary captures the rich information about the vowels (/oU/, /æ/,
/I/, /@/). Specifically activations corresponding to the vowel ‘/I/,
/@/’are high in the Figure 5a than the Figure 5b. This indicates that
the H obtained using vowel dictionary is beneficial in identifying
the syllable nuclei. The optimal parameter set obtained with vowel
dictionary for TIMIT and CTIMIT and voiced dictionary for SWBD
are shown in Table 2. These parameters are used further to measure
speech rate performance on the test set.
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Fig. 5. Illustrative example for comparing H matrix by using dic-
tionaries with rank (r) 10. The word corresponding to the illustrated
portion is ‘Don’t ask me to’.

4.3. Results and discussions

We compute the ρ on the test set for three corpora using RSRE as
well as proposed DB method with merging (WM) and without merg-
ing (WOM) schemes. The ρ values are tabulated in the Table 3. In
the case of CTIMIT, we denoised the audio files using a spectral sub-
traction technique with smoothing constants α and β as 0.98 and 0.6
respectively [24]. This is because the performance on the CTIMIT is
found to be worse for all the schemes while the denoising improves
the performance. The ρ values in the case of TIMIT and CTIMIT are
lower using DB-WOM compared to those using RSRE. However, af-

Table 3. Correlation coefficient on the test set using parameters op-
timized on the development set.

RSRE Proposed DB approach
(WOM) (WM)

TIMIT 0.6590 0.6349 0.6794
CTIMIT 0.3466 0.2911 0.3646
SWBD 0.6550 0.6142 0.6413
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Fig. 6. Comparison between the peaks obtained from (a) RSRE
method and (b) proposed DB approach.

ter merging the performance improves and the ρ values for TIMIT
and CTIMIT using DB-WM are better than those using RSRE. This
is because the peaks from the DB approach is often complementary
to those from RSRE. This observation is illustrated with an exem-
plary sentence Don’t ask me to carry an oily rag like that taken from
the CTIMIT corpus in Figure 6. Figure 6a indicates peaks detected
by the RSRE (cyan) from the smoothed TCSSBC. Figure 6b shows
the peaks detected by the proposed DB method (magenta) from the
smoothed NMF-TCSSBC. In both the figures syllable boundaries
(black) along with syllabic transcriptions are indicated. The peaks at
the syllables ‘/r/I/’, ‘/l/I/’ are not detected by the RSRE. This could
be due to smooth transition of the voiced consonant between neigh-
boring vowels. However, the proposed DB method detects the syl-
lable peak of ‘/l/I/’. This is because the NMF-TCSSBC contour is
more peaky than the TCSSBC at that syllable. We observe that total
number of extra syllable nuclei detected by proposed DB approach
is 6.52, 9.43 and 3.2 percent of total syllable nuclei present in the
entire TIMIT, CTIMIT and SWBD respectively. No improvement
in ρ for SWBD indicates that the complementary peaks detected by
proposed DB method could result in more number of detected syl-
lables causing a decrease in ρ. This could be because, lower vowel
duration and high intra vowel acoustic variability in conversational
speech [25] results less consistent structural information in the dic-
tionary.

5. CONCLUSIONS

We propose a dictionary based feature contour for the speech rate
estimation task. The contour is computed from the weight matrix
H obtained by NMF with a fixed dictionary W learnt from spectra
of different sound categories. We find that the dictionary obtained
from the vowel regions results in maximum benefit in speech rate
estimation. Peaks representing the syllables are estimated by merg-
ing the peaks detected from the dictionary based contour with the
peaks of traditional TCSSBC approach. Experiments with TIMIT
and CTIMIT corpora reveal that the proposed DB method improves
the performance compared to the TCSSBC method. Further inves-
tigation is required to develop a better peak merging strategy that
could result in improvement for Switchboard corpus.
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