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Abstract—We consider the task of speech based classification
of patients with amyotrophic lateral sclerosis (ALS), Parkinson’s
disease (PD) and healthy controls (HC). Recent work in con-
volutional neural networks (CNN) to solve image classification
problems raises the possibility of utilizing spectral representation
of speech for detection of neurological diseases. In this paper,
a spectrogram based approach is used. Feeding overlapping
windows to the CNN makes sure that the temporal aspects
are considered by using short signal segments or wide analysis
filters. A three class (ALS, PD or HC) dysarthria classification is
performed. In addition, we perform two severity classification
experiments for ALS (5 class) and PD (3 class) respectively.
Experiments are conducted on both baseline MFCC data [1]
and log Mel spectrograms. Classification results show that for
several audio lengths, models trained on log Mel spectrograms
consistently outperform those of MFCC’s. The ability of the
network to accurately classify different classes is evaluated via
the area under receiver operating characteristic curve [2], [3].
The findings from this study could aid in better detection and
monitoring of ALS and PD diseases.

Index Terms—spectrograms, CNN, dysarthria

I. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s dis-
ease (PD) are progressive neurodegenerative diseases. Both
the diseases currently have no cure although there exists
some treatment for managing their symptoms [4]–[6]. ALS
is a motor neuron disease, caused by gradual degeneration
of motor neurons. Motor neurons provide communication
links between the brain and voluntary muscles. In ALS, the
upper and lower motor neurons degenerate and cease to send
messages to the muscles. The muscles then weaken over time
and begin to fasciculate and then atrophy is observed [7]. Over
time, the brain loses its ability to make voluntary movements.
On the other hand, Parkinson’s disease (PD) is a brain disorder
leading to shaking, stiffness, and movement issues. PD occurs
when neurons in the area of the brain that controls movement
become impaired and/or die. The neurons produce a chem-
ical known as dopamine. When neurons become impaired,
they produce less dopamine, leading to movement issues [8].
Patients affected by PD may experience mild tremors and
develop a Parkinsonian gait that includes a tendency to lean
forward as if hurrying. Similar to ALS, there are currently
no blood or laboratory tests to diagnose non-genetic cases

of PD. Patients affected by ALS sometimes show symptoms
similar to that of PD, such as tremors, slow movement
and body rigidness. Diagnosis of ALS and PD is primarily
based on medical history and examination. Improvement after
initiating medication is another important hallmark of PD [9].
Individuals with ALS may develop problems such as dyspnea,
dysphagia and dysarthria. Currently, no single test can confirm
ALS [7]. However, symptoms of upper or lower motor neurons
(UMN/LMN) may indicate ALS. ALS symptoms in the early
stages may exhibit traits of other, more common disorders.
Muscle and imaging tests such as electromyography and nerve
conduction study can suggest that the individual has a form of
peripheral neuropathy rather than ALS [10], [11]. Magnetic
resonance imaging could reveal issues that may be causing the
symptoms of ALS. The above three tests are more to rule out
other conditions rather than to confirm the disease itself [11].

The mean diagnosis time for the detection and confirmation
of ALS adds up to 14 months [7], [12]. Early diagnosis and
assessment becomes crucial. Patients have an average survival
of 1.75 to 4 years with a worldwide annual incidence of 1.9
per 100,000 [13], [14]. In India, ALS has a prevalence rate of
4/100,000. The male to female ratio of incidence is about 5:7
[14]. Revised El Escorial criteria is used for the diagnosis of
ALS [12], while to monitor the progress of ALS, the ALS
Functional Rating Scale-Revised (ALSFRS-R) is used [7].
Since ALS is difficult to diagnose, biomarkers could poten-
tially help clinicians diagnose ALS earlier and faster. Addition-
ally, biomarkers are needed to help predict and accurately mea-
sure disease progression and enhance clinical studies aimed
at developing more effective treatments. There have been
attempts to use Electromyography to assess neuromuscular
disorder [15], and perform automatic classification [16]. There
have been studies on rate of utterance of ALS and PD patients
[17], [18] and are found to be lower than those of healthy
controls (HCs). Gomez et al. [19] has used running speech seg-
ments to infer articulation kinematics to detect early symptoms
and monitor the evolution of the condition. About 90% of all
PD and 85% of all bulbar ALS patients [20] experience speech
issues as a primary symptom. Symptoms such as strained,
hoarse, breathy, slurry or a monotonic voice may be observed.
Thus, audio features could embed such characteristic symp-
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Condition Gender Count Age Range
(Avg) in years

ALS M 30 33 - 76 (58.60)
F 30 38 - 75 (56.02)

PD M 34 34 - 78 (58.22)
F 26 36 - 74 (56.99)

HC M 30 26 - 68 (44.21)
F 30 31 - 65 (46.93)

TABLE I
SUBJECT COUNT AND AGE RANGE FOR EACH CONDITION - GENDER PAIR

toms and help in better classification. Although CNNs have
been used in identifying ALS patients, KwangHoon et al. [21]
used two 1-D convolution networks - (time and frequency re-
spectively) for filter bank features (MFBE). As seen in [1], the
spectro-temporal characteristics change depending on ALS/HC
(and similarly for PD). The work presented here makes use of
time-frequency plane as a whole and utilizes a 2-dimensional
convolutional network for log Mel spectrograms (SPEC) and
Mel frequency cepstral coefficients (MFCC). Due to the TF
plane, the features are better captured through a 2D CNN (finer
modelling of temporal-harmonic structures). Also, a compar-
ison among the two features namely, SPEC, MFCC has been
performed to find the best feature for classification purposes.

II. DATASET

For the experiments in this work, speech data is considered
from 60 ALS, 60 PD and 60 HC subjects. Patients are
recruited from the National Institute of Mental Health
and Neurosciences (NIMHANS) in Bangalore, India. Data
collection has been approved by the ethics committee of
NIMHANS and consent forms have been signed by the
subjects prior to the data collection. The age range (avg) vs
gender for each condition has been summarized in Table I. All
patients included in this study are confirmed to have ALS or
PD by Neurologists at NIMHANS as per the El Escorial and
UPDRS-III criteria [7], [22] respectively. It is to be noted that
while an ALSFRS-R 0 refers to loss of speech for an ALS
subject, UPDRS-III 0 refers to normal speech for a PD subject
as summarized in Table II. The severity ratings of speech
disturbance have been provided by five speech language
pathologists (SLP) from NIMHANS. The inter-rater reliability
has been calculated using the Fleiss’ kappa (κ). For ALS
subjects, κ = 0.9017 (Almost perfect agreement) while for PD
subjects, κ = 0.6995 (Substantial agreement). The data was ini-
tially recorded at 44.1 kHz which was downsampled to 16 kHz
for classification experiments. The recording setup consists
of five devices (of varying performances [1]), namely, Apple
iPhone 7 (IPH), Motorola G5 Plus (MOT), Xiaomi Redmi 4
(XIA), Zoom H6 X/Y recorder (ZOO) and Dell XPS 15 laptop
(LAP). The four speech tasks (and their duration across all
devices) namely SPON (Spontaneous speech/ monologue: 21
hrs), IMAG (describing images: 25.22 hrs), PHON (Sustained
Phonation: 25.84 hrs) & DIDK (Diadochokinetic rate: 22.42
hrs) and their significance in understanding speech disorders
have been discussed in detail in the baseline paper [1].

ALSFRS-R for Speech UPDRS-III for Speech
Finding Sev Finding Sev
Normal 4 Normal 0

Detectable speech disturbance 3 Slight loss of expression,
diction and/or volume. 1

Intelligible with repeating 2
Monotone, slurred but

understandable;
moderately impaired.

2

Speech combined with
nonvocal communications 1 Marked impairment,

difficult to understand. 3

Loss of useful speech 0 Unintelligible. 4

TABLE II
ALSFRS-R AND UPDRS-III SCALES USED FOR RATING THE SUBJECTS

III. ALS VS PD VS HEALTHY CLASSIFICATION

Three kinds of classification experiments are carried out:
1) ALS vs PD vs HC, 2) 5 class ALS severity classification,
3) 3 class PD severity classification. Audio files are split into
windows of length Nw = {0.5, 0.8, 1, 1.2, 1.5, 2, 3} seconds
with a shift of Nsh = 0.1 seconds. The files are then converted
to log Mel spectrograms [23] (saved into numpy arrays [24]
during implementation). Choi et al. [25] in their paper on
audio tagging achieved similar classification accuracies using
the Short Term Fourier Transforms and Mel spectrograms. It
is observed that log-scaling of Mel spectrograms improves
the accuracy over regular spectrograms. For this reason, log
Mel spectrograms are used for all following experiments. The
Melgram dimension is determined by number of Melbins,
audio length and feature map. Overlapping windows are taken
to make sure that the temporal dynamics are considered. The
convolutional neural network (CNN) architecture used in this
work is shown in Fig 1. CNNs can learn nested features, thus
making it robust to translation and distortions.

Fig. 1. Illustration of 2D CNN architecture proposed for classification.

The input feature SPEC has dimension of 96 × 33 with
Melbins1 = 96, and a audio length of 1 second represented
by 33 frames. On the other hand, Mel frequency cepstral
coefficients (MFCCs), used as features for comparison, has
a dimension of 101 × 39 with audio length represented by
101 frames and feature dimension of 39 [1]. The number of
convolutional filters or ‘feature maps’ is 32. The dimensions
at the top of each block represent the output feature dimension
after that layer. The activation function used is ReLU (except
for softmax before output). A 3 × 3 convolutional kernel
(represented by 2D Conv) is used. Every convolution layer
of size h×w× d learns ‘ d ’ features of size h×w, where h
and w refer to the height and width of the kernels learnt. The

1For the same architecture, smaller number of Melbins (24 and 48) led to
lower accuracies (0.6-0.75) due to a lower resolution while a higher value of
128 gave similar accuracies when compared to 96



Speech
Task

Window lengths (sec)
0.5 0.8 1 1.2 1.5

SPON 0.814
(0.003)

0.832
(0.002)

0.848
(0.009)

0.844
(0.013)

0.815
(0.004)

DIDK 0.877
(0.005)

0.896
(0.003)

0.918
(0.013)

0.911
(0.014)

0.878
(0.005)

PHON 0.812
(0.015)

0.83
(0.01)

0.846
(0.008)

0.84
(0.013)

0.813
(0.01)

IMAG 0.808
(0.006)

0.826
(0.004)

0.842
(0.01)

0.84
(0.005)

0.809
(0.007)

TABLE III
ALS VS PD VS HC CLASSIFICATION ACCURACY (SD IN BRACKETS)

ACROSS DEVICES USING CNN OVER EACH TASK & WINDOW LENGTH

Speech Task/Device MOT ZOO IPH XIA LAP

SPON SPEC 0.86
(0.01)

0.85
(0.01)

0.85
(0.01)

0.84
(0.01)

0.84
(0.02)

MFCC 0.67
(0.04)

0.68
(0.04)

0.67
(0.08)

0.68
(0.03)

0.64
(0.01)

DIDK SPEC 0.93
(0.01)

0.90
(0.01)

0.92
(0.02)

0.90
(0.01)

0.89
(0.01)

MFCC 0.74
(0.04)

0.72
(0.05)

0.73
(0.06)

0.73
(0.01)

0.75
(0.03)

PHON SPEC 0.89
(0.0)

0.80
(0.01)

0.86
(0.01)

0.80
(0.01)

0.83
(0.01)

MFCC 0.72
(0.04)

0.70
(0.05)

0.70
(0.05)

0.68
(0.02)

0.67
(0.07)

IMAG SPEC 0.84
(0.01)

0.82
(0.01)

0.86
(0.00)

0.80
(0.01)

0.81
(0.01)

MFCC 0.72
(0.01)

0.77
(0.04)

0.75
(0.03)

0.66
(0.03)

0.72
(0.01)

TABLE IV
COMPARISON OF ACCURACY (WITH SD IN BRACKETS) FOR T=1SEC

ACROSS 5 FOLDS FOR DIFFERENT TASKS AND DEVICES BETWEEN MFCC
BASELINE AND SPECTROGRAMS

size of pooling area for max pooling (represented by Max
Pool 2) is 2 × 2. The optimum convolutional layer dropout
is experimentally set to 0.5 while the dense layer dropout
is set to 0.6. The output at the final dense layer is either 3
(for ALS vs PD vs HC and 3 class PD severity classification)
or 5 (for 5 class ALS severity classification). The training is
done using Categorical cross-entropy as the loss function with
Adadelta optimizer working the best among the chosen ones.
Keras library was used for the implementation [26].

IV. EXPERIMENTAL SETUP

For classification using MFCC and SPEC, a five-fold
cross-validation setup is used. Five groups, each with thirty-
six subjects with twelve from each of ALS, PD and HC are
formed. Subjects in each group are chosen such that they are
balanced in all aspects as mentioned earlier. For computing
the MFCC baseline features, the methodology in [1] has been
followed. For all the feature based classification experiments,
in each fold, four groups are used for training and the
remaining group is used as the test set in a round robin
fashion with 0.25 split off from training for validation. Batch
sizes of {64, 128, 256, 512} are used for hyper-parameter
tuning. Early stopping criterion using validation loss has been
imposed to prevent overfitting.

V. RESULTS

ALS vs PD vs HC classification with window lengths of
Nw = {0.5, 0.8, 1, 1.2, 1.5, 2, 3}s with a shift of Nsh = 0.1s

Speech Task/Device MOT ZOO IPH XIA LAP

SPON SPEC 0.761
(0.08)

0.726
(0.09)

0.807
(0.09)

0.741
(0.04)

0.740
(0.06)

MFCC 0.701
(0.09)

0.616
(0.01)

0.717
(0.01)

0.613
(0.05)

0.656
(0.07)

DIDK SPEC 0.741
(0.01)

0.771
(0.07)

0.791
(0.013)

0.784
(0.01)

0.763
(0.01)

MFCC 0.641
(0.01)

0.671
(0.08)

0.700
(0.01)

0.652
(0.013)

0.654
(0.02)

PHON SPEC 0.703
(0.07)

0.684
(0.01)

0.725
(0.01)

0.713
(0.08)

0.697
(0.08)

MFCC 0.643
(0.08)

0.546
(0.01)

0.645
(0.013)

0.595
(0.09)

0.557
(0.09)

IMAG SPEC 0.771
(0.05)

0.752
(0.06)

0.74
(0.07)

0.735
(0.08)

0.735
(0.01)

MFCC 0.671
(0.06)

0.662
(0.08)

0.717
(0.08)

0.695
(0.09)

0.675
(0.02)

TABLE V
COMPARISON OF ACCURACY (WITH SD IN BRACKETS) FOR T=1SEC

ACROSS 5 FOLDS FOR DIFFERENT TASKS AND DEVICES BETWEEN
SPECTROGRAMS AND MFCC FOR 5 CLASS ALS SEVERITY

CLASSIFICATION

Speech Task/Device MOT ZOO IPH XIA LAP

SPON SPEC 0.75
(0.01)

0.76
(0.01)

0.76
(0.01)

0.76
(0.01)

0.77
(0.06)

MFCC 0.65
(0.04)

0.68
(0.01)

0.69
(0.03)

0.63
(0.01)

0.61
(0.01)

DIDK SPEC 0.87
(0.01)

0.87
(0.01)

0.85
(0.01)

0.85
(0.00)

0.86
(0.01)

MFCC 0.80
(0.01)

0.82
(0.01)

0.84
(0.02)

0.80
(0.01)

0.79
(0.01)

PHON SPEC 0.85
(0.01)

0.81
(0.00)

0.82
(0.01)

0.79
(0.01)

0.77
(0.01)

MFCC 0.68
(0.04)

0.75
(0.05)

0.62
(0.08)

0.66
(0.09)

0.70
(0.01)

IMAG SPEC 0.81
(0.00)

0.79
(0.01)

0.81
(0.01)

0.76
(0.01)

0.77
(0.01)

MFCC 0.70
(0.05)

0.74
(0.04)

0.75
(0.02)

0.70
(0.01)

0.67
(0.03)

TABLE VI
COMPARISON OF ACCURACY (WITH SD IN BRACKETS) FOR T=1SEC

ACROSS 5 FOLDS FOR DIFFERENT TASKS AND DEVICES BETWEEN
SPECTROGRAMS AND MFCC FOR 3 CLASS PD SEVERITY CLASSIFICATION

is performed for all devices and speech tasks. The average
accuracy across devices for each speech task along with their
standard deviations (SD) is tabulated in Table III. From this
table, it is observed that Nw = 1s consistently performs the best
among different window lengths with Nw = 1.2s providing the
next best performance. However, considering the SD between
Nw = 1 & 1.2s, it is seen that the former is more consistent
across different tasks. Nw = 0.8s is consistent across all devices
with the least SD for each speech task. It is found that batches
of 256 and 512 perform equally and, a batch size of 256
is preferred for all experiments. Further, in the 3 class ALS
vs PD vs HC classification, for Nw = 1s, the comparison of
averaged 5 fold accuracies for each device and speech task
pair has been tabulated for both SPEC and MFCC features in
Table IV. It is observed that in the case of SPON, DIDK
and PHON, the combination of MOT and SPEC perform
the best. In the case of IMAG, the combination of IPH and
SPEC performs the best. From the above, for the case of 3
class ALS vs PD vs HC classification, it can be concluded
from Table IV that regardless of the speech task and device
pair, SPEC consistently performs better than MFCC. Along
with the classification accuracies for different experiments, the
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Fig. 2. AUC-ROC curves for 3 class ALS vs PD vs HC classification from
different tasks (columns) and devices (rows) with True Positive Rate (TPR)
vs False Positive Rate (FPR) on the Y & X axis respectively. The bold lines
correspond to the SPEC feature while the dashed lines correspond to the
MFCC. The AUC scores for MFCC have been presented in brackets next to
the SPEC values for reference
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Fig. 3. AUC-ROC curves for 5 class ALS severity classification from different
tasks (columns) and devices (rows) with TPR vs FPR on the Y & X axis
respectively using SPEC features

area under the receiver operating characteristic curve (AUC-
ROC) is plotted. AUC-ROC is a performance measure for the
classification problem at various threshold settings. ROC is
a probability curve while the AUC represents the measure of
separability [3]. In the 3 class ALS vs PD vs HC classification,
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Fig. 4. AUC-ROC curves for 3 class PD severity classification from different
tasks (columns) and devices (rows) with TPR vs FPR on the Y & X axis
respectively using SPEC features

3 AUC-ROC curves can be plotted using the one vs rest
methodology. A model with an AUC close to 1(0) reflects a
good(poor) measure of separability between the classes. Thus,
higher the AUC, better is the model at distinguishing between
ALS, PD and HC. The AUC-ROC curves for SPEC (bold
lines) and MFCC (dotted lines with AUC scores in brackets)
are plotted for each device-task pair in Fig. 2. It is seen that
the AUC scores for HC are above 0.98 which represents good
performance of the model with unseen test case in distinguish-
ing HC and ALS or PD. Apart from HC, the worst to best
performance of different speech tasks varies from 0.90 for
IMAG to 0.99 for DIDK across different devices. The lowest
AUC for the three classes is with the combination of LAP and
IMAG (the best AUC for MOT and DIDK combination). The
best average AUC score across devices for different speech
tasks is seen in MOT while the best average AUC score across
speech tasks is seen in DIDK. This observation matches with
the tabular results seen in Table IV. SPEC performs better than
MFCC as observed from Table IV and Fig. 2. For this reason,
we proceed to plot the AUC curves for SPEC for all following
experiments. To the best of our knowledge, speech based
severity classification of a neurological disease such as ALS
or PD has not been attempted earlier in literature. Considering
the case of 5 class ALS severity experiment, the averaged 5
fold accuracies for each device and speech task pair have been
tabulated for the two features in Table V. The combination
of IPH and SPEC consistently perform the best for 3 speech
tasks, namely SPON, DIDK and PHON while MOT and SPEC
combination performs the best for IMAG speech task. The
AUC-ROC curves for 5 class ALS severity classification are



plotted for each device-task pair for SPEC in Fig. 3. Using
one vs rest strategy, the classifier is able to accurately predict
the severity of the condition with a max(min) AUC score
of 0.976(0.882) for Severity 0, 0.951(0.871) for Severity 1,
0.940(0.866) for Severity 2, 0.948(0.870) for Severity 3 and
0.965(0.890) for Severity 4 among all device-task combi-
nations. It is observed that across all severity-speech task-
device combinations, the max(min) AUC score is 0.976(0.866)
which shows good separability between severity classes. The
averaged 5 fold accuracies for 3 class PD severity classification
using each device - speech task pair have been tabulated for
both SPEC and MFCC in Table VI. Also, The best feature and
device combination turns out to be SPEC and MOT (except
for SPON - SPEC and LAP). This is consistent with the
previous 3 class ALS vs PD vs HC and 5 class ALS severity
classification results. The corresponding AUC-ROC curves is
plotted for each device-task pair for SPEC in Fig. 4. We
observe max(min) AUC score of 0.951(0.838) for Severity 0,
0.926(0.807) for Severity 1 and 0.955(0.853) for Severity 2.
The results are slightly lesser or comparable to ALS severity
AUC scores and show good separability between the classes.

The SPEC features of dimension (96 × 33) consistently
out performs MFCC features of dimension (101× 39) across
all tasks and devices. One explaination for this could be that
the fully connected networks (consisting of conv. layers and
subsampling) improve performance of CNNs as it reduces total
parameters by sharing weights [25]. The features learnt are
invariant to the location on the TF plane of SPEC. This allows
the network to model temporal and harmonic structures of
audio signals and could have led to improved performance.

VI. CONCLUSIONS

In this work, we have considered three classification prob-
lems (3 class ALS vs PD vs HC, 5 class ALS Severity and 3
class PD Severity) using four different speech tasks (SPON,
DIDK, PHON and IMAG) with a 2-dimensional Convolutional
Neural Network. In the case of ALS vs PD vs HC classifica-
tion, the experiments showed that the classification with log
Mel spectrograms performs better than the baseline scheme of
MFCCs in all the speech tasks. It is observed that, regardless
of the recording device used, similar accuracies were obtained.
Further, severity classification (of any kind) of a neurological
disease such as ALS or PD having not been attempted earlier
shows good promise in identifying the condition and severity
at an early stage. The code for this work can be obtained here
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