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Abstract
We consider the task of speech based automatic classifica-
tion of patients with amyotrophic lateral sclerosis (ALS) and
healthy subjects. The role of different speech tasks and record-
ing devices on classification accuracy is examined. Sustained
phoneme production (PHON), diadochokinetic task (DDK) and
spontaneous speech (SPON) have been used as speech tasks.
The chosen five recording devices include a high quality mi-
crophone and built-in smartphone microphones at various price
ranges. Experiments are performed using speech data from 25
ALS patients and 25 healthy subjects using support vector ma-
chines and deep neural networks as classifiers and supraseg-
mental features based on mel frequency cepstral coefficients.
Results reveal that DDK consistently performs better than
SPON and PHON across all devices for discriminating ALS
patients and healthy subjects. Considering DDK, the best clas-
sification accuracy of 92.2% is obtained using a high quality
microphone but the accuracy drops if there is a mismatch be-
tween the microphones for training and test. However, a classi-
fier trained with recordings from all devices together performs
more uniformly across all devices. The findings from this study
could aid in determining the choice of the task and device in de-
veloping an assistive tool for detection and monitoring of ALS.
Index Terms: Amyotrophic lateral sclerosis, support vector
machines, deep neural networks

1. Introduction
Amyotrophic lateral sclerosis (ALS) is a progressive neuro de-
generative disorder causing upper and lower motor neuron de-
generation. Patients suffering from ALS have an average sur-
vival of 2 to 4 years with a worldwide annual incidence of
about 1.9 per 100,000 [1, 2] and a median diagnosis time of 14
months [3]. Only 5-10% of all patients survive beyond 10 years
[4]. In India, ALS has a prevalence rate of 4/100,000 with an
annual incidence of 1/100,000 and a male to female ratio of 5:7
[2]. Currently, Revised El Escorial criteria is used for the di-
agnosis of ALS [5], whereas for the monitoring of progress of
the disease, ALS Functional Rating Scale-Revised (ALSFRS-
R) i s used [6]. Patients with ALS experience symptoms of
progressive muscle atrophy and weakness leading to problems
including dysphagia, dyspnea, orthopnea and dysarthria [4].
Dysarthria in case of ALS patients occurs frequently with in-
creasing severity as the disease progresses [7, 8]. About 30%

of all ALS patients experience dysarthria as the first symptom
[9, 10]. Often, the assessment of speech impairment is done
based on clinician’s auditory perception which is subjective.
These judgements maybe inconsistent [11]. Therefore, auto-
mated methods for early detection of speech impairment due
to ALS could avoid clinicians’ subjectivity in diagnosis of the
disease and reduce diagnosis time. The speech impairment due
to ALS is caused by the muscle disorders which, in turn, affect
the speech articulators. There have been attempts to use Elec-
tromyography (EMG) to assess neuromuscular disorder [12],
and perform automatic classification using features extracted
from EMG signal [13, 14]. The rate of articulatory movement
of ALS patients have been studied [15] [16], and were found to
be lower than those of healthy subjects. On the contrary, there
are few works that use impact of ALS on voice and use voice
cues to perform automatic classification of ALS patients. Kent
et al. [17, 8] studied the relationship between speech intelligi-
bility on a single word identification test using average second-
formant (F2) slope and found that F2 slope index is an useful
acoustic measure of speech proficiency in ALS. Another study
by Kent et al. [18], showed that the most disruptive phonetic
features in speech, impaired by ALS, involve phonatory func-
tion, place and manner of articulation for lingual consonants
and regulation of tongue height for vowels suggesting their po-
tential use as an index of bulbar muscle impairment in ALS.
Tomik et al. [19] studied the most significantly affected vowels
for ALS patients in order to detect and monitor the progression
of the disease based on the acoustic analysis of specific sounds.
Gomez et al. [20] used running speech segments to infer artic-
ulation kinematics to detect early symptoms and monitor the
evolution of the ALS. Yamini et al. [21] observed a reduction
in the vowel space area in case of bulbar ALS patients com-
pared to that of healthy controls. Using syllable rate and max-
imum phonation duration, Yamini et al. [22] also found that
diadochokinetic rate and phonation tasks are efficient ways to
discern between healthy subjects and ALS patients. Pedro et
al. [23] proposed a speech articulation biomechanical model
to assess the state and progress of ALS. Taylor et al. [24] at-
tempted automatic classification of ALS patients based on frac-
tal analysis and using diadochokinetic (DDK) rates as speech
tasks. Different speech based studies for ALS have used a va-
riety of speech tasks. Kent et al. [18] used different vowels
and fricatives as tasks. Green et al. [25] used read speech us-
ing bamboo passage, sustained vowel and repeated words. Dif-
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Table 1: ALSFRS-R Score versus Age for all subjects
ALSFRS-R Score 0 1 2 3 4 All ALS All Healthy

Total subjects 5 5 5 5 5 25 25
Mean Age 52 59.2 59.4 53.2 60.2 56.8 51.8
Std. Dev. 8.2 12.1 11.0 6.5 11.6 9.9 7.7

Table 2: Language wise distribution for all subjects

Language Bengali Hindi Kannada Odiya Tamil Telugu
ALS Patient count 5 5 5 3 3 4

Healthy count 5 5 5 3 3 4

ferent tasks have been used in various studies in the past but
there are no investigations on relative role of each task for au-
tomatically classifying healthy subjects and patients with ALS.
The ALS patients considered in this work come from differ-
ent parts of India. The work presented here is part of a project
that aims to develop a smartphone application for Indian pop-
ulation that can detect and monitor the degree of ALS for pro-
viding treatment at an early stage. It is important to determine
speech task that has required discriminatory power for achiev-
ing good classification accuracy as well as is suitable given the
diversity in terms of different vernaculars being spoken in the
context of Indian demographic. In this work, we have cho-
sen spontaneous speech (SPON), diadochokinetic rate (DDK)
and sustained phoneme production (PHON) as the three speech
tasks. Due to different socio-economic backgrounds in India,
there is a great variety in the phones used by the target users.
This, in turn, requires investigation of the robustness of clas-
sifiers across different recording devices. For this reason, we
have experimented with five recording devices: Apple iPhone
7 (referred to as IPH), Moto G5 Plus (MOT), Xiaomi Redmi
4 (XIA), Zoom H-6 recorder with XYH-6 X/Y capsule high-
quality unidirectional microphone [26] (ZOO) and Dell XPS
15 Laptop (LAP). The smartphones have been chosen such that
they represent popular brands at various price ranges. Record-
ings from 50 subjects (25 controls and 25 ALS patients) are
used for comparing the classification accuracy across all speech
tasks and recording devices.

2. Dataset
For all experiments in this work, speech data is considered
from 25 male patients and 25 male healthy subjects. All pa-
tients had been recruited from National Institute of Mental
Health and Neurosciences (NIMHANS), Bengaluru, India. The
data collection has been approved by the ethics committee of
NIMHANS and informed consent forms were signed by the
subjects prior to the data collection. All patients included in
this study were confirmed as having ALS by Neurologists at
NIMHANS as per the El Escorial criteria. The details of age
are provided in Table 1 for patients based on each ALSFRS-R
score as well as for healthy subjects. The native languages of
patients & controls are provided in Table 2. The selected sub-
jects are matched for age, gender and language for uniformity.

The recording setup using five devices (IPH, MOT, XIA,
ZOO, LAP) is done with the subject at a distance of 2 feet from
the recording devices. For all devices, speech data was recorded
at a sampling rate of 44.1kHz. Although read speech was used
as a stimulus in previous works, we chose SPON due to poor
literacy level of a few patients.

In PHON, subjects were instructed and demonstrated to
produce a sustained phoneme of five vowels, namely, /a/, /i/, /o/,
/u/, /æ/, and three fricatives, namely, /s/, /sh/, and /f/. Subjects

Figure 1: Waveforms and spectrograms of recordings from of
ALS patients and a healthy control uttering ‘pa’ for a duration
of 1 second. (A) a patient with ALSFRS-R score of 0, (B) a
patient with score of 2, (C) a healthy subject.

were asked to do this for 5 seconds at a comfortable pitch and
loudness level, after taking a deep breath. The same process
was repeated three times in succession for each of the vowels
and fricatives. Vowel prolongation is a task which isolates the
respiratory-phonatory system for speech [27]. The fricative
prolongation requires the respiratory-articulatory competence.
The total duration of recording for PHON is 7.9 hours consid-
ering all fifty subjects across all devices.

DDK is used for assessing speed and regularity of rapid and
repetitive articulatory movements. DDK consists of two parts:
(a) Alternating Motion Rates (AMRs), which include rapid rep-
etition of monosyllabic targets-‘pa’,‘ta’,‘ka’ & (b) Sequential
Motion Rates (SMRs) measure the ability of articulators to
move quickly and in a proper sequence from one articulatory
position to another [27]. SMR were captured through the syl-
labic targets such as ‘pataka’ and ‘badaga’. Thus, DDK is used
to measure articulatory speed and precision in the movements
of jaw, lips, anterior and posterior tongue, phonatory support,
adequacy of velopharyngeal closure, and respiratory support for
sustaining the task. We expect the corresponding speech record-
ings to reflect such characteristics, cues which could be used to
discriminate ALS patients from healthy subjects. Subjects were
asked to repeat the target production for three trials for a dura-
tion of upto 5 seconds. The total duration of recording for this
task is 5.36 hours for all subjects across all devices. A spec-
trogram in Figure 1 depicts three speech recordings from ALS
patients and healthy subjects repeating ‘pa’ for a duration of 1s.
It is observed that the healthy person (C) is able to utter over
five ‘pa’ in a second while a patient with ALSFRS-R score of 2
(B) is able to repeat ‘pa’ three times in a second. A patient with
ALSFRS-R score of 0 (A) utters ’pa’ only one time in a second.
The articulatory precision was most affected in patient A than
in patient B.

In SPON, monologue was elicited wherein, the subjects
were instructed to spontaneously talk about a festival celebra-
tion and a recent place of visit. For this, preparation time of a
few minutes was given to the subjects before they could start
speaking. These monologues are spoken in their native lan-
guage thus eliciting a natural response. SPON is an informal
assessment measure but has a good representation of the natural
speech of a subject, thus making it an useful task for assessing
a subject’s articulation [28]. It is also useful in evaluating an
integrated function of all components in speech production (res-
piration, phonation, articulation, resonance, and prosody) [28].
The total duration of recording for this task is 7 hours consider-
ing all fifty subjects across all devices.

For all experiments, the begin and end time for each task
were noted down separately using which the speech segments
of interest were obtained from the entire recording.
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3. ALS vs Healthy classification
The ALS patient and healthy subject classification consists of
training and test phases. The first step in both phases is com-
putation of the acoustic features from the speech recording.
The acoustic features are the 12-dimensional MFCC (excluding
energy coefficient) along with their velocity and acceleration
co-efficient, resulting in a 36-dimensional feature vector com-
puted using a window size of 20 ms and a frame shift of 10 ms
[29]. The speech recordings are downsampled from 44.1kHz
to 16kHz before computing MFCC features. Cepstral mean
variance normalization (CMVN) has been applied to the raw
MFCCs. These are referred to as low-level features. For clas-
sification experiments, we extract suprasegmental features from
the low level features, and use these higher-level, long-term fea-
tures as input to the classifier instead of providing the low-level,
short-term frame-based spectral features. This is because para-
linguistic information, such as ALS disease condition, could be
embedded in subtle cues present in long-term features and this,
in turn, can increase the performance of the classifier [30, 31].
The suprasegmental features are the mean, median, and stan-
dard deviation (SD) of each MFCC computed for an analy-
sis window of Nw seconds with a shift of Nsh seconds. Thus,
the dimensions of the suprasegmental feature vectors become
three times that of the original MFCC feature vector (108xNaw),
where Naw is the number of suprasegmental analysis windows
for each recording. In the training phase, the suprasegmen-
tal features obtained from every analysis window along with
their class labels (ALS & Healthy) are used to train the clas-
sifier (model). In this work, we use two models for classifica-
tion - support vector machine (SVM) and deep neural network
(DNN). Nw = {0.5, 0.8, 1, 2, 3}s with Nsh = 0.1s have been used
for the analysis.

4. Experimental Setup
For classification, a five-fold cross-validation setup is used. Five
groups, each with ten subjects are formed. Subjects in each
group is chosen such that they are balanced in all aspects as
mentioned earlier. It is ensured that the subjects belonging to
both healthy population and ALS patients are equally present in
each group. In every group, five ALS patients are chosen in a
way that there is equal representation of ALSFRS-R scores.

In each fold, four groups are used for training and the re-
maining group is used as the test set in a round robin fashion.
15% of the training data has been used as a validation set. The
SVM classifier with radial basis kernel has been trained using
the libsvm package [32]. Optimal values of the soft margin
constant (C) and width of the Gaussian kernel (γ) are selected
by maximizing the performance on the validation set. For DNN,
the optimal choice of the activation function (AF) correspond-
ing to each hidden layer, number of hidden layers (HL), and
number of neurons (NN) in each hidden layer are determined
by the validation loss. The parameters that result in the least
validation loss are chosen for the experiments. The candidate
AFs, HLs, and NNs for which the validation loss is minimized
are {‘sigmoid’, ‘tanh’, ‘relu’}, {1, 2, 3}, and {64, 128, 256,
512} respectively. The optimal DNN architecture was found to
have ‘tanh’ as the AF irrespective of the speech task and the
recording device chosen.

The trained model is then used to obtain a decision on every
suprasegmental feature for the test data. The utterance level de-
cision is obtained by majority voting on the decisions using the
suprasegmental features. Training of the DNN has been done

Table 3: Average accuracy (standard deviation in brackets) for
SVM and DNN classifiers for Nw = 0.8s. The bold entries indi-
cate higher classification accuracy between the two classifiers
for every speech task and recording device combination

Device Classifier SPON (%) DDK (%) PHON (%)

MOT SVM 81.84 (7.51) 90.40 (9.10) 79.88 (3.23)
DNN 81.79 (7.67) 88.80 (11.01) 80.13 (3.62)

ZOO SVM 79.79 (0.47) 90.40 (6.23) 82.98 (4.04)
DNN 83.84 (9.60) 92.20 (4.71) 77.90 (9.35)

IPH SVM 79.74 (6.41) 89.20 (7.16) 80.93 (3.44)
DNN 79.79 (7.09) 88.40 (7.13) 78.45 (9.54)

XIA SVM 84.89 (4.87) 87.60 (3.85) 78.38 (6.55)
DNN 82.89 (11.97) 86.40 (5.37) 78.57 (7.12)

LAP SVM 83.89 (5.34) 88.80 (8.56) 78.80 (2.03)
DNN 87.95 (9.70) 87.60 (8.17) 81.15 (5.62)

Avg SVM 82.03 (4.92) 89.28 (6.98) 80.19 (3.86)
DNN 83.25 (9.20) 88.68 (7.28) 79.24 (7.05)

using cross-entropy as the loss function with Adam optimizer
[33]. Keras library has been used for the implementation. Per-
formance of the automatic classification is determined by the
classification accuracy which is computed as the number of test
utterances for which the decision from the classifier matches the
ground truth class label.

5. Results and Discussion
Table 3 shows the utterance level classification accuracies aver-
aged across all folds using SVM and DNN classifiers separately
using Nw = 0.8s. The number in the bracket indicates the S.D of
the accuracies across all folds. The last two rows (indicated by
‘Avg’) in Table 3 report accuracies averaged across all recording
devices for each speech task.

From the ‘Avg’ accuracies, it is clear that the highest clas-
sification accuracy is achieved in DDK task using both SVM
and DNN classifiers. In particular, SVM performs better than
DNN classifier by an average accuracy of 0.6%. When DDK is
used as a speech task, SVM performs better than DNN in case
of all devices except ZOO where SVM yields an average clas-
sification accuracy of 90.40% while DNN achieves a classifica-
tion accuracy of 92.20%. Across all devices, the highest SVM-
based average classification accuracy of 90.40% is obtained us-
ing MOT and ZOO in the case of DDK task. This suggests that
these devices are superior than the remaining three in terms of
preserving cues for healthy subjects and ALS patients classifi-
cation. In SPON, the highest classification accuracy of 87.95%
is obtained using LAP. However, it is still lower than the accu-
racy (88.80%) obtained using DDK task in LAP. This indicates
more discriminatory power of DDK compared to SPON.

When averaged over all devices (Avg case), unlike DDK
task, DNN performs 1.22% better than SVM. However, consid-
ering Avg case, SVM performs 0.95% better than DNN clas-
sifier in the case of PHON task. The Avg accuracy of 80.19%
in PHON task using SVM is 9.09% lower than by using DDK
task suggesting the superiority of the DDK task for healthy sub-
ject and ALS patient discrimination. Ranking the device wise
performance for the three tasks, it is observed that LAP per-
forms the best (87.95%) among all devices for SPON followed
by XIA, ZOO, MOT and IPH (79.79%). For DDK, ZOO per-
forms the best among all devices (92.20%) followed by MOT,
IPH, LAP and XIA (87.60 %). For PHON, ZOO (82.98 %) per-
forms the best followed by LAP, IPH, MOT and XIA (78.57%).

The range of classification accuracy is 8.16% for SPON
task, 4.6% for DDK and 4.41% for PHON task. This range
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highlights the robustness of the DDK task since it consistently
achieves the highest accuracy across devices with a small vari-
ation. From the data, Table 4 is constructed where a device was
ranked based on its relative performance. Rank 1 (5) indicates
the best (worst) performing device. Total score is calculated by
adding the ranks among all tasks. A lower total indicates better
performance.

In order to investigate which features among suprasegmen-
tal features contribute the most to the classification accuracy, an
experiment is conducted where a subset (3xNaw) of supraseg-
mental features is considered. Each such (3xNaw) consists of
the mean, median and SD (MMSD hereon) of one MFCC. This
was repeated 36 times for each dimension of the MFCC. The
MMSD of the 2nd, 14th and 26th dimension of MFCC yield the
highest accuracy of 71.2%, 84.4% and 84.4% among the twelve
static, twelve velocity and twelve acceleration coefficients re-
spectively. It is to be noted that 2nd, 14th and 26th dimensions of
MFCC correspond to the 3rd discrete cosine transform (DCT)
basis function.

Table 4: Rank and score of each device for different speech tasks

Device MOT ZOO IPH XIA LAP
Rank using SPON task 4 3 5 2 1
Rank using DDK task 2 1 3 5 4

Rank using PHON task 4 1 3 5 2
Total score 10 5 11 12 7

Microphone characteristics vary from device to device and
have varying performance under different stimuli. To check
which device has robust characteristics, we compare the perfor-
mance of one device model on recordings from other devices as
test set. Table 5 shows the accuracies for DDK task for Nw =
0.8s averaged across all folds for each device model against test
data of all devices (including matched case). Apart from XIA
(where test data of ZOO secured highest accuracy), the matched
case of model and test data perform the best among test devices.

Table 5: Performance comparison using device model on all
devices. Bold entries indicate higher classification accuracy
for each device model and italics indicate the best averaged
performance for a device model

Model Test (Accuracy(%) and SD) Avg
MOT ZOO IPH XIA LAP

MOT 90.40
(9.10)

90.00
(7.35)

88.40
(5.37)

85.84
(7.87)

88.80
(8.67)

88.69
(7.67)

ZOO 89.20
(4.60)

90.40
(6.23)

87.20
(3.63)

76.80
(4.60)

87.64
(2.94)

86.25
(4.40)

IPH 89.20
(9.44)

89.20
(7.16)

89.20
(7.16)

82.80
(6.26)

88.00
(8.12)

87.68
(7.63)

XIA 86.40
(10.62)

89.60
(7.40)

88.80
(4.60)

87.60
(3.85)

86.40
(9.10)

87.76
(7.11)

LAP 87.20
(10.64)

87.20
(10.06)

85.20
(7.56)

78.00
(8.12)

88.80
(8.56)

85.28
(8.99)

ALL 89.20
(8.79)

91.20
(9.12)

90.00
(6.32)

87.60
(5.55)

87.60
(8.65)

89.12
(7.69)

A combined model with training data taken equally from
all devices is built (referred to as ALL in Table 5). It is ob-
served that the performance of any model on XIA drops when
compared to their matched case (except XIA). Considering the
average accuracy across different devices for test, it turns out
that MOT based model is the most robust model (next to ALL
that achieves the highest averaged accuracy of 89.12%).

Observing the range of performance of a device as test, it
is seen that MOT (86.4 to 90.4%), ZOO (87.2 to 90.4%), IPH

(85.2 to 89.2%) and LAP (86.4 to 88.8%) show minimal vari-
ation in performance across models (2.4 to 4%) as opposed to
XIA (76.8 to 87.6%) with a range of 9.8%.

To check if there is a change in classification accuracy for
different choices of Nw, the classification experiments are re-
peated for Nw = {0.5,1,2,3}s. Figure 2 shows the device wise
performance for each speech task with varying Nw. The trend
observed in Table 3 is seen here with DNN performing better
than SVM for SPON task (except XIA). For DDK, SVM per-
forms better than DNN (except IPH). SVM performs better for
PHON in the case of MOT, ZOO and IPH while DNN performs
better in XIA and LAP. In SPON, it is observed that for all de-
vices, the accuracy rises from 0.5s to 1s and then either de-
creases or remains the same. In DDK, the accuracy reaches a
maximum at Nw = 0.8s for MOT, ZOO and LAP while it is sec-
ond best for XIA and LAP, for which Nw = 0.5s has a higher
accuracy. For PHON, the accuracy reaches the maximum at Nw

= 1s (except MOT) while Nw = 0.8s was second best. Although
Nw=1s yields the best accuracy among all choices of Nw for
most of the task and device combinations, Nw=0.8s with DDK
task and ZOO device achieves the best performance among all
combinations.
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Figure 2: Classification accuracy by varying Nw. ? SVM, •
DNN. Each column and row correspond to one speech task and
recording device.

6. Conclusions
In this work, we have performed a comparative study on speech
based classification of healthy subjects and ALS patients using
different speech tasks and five recording devices. The exper-
iments show that DDK task consistently performs better than
other tasks for discriminating ALS patients and healthy popu-
lation. While the high quality microphone achieves the highest
classification accuracy of 92.2%, the accuracy lies in the range
87.6%-90.4% using rest of the recording devices, that include
three smartphones and one laptop. It is observed that when a
classifier is built using recordings from all devices, classifica-
tion accuracy on smartphone recordings improves. The find-
ings from this study could aid in determining the choice of the
task and device in developing an assistive tool for detection and
monitoring of ALS.
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