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Abstract—In this work, we study the effect of codec induced
distortion on the speech recognition performance in the TIMIT
corpus using eleven codecs and five acoustic modeling techniques
(AMTs) including several state-of-the-art methods. This study
is performed in a single round of encoding-decoding and var-
ious tandem scenarios. Experiments from the single encoding-
decoding case reveal that the acoustic models from G.711A,
a narrowband high bit rate codec yields lower phone error
rate (PER) compared to low bit rate codecs for most AMTs.
It is observed that among the eleven codecs based acoustic
models, G.711A, G.728, G.729B, AMR-WB and G.729A codecs
consistently result in the least five PERs across AMTs. It is
found that the model trained on ‘clean’ speech data (PCM)
performs poorly in three of the five AMTs compared to these
five codec based acoustic models. These five models are then
used in six different tandem scenarios comprising three unseen
codecs. Similar to the single round of encoding-decoding case,
the PER for each of the tandem scenarios turns out to be the
lowest consistently for all AMTs when the acoustic model from
the G.711A codec is used. However, when the acoustic model is
trained with mixed speech data from all tandem scenarios, the
PER is found to perform better than the matched condition in
the case of four out of five AMTs.

I. INTRODUCTION

The ever decreasing cost of mobile and IP telephony has
spurred new models of customer service based on remote
communication. Such models of service require activities like
automatic analysis of user feedback and detection of policy
violations to improve customer experience. This is generally
done by monitoring the content of voice communication and
subsequent analysis by employing automatic speech recogni-
tion (ASR) systems. However, speech/voice data on which the
recognizers work typically undergoes distortion introduced by
the codec and channel. Specifically, while a codec compresses
the information in a small number of bits, the task of an ASR
system, on the other hand, requires the extraction of discrim-
inative features. To cater to such loss in information, the field
of speech recognition has witnessed key improvements on
acoustic modeling techniques (AMT) such as discriminative

training [1], subspace Gaussian mixture models (SGMM) [2],
and deep neural networks (DNN) [3].

The effects of codecs on the performance of speech recogni-
tion have been studied earlier [4], [5], [6], [7]. These studies
were carried out on decoded speech obtained after a single
round of encoding and decoding. Though all these studies
reported a drop in the recognition accuracy for codec with
reduced bit rate, Lilly et al [5] concluded that the drop was
not strictly monotonic. Contrary to the findings by Euler et al
[4], the acoustic model trained with pulse coded modulation
(PCM) speech was found to yield the best recognition accuracy
in the case of GSM codecs [6], [7]. Recognition performance
under noisy conditions has also been studied [8] using G.729,
G.723.1 and three codecs in the GSM family, namely, GSM-
AMR, GSM-HR, and GSM-FR. Another scenario pertaining
to the codec induced distortion is tandeming wherein the
speech is processed through several coding schemes as it
traverses through different media gateways. The adverse effect
of tandeming on speech recognition performance has also been
studied [9], [5]. Lilly et al [5] concluded that the effect of
tandeming on the recognition performance is more for low
bit rate codecs (13 kbps or less) compared to the high bit
rate codecs (40-64 kbps). A variety of techniques has been
proposed in the literature to compensate the drop in recog-
nition performance due to distortions introduced by codecs
and tandeming. These techniques include enhancement of the
decoded speech, robust feature extraction [10], compensation
in feature space [11], augmentation of codec parameters by
including extra data containing compensation information [12]
and adaptation of acoustic models [13], [14], [9]. However,
such compensations can only be partial as the distortions are
non-linear and the topologies are generally unknown.

In the light of the new developments in the field of AMTs
and codecs, in this work, we study the effect of codec specific
distortion on speech recognition performance using the TIMIT
database and eleven codecs of different types including nar-



rowband, wideband, parametric, hybrid and waveform coding.
To the best of our knowledge, the effects of such codec
induced distortions in conjunction with those AMTs on the
ASR performance is not yet well understood. Therefore, it is
necessary to first study the effects of such codecs when applied
to microphone speech data under clean conditions. Hence, we
use the TIMIT database in this study so that distortion using
different codecs can be simulated and recognition performance
can be studied in a controlled manner. Since the focus of the
current work is to understand the effects of the codec induced
distortions, the effects of channel induced distortions are kept
out of the scope of this study. Experiments are performed using
five AMTs including GMM-hidden Markov model (GMM-
HMM) frameworks as well as several recently developed
AMTs such as SGMM and DNN. In order to understand
the robustness of different AMTs in the presence of codec
induced distortions, we exclude the influence of the language
model, in speech recognition, by using a zero-gram language
model [15]. Experiments on the speech data from the single
round of coding-decoding reveals that acoustic models derived
from codecs with higher bit rate exhibit lower phone error
rate (PER) irrespective of the AMT. This is consistent with
the findings from the literature. The study also reveals that
the DNN based AMT not only performs the best in PCM
coded speech but also achieves the lowest PER on the decoded
speech for each codec.

This study also investigates the effect of tandeming using
six unseen tandem scenarios. Similar to the single encoding-
decoding case, the PER turns out to be the lowest correspond-
ing to the acoustic model from a codec with a high bit rate.
We also consider an acoustic model built using a mixture of
speech data from six tandem scenarios, referred to as cocktail
data. Our study reveals that the acoustic model obtained with
cocktail data results in a PER lower than that from the matched
condition. Thus, in the absence of any knowledge about the
tandem topologies, the best strategy could be to use an acoustic
model from the high bit-rate codec. However, if the pool of
the tandem topologies is known, the acoustic model derived
from a cocktail speech data could be used.

II. SELECTION OF ACOUSTIC MODELING TECHNIQUES
AND CODECS

A. Selection of acoustic modeling techniques

The AMTs used in the state-of-the-art large vocabulary
speech recognition systems (LVCSR) can be grouped into two
categories:

1) GMM-HMM based system uses GMMs for modeling in-
dividual HMM states. Here, the GMMs are used to rep-
resent the emission density of an HMM. The training can
be done either using maximum-likelihood [16] or sequence
discriminative criteria namely Maximum Mutual Information
(MMI) [17], boosted MMI [18], Maximum Phone Error
(MPE) [19] or Minimum Bayesian Risk (MBR) [20].

2) DNN-HMM based hybrid system is the one where the
DNN is trained to provide posterior probability estimates
corresponding to HMM states. The posterior probabilities are

converted into likelihoods on division by priors, which act as
substitutes for the likelihoods of a GMM. The training can be
done with/without sequence discriminative criteria mentioned
above.

There are several non-HMM based systems based on match-
ing of exemplars or templates of spoken utterance [21] used
for spoken term detection and not in the context of LVCSR.
However we have not chosen them for this study. Thus, we
have used following five AMTs:

1) Monophone based GMM-HMM (MONO)
2) Context-dependent triphone based GMM-HMM (CD-

TRI)
3) The Subspace Gaussian models with boosted Maximum

Mutual Information (SGMM)
4) DNN with DBN Pretraining (DNN-DP)
5) DNN with state-level MBR (DNN-DP-sMBR)

The first two AMTs are based on generative model of speech
traditionally used for speech recognition and use training
based on maximum-likelihood (ML) criterion. The latter three
are the recently developed AMTs. Among them, the SGMM
is based on the sGMM-HMM paradigm but with sequence
discriminative training i.e., boosted MMI. DNN-DP and DNN-
DP-sMBR fall in DNN-HMM hybrid category. Among the
various criteria available for sequence discriminative training
in DNN-HMM hybrid category, the state-level MBR (sMBR)
is considered in this study as it yields the highest recogni-
tion accuracy [22]. Both DNN-DP and DNN-DP-sMBR have
common initial stages that involve pretraining of RBMs while
the latter has an additional stage for sequence discriminative
training based on the state minimum Bayesian risk criterion.

TABLE I
SUMMARY OF THE CODECS USED IN OUR STUDY. EXCEPT WIDEBAND

CODEC, ALL CODECS OPERATE AT 8KHZ SAMPLING RATE.

Codec Type BW BR Source
(kbps)

G.711A Waveform Narrow 64 ITU-T [23]
MELP Parametric Narrow 2.4 Data

Compression[24]
AMR-
NB

Hybrid Narrow 4.40 SoX [25]

AMR-
WB

Hybrid Wide 23.85 3GPP [26]

G.728 Hybrid Narrow 16 ITU-T [23]
G.729A Hybrid Narrow 8 ITU-T [27]
G.729B Hybrid Narrow 8 ITU-T [27]
PCM Waveform Narrow 128 SoX [25]
ADPCM Waveform Wide 32 SoX [25]
GSM-8k Hybrid Narrow 13 SoX [25]
SPEEX Hybrid Wide 27.8 SPEEX [28]

B. Selection of codecs

The codecs, on the other hand, have been chosen based
on the type of codecs (waveform, parametric and hybrid),
bandwidth (BW) (narrowband vs wideband) and bit rates (BR)
(low vs high). The variety in codec parameters would help
in understanding their impact on recognition accuracies vis-
à-vis the AMTs used. Table I summarizes the details about



the codecs considered in the study. It is seen that there are
seven hybrid, three waveform and one parametric codecs. In
terms of BW, there are three wideband and eight narrowband
codecs. The source for the each codec is also indicated in the
last column of the table.

Recognition experiments are performed on the speech data
obtained after a single round of encoding-decoding. The first
eight codecs in Table I are used for this purpose. For the
selection of codecs for tandem topologies, we consider various
types of distortions. One among these non-linear distortions
is due to framewise processing of some codecs (e.g., hybrid
type) which have differences in frame size. Additionally, the
tandeming of a wideband and narrowband codec would result
in loss of information. Such factors could have an impact on
the recognition accuracies. In order to model such effects,
we have chosen tandem topologies consisting of different
combinations of codecs of different bandwidths and frame
sizes (last three codecs in Table I). This choice makes all
the codecs, used in tandem scenarios, unseen, i.e., none of
them were used to train a codec specific acoustic model in
the single round of encoding-decoding scenario. This is done
to identify the best alternative acoustic model apart from the
matched condition models, which is difficult to obtain for a
blind tandem topology where the codecs and their orders are
unknown.

III. EXPERIMENTAL DETAILS

A. Datasets

Recognition experiments are performed using the TIMIT
database [29]. The TIMIT files originally sampled at 16kHz
are downsampled to 8kHz depending on the needs of individ-
ual codecs. The TIMIT database consists of the training set,
complete test set including the core test set [30]. The acoustic
models are built from the training set comprising 462 speakers
with 3696 utterances. To construct development sets, we use
a part of the complete test set, non overlapping with the core
test set, comprising 50 speakers with a total of 400 utterances.
We create test sets by using the core test set comprising 24
speakers and 192 utterances.

To study the effects of single encoding-decoding, we pass
the speech data (wav files) through the encoding and subse-
quently through decoding function of the speech codecs. We
perform this operation on the training, development and test
dataset for the first eight codecs from Table I. Hence, we obtain
eight codec dependent acoustic models and development and
test datasets, each, comprising eight sets of corresponding
speech data passed through a single round of encoding-
decoding.

In the tandem scenario, to create each tandem topology,
the same operation is repeated successively in order of the
applicability of codecs for that specific topology. To simulate
a blind test in this scenario, we consider the last three
codecs from Table I to prepare six blind test databases (3!
tandem topologies using 3 codecs) – 1) ADPCM→GSM-
8k→SPEEX, 2) ADPCM→SPEEX→GSM-8k, 3) GSM-
8k→ADPCM→SPEEX, 4) GSM-8k→SPEEX→ADPCM,

5) SPEEX→ADPCM→GSM-8k, 6) SPEEX→GSM-
8k→ADPCM. We also construct a cocktail acoustic model by
using training data uniformly distributed among these tandem
topologies following the work by Srinivasamurthy et al [14],
which uses cocktail data for adaptation of the existing models.
However, unlike adaptation, we train an acoustic model using
cocktail data. This is similar to the work by Sciver et al [31],
which does not use data from tandem topologies but a mixed
data from several single decodings. It is to be noted that, in
both single and tandem scenarios, the effect of the channels
is kept out of the scope of this study.

B. Experimental setup

The recognition experiments are carried out using Kaldi
toolkit [32] based on the recipes for TIMIT database. In ad-
dition to the speech data, the TIMIT corpus contains phonetic
transcription corresponding to 61 phones which are compacted
into a set of 48 phones during acoustic modeling [30]. We
consider a variety of features across different AMTs such as
Mel Frequency Cepstral Coefficient (MFCC) with velocity (∆)
and acceleration (∆∆) coefficients, and MFCC with Linear
Discriminant Analysis (LDA), Maximum Likelihood Linear
Transform (MLLT), and Speaker Adaptive Training (SAT)
[33]. The Kaldi terminology and features corresponding to the
five AMTs are described in Table II. The feature dimensions
are 39 for MONO, 40 for CD-TRI and SGMM respectively.
The number of probability density function (PDFs) for training
of MONO, CD-TRI, SGMM, DNN-DP and DNN-DP-sMBR
are 144, 1866, 1973, 1967 and 5681 respectively. Between the
two recipes of DNN available in Kaldi-ASR toolkit we choose
the Karel’s DNN setup for our study as it has been shown to
provide better performance [34], [22], [35]. For quantifying
recognition performance, we use the word error rate (WER)
reported by Kaldi which is referred to as PER in this work.

TABLE II
LIST OF AMTS, KALDI TERMINOLOGY AND THEIR

CORRESPONDING FEATURES.

AMT Kaldi Features
terminology

MONO mono MFCC+∆+∆∆
CD-TRI tri3 LDA + MLLT + SAT
SGMM sgmm2 4 LDA + MLLT + SAT

mmi b0.1
DNN-DP dnn4 pretrain LDA + MLLT + SAT

-dbn dnn
DNN-DP-sMBR dnn4 pretrain LDA + MLLT + SAT

-dbn dnn smbr

IV. PER ANALYSIS FOR DIFFERENT CODECS AND AMTS

In this section we elaborate the effects of different codec
based acoustic models and AMTs on the PER, under both
single encoding-decoding and tandem scenarios.

A. Single encoding-decoding

As mentioned in Section III-A we choose the top eight
codecs from Table I to train eight acoustic models under each
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Fig. 1. The average (standard deviation) PER (%) for all acoustic models and five AMTs across the development sets under single encoding and decoding
scenario. Error bars indicate standard deviation.

AMT. We perform ASR on the development sets for all eight
single encoding-decoding. Fig. 1 shows the PER averaged over
the development sets by using the eight acoustic models for
each of the five AMTs.

It is seen from the Fig.1 that the PER decreases with the
improvements in the AMTs from MONO to DNN-DP-sMBR
for each codec dependent acoustic model. We see a consistent
pattern of PER obtained using eight acoustic models across
all the AMTs.

We rank order the eight acoustic models based on the PER
for each AMT. We then construct a histogram of the top five
acoustic models across AMTs, to find which of them perform
consistently well, i.e., low PER values. The histogram of the
top five acoustic models across all the AMTs is shown in
Fig.2. We find that only six acoustic models based on G.711A,
G.728, G.729B, AMR-WB, G.729A and PCM come up as the
top five, at least once. We observe that the acoustic models
trained on codecs with higher bit rate (Table I) appear in
the histogram. This is in agreement with the results reported
earlier in the literature. From the Fig. 2, we observe that except
for PCM, the other five codecs turn out to be in the top five
consistently. Therefore, we use these five codec based acoustic
models to perform ASR on the test dataset. Interestingly, we
also find that four among the chosen five acoustic models are
narrowband codecs.
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Fig. 2. Histogram of top four ranked codecs across different AMTs.

We compare these PERs with that obtained from the
‘matched’ condition, i.e., when a codec used to build the
acoustic model for recognition is also used in the development
set. It is expected that the ‘matched’ case would yield a lower
PER than the other PERs, as shown in Fig.1. To quantify
the performance of the eight acoustic models with that of
the matched model, we compute the percentage change in

TABLE III
PERCENTAGE CHANGE IN PER RELATIVE TO MATCHED CASE FOR EACH

AMT ACROSS DIFFERENT CODECS FOR DEVELOPMENT AND test
DATASETS UNDER SINGLE ENCODING-DECODING SCENARIO

Trained
Codec
Model

Data
set

Acoustic modeling technique
MONO CD-

TRI
SGMM DNN-

DP
DNN-
DP-
sMBR

AMR-NB Dev 8.12 12.05 15.61 13.45 12.32

AMR-WB Dev 4.88 8.94 9.26 9.06 8.84
Test 4 .38 6 .98 6 .90 7 .56 7 .80

PCM Dev 6.03 10.43 11.06 11.9 11.37
Test 5 .52 10 .03 10 .25 10 .28 10 .47

G.711A Dev 2.58 6.56 4.76 3.67 3.43
Test 2 .32 6 .11 5 .49 2 .83 3 .09

G.728 Dev 3.30 6.47 6.14 5.78 5.51
Test 2 .56 5 .70 7 .05 4 .68 4 .71

G.729A Dev 6.72 9.45 9.95 8.06 7.82
Test 5 .85 10 .49 7 .53 6 .17 6 .17

G.729B Dev 4.23 4.94 4.34 4.34 3.71
Test 4 .47 5 .53 5 .49 4 .42 4 .34

MELP Dev 8.61 9.66 13.60 10.23 10.69

PER relative to the matched condition for all AMTs as shown
in Table III. We observe that the acoustic models based on
G.711A, G.728, G.729B, AMR-WB and G.729A (top five
chosen from the histogram as shown in Fig. 2) have less than
10% increase in the PER relative to the matched condition in
each AMT. Among the top five, we find that the least increase
in PER happens for G.711A based acoustic model, in most
of the AMTs. In comparison with the codec based acoustic
models, the ‘clean’ or the PCM based acoustic model performs
poorly, with more than 10% increase in the PER relative to the
matched condition in most AMTs. This suggests that using a
model trained on ‘clean’ speech data is not suitable to perform
ASR on speech degraded due to codec induced distortion.
From the table, we find that in four of the five AMTs, the
acoustic models based on AMR-NB, PCM and MELP have
the highest increase in PER relative to the matched case. With
reference to Fig. 2, it is to be noted that these three models
did not come up consistently in the top five models chosen
based on PER. It could be that on average, the nature of
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Fig. 3. The average (standard deviation) PER (%) for all acoustic models and five AMTs across the test sets under single encoding and decoding scenario.
Error bars indicate standard deviation.
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Fig. 4. The average (standard deviation) PER (%) for all acoustic models and five AMTs across six blind test sets under tandem scenario. Error bars indicate
standard deviation.

distortions1 induced by these three codecs is different from
that induced by the rest of the codecs. This in turn could
have led to a greater mismatch between the train and test
conditions (on average) yielding a greater deviation from the
matched condition (Table III). Interestingly, it is seen from
the table that for most acoustic models, the increase in PER
relative to the matched case goes up for all AMTs compared
to MONO AMT. This suggests that the state-of-the-art AMTs
could be less robust to codec induced distortion compared to
a traditional GMM-HMM (MONO) AMT.

Fig. 3 shows the average PER obtained by using the top
five acoustic models for each of the five AMTs for the test
dataset. To compare their performance with the model trained
on ‘clean’ speech data, we also show the PER obtained by
the PCM based acoustic model in the figure. As observed for
the development dataset, the average PER reduces with the
advancements on AMTs (from MONO to DNN-DP-sMBR) on
the test dataset as well. From Table III, we see that, for the test
set, the top five acoustic models have less than 8% (as opposed
to 10% in the case of the development set) increase in the
PER relative to the matched condition in most AMTs. Among
the top five, we find that the least increase in PER happens
for G.711A based acoustic model, similar to the case of the
development set. This justifies the choice of using acoustic

1We assume that the distortions in the acoustics introduced are codec
specfic. We consider PCM to introduce the least distortion.

models trained on narrowband high bit rate codecs to perform
ASR of a test data with an unknown coding scheme.

B. Tandem scenarios

We test the performance of the top five codec based acoustic
models, obtained from the single encoding-decoding study
(Section IV-A), in six blind tandem test scenarios for each
AMT. We also compare the performance of the top five
acoustic models with that of the cocktail acoustic model.
Fig. 4 shows the PER obtained by using the top five and
the cocktail acoustic models averaged over blind test datasets
corresponding to six tandem scenarios. The average PER
obtained in the matched case is also provided in the figure
for each AMT.

Similar to the observations in Section IV-A, we see that
the PER reduces with advancements in AMTs. From Fig.4, it
is observed that the pattern of PERs from different acoustic
model is consistent across all AMTs. Among the top five
acoustic models, we see that G.711A has the least PER for
each AMT. Incidentally, G.711A has the highest bit rate
among the top five codecs chosen (Section IV-A and Table
I). Interestingly, we see that the performance of the cocktail
acoustic model is comparable to that of the matched condition
for each AMT. While the cocktail acoustic model could be
used when the pool of tandem topologies are known, under a
blind tandem scenario, acoustic models built on narrowband
high bit rate codecs could be used for ASR.



V. CONCLUSIONS

The present study on the codec induced distortion on the
speech recognition performance shows that the acoustic model
from G.711A, a narrowband high bit rate codec, results in
the best recognition accuracy among acoustic models from
eight different codecs using all five types of AMTs considered.
This is true for both single round of encoding-decoding as
well as blind tandem scenarios. When the pool of tandem
topologies are known a priori, cocktail acoustic model could
be used since it performs better than the acoustic model
from G.711A. The study of the effectiveness of the cocktail
acoustic model in conjunction with the language model, for
both single encoding-decoding and tandem scenarios, require
further investigation. In addition, to aid the compensation of
the codec induced distortions in both these scenarios, acoustic
features robust to codec induced distortion could be used for
acoustic modeling to improve the recognition performance
further. These are parts of our future work.

VI. ACKNOWLEDGEMENT

This work was supported by Defence Research and Devel-
opment Organization, Government of India.

REFERENCES

[1] D. Povey, “Discriminative training for large vocabulary speech recogni-
tion,” Ph.D. dissertation, Cambridge University, 2004.

[2] D. Povey, L. Burget, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal,
O. Glembek, N. K. Goel, M. Karafiát, A. Rastrow et al., “Subspace
Gaussian mixture models for speech recognition,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2010. IEEE, pp. 4330–4333.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” Signal Processing Magazine, IEEE, vol. 29,
no. 6, pp. 82–97, 2012.

[4] S. Euler and J. Zinke, “The influence of speech coding algorithms on
automatic speech recognition,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP ’94,
vol. 1. IEEE, pp. 621–624.

[5] B. T. Lilly and K. K. Paliwal, “Effect of speech coders on speech recog-
nition performance,” in The 4th International Conference on Spoken
Language Processing, vol. 4. IEEE, 1996, pp. 2344–2347.

[6] H.-G. Hirsch, “The influence of speech coding on recognition perfor-
mance in telecommunication networks.” in 7th International Conference
on Spoken Language Processing, ICSLP2002 - INTERSPEECH 2002.

[7] H. Kook Kim and R. V. Cox, “Bitstream-based feature extraction for
wireless speech recognition,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2000,
vol. 3. IEEE, pp. 1607–1610.
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