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ABSTRACT

Swallowing disorders, broadly known as Dysphagia, are difficul-
ties in the process of swallowing food. Many currently available
methods for classifying healthy and dysphagic swallows typically
use hand-picked acoustic features. This article presents a SegNet-
based method for classifying healthy and dysphagic swallow sig-
nals by learning mel-spectrogram features. Swallow sounds were
recorded from a total of 24 subjects using a microphone based cer-
vical auscultation (CA) system. Each subject swallowed multiple
samples of water of volumes 5ml, 10ml and 15ml, and also per-
formed multiple dry swallows. The experiments investigated the
significance of temporal structures in the SegNet-learnt represen-
tations. The classification performance was evaluated at different
model depths in order to identify the optimum feature time-scale that
maximized the classification performance. The proposed method
was found to be more robust to variations in the signatures of swal-
low signals across multiple volumes of water, against a baseline
method across a single volume of water. The best performing model
yielded a mean test F1-score of 80.13% (±4.62%) in a 5-fold cross
validation setup.

Index Terms— Cervical Auscultation, Dysphagia Classification,
SegNet, Two-step training

1. INTRODUCTION

The process of swallowing (deglutition) in humans involves passing
the saliva mixed food bolus from the mouth to the stomach through
peristalsis in the esophagus. This is an intricate process coordinated
by around 30 muscles controlled by the cerebral cortex of the human
brain. Since the pharynx is the common passage to air and food, the
epiglottis is shut in the pharyngeal phase to stop food from enter-
ing the airway. This would otherwise result in pulmonary aspiration
[1]. Any difficulty or the need for increased effort in swallowing
is referred to as dysphagia. Causes of dysphagia include weaken-
ing of muscles, neurological disorders like multiple sclerosis, stroke,
Parkinson’s disease, and obstructions due to laryngeal, esophageal or
head & neck cancer. Dysphagia can cause illness pertaining to aspi-
ration pneumonia, malnutrition, weight loss, dehydration and chok-
ing [2]. Common clinical interventions that diagnose dysphagia in-
clude invasive methods like fiber-optic endoscopy, videofluoroscopy,
functional magnetic resonance imaging and non-invasive methods
like surface electromyography and cervical auscultation (CA) [3].
Of such methods, CA, which uses a simple acquisition device setup
to record swallow signals, has been shown to produce representa-
tions of swallows similar to other clinical methods [4]. Identifying
dysphagia is a task of foremost importance due to its detrimental

consequences. Reducing manual efforts and possible human errors
by assisting clinical experts in identifying dysphagia helps in im-
proving the overall efficacy of the diagnostic process. This can be
achieved through automating a system to learn features for charac-
terizing and classifying dysphagic swallows.

Previous works in the literature, using CA, have characterized the
process of swallow using either accelerometer vibrations or micro-
phone sounds, but largely using the former. Contrast to popular us-
age of accelerometer vibrations in the literature, for swallow signal
characterization and classification (like in works [5, 6, 7, 8]), Cichero
et al. [9] concluded that swallow signals acquired by electret micro-
phones are more informative than accelerometer vibrations. This
was attributed to their improved signal-to-noise ratio characteristics
and resistance against ambient background noise. The works by
Dudik et al. [10] and Movahedi et al. [11] compared swallow sounds
and vibrations across multiple bolus consistencies. It was found that
the time-frequency and energy characteristics of the signals acquired
using each device differed for the healthy and dysphagic classes. For
the same reason, the representations by the accelometer and the mi-
crophone were deemed to be non-interchangeable. Miyagi et al. [12]
used a Radial Basis Function (RBF) kernel SVM classifier to classify
healthy and dysphagic swallows. Their dataset comprised sounds
from healthy and dysphagic subjects swallowing multiple samples
of 3ml of water. Their best performing feature set pertained to peak
amplitude and quartile-ratio features from different spectral regions
of swallow signal spectrograms.

In works such as mentioned above, comparatively, only few have
characterized dysphagic swallows using microphone recordings. In
general, many works required manual engineering of signal features
to an extent. Also, not many works in the literature have been able to
conclusively define spectro-temporal variations of swallow sounds,
especially in dysphagic sounds. This makes manual selection of
acoustic features difficult. Thus, automatic feature learning and dys-
phagia identification will help in building acoustic representations
of swallow signals and in reducing manual efforts and errors. This
two-step process is achieved in the current work using an autoen-
coder framework for learning features from mel-spectrograms and
then training a classifier using the learnt features. In this work no
procedures for swallow phase segmentation were employed and fea-
tures were learnt from each entire swallow recording (ie., without ex-
plicitly learning potentially influential features from individual swal-
low phases). A microphone based cervical auscultation setup was
used to acquire swallow signals from healthy and dysphagic sub-
jects. Since the number of swallow signals in the control and patient
classes used in this work was unbalanced, F1-score was used as the
evaluation metric. The subjects were split into 5 distinct folds com-
prising train, validation and test sets. The proposed method was able
to achieve an F1-score of 80.13% (±4.62%) across the 5 folds (over
multiple bolus volumes).
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2. DATASET

The dataset for this work was collected at HealthCare Global Enter-
prises Limited, Bangalore, India. Consent was obtained from all sub-
jects whose swallow signals were recorded. Swallow sounds from
14 healthy controls (21 - 36 years) and 10 patients (34 - 75 years)
were obtained using a microphone-based CA setup. It has been dis-
cussed in [13] that the mass and strength of muscles coordinating
the process of swallow deteriorate with age. This induces an unin-
tentional fatigue in chewing and swallowing foods and presents an
increased risk of choking, especially among people older than 65
years of age. Hence, in this study, healthy swallows were recorded
from individuals who were considerably younger than those in the
dysphagic group.

Fig. 1: (a) Cervical auscultation device attached to the neck (b) Com-
ponents of the cervical auscultation device

The swallow signals were recorded in a well-illuminated and a
relatively quiet environment. The data collection setup used in this
work (shown in Fig. 1) was the same as that used by [14]. The
Life-Line Paediatric-Al Stethoscope was used to record swallow
sounds. The output from this device was connected via an acous-
tic tube to Sorella’z portable 3.5mm microphone (frequency range
of 30Hz-15kHz, sensitivity value of −52dB (5dB tolerance) and an
impedance value of 2.2kΩ). After each subject was seated, the aus-
cultation device was secured to their neck region corresponding to
the lateral border of the trachea, ensuring no obstruction to normal
breathing and swallowing in the subjects. For CA, this region which
is inferior to the cricoid cartilage encircling the trachea was con-
cluded as the optimal site for recording swallow sounds by Pan Q. et
al. [15].

Each subject in their resting state swallowed separate samples of
5ml, 10ml and 15ml of water. The subjects also performed dry swal-
lows without any water. In the dry swallow the subjects might have
swallowed saliva. Boluses of volume 5ml, 10ml and 15ml (mea-
sured by a syringe) were provided to the subjects in paper cups. For
each swallow attempt, the subjects were prompted to swallow the
water from the cup at one go. A separate mobile application was
used to timestamp the onset and ending of each attempt. Swallows
accompanied by nasal leakage, coughs, drooling or uttering undesir-
able and unexpected sounds (particularly in the control group) were
discarded from the dataset. This process was repeated for 3-4 times
for each volume of water with ample rest between each attempt. A
rest of about 2 minutes was allocated between recording sessions for
different bolus volumes. In such a manner, a total of 290 swallow
signals (172 healthy and 118 dysphagic) were obtained. The average
number of swallows per subject in the control group was 12.28 and
that in the patients group was 11.8. PRAAT software [16] was used
to process and digitally store all recorded swallows at a sampling
rate of 16kHz. This in-house dataset will henceforth be referred to
as InD in this article.

3. PROPOSED METHODOLOGY

The proposed methodology involves, (a) computation of acoustic
features, (b) learning acoustic representations for swallow signals
and (c) classification of swallows into healthy and dysphagic groups
using a binary classifier. The details of the 3 steps are discussed
below.

3.1. Input features and data pre-processing

Mel-spectrogram, henceforth referred to as MSpec in this article,
was computed from each swallow signal using a hamming window
of length 20ms and a hop length of 2ms. The librosa python package
for music and audio analysis [17] was used to compute all MSpecs.
The MSpecs had different number of timesteps due to variations in
the duration of swallow signals. All MSpecs were hence augmented
to equal number of timesteps by padding them with zeros. Binary
one-dimensional (1D) masks were created with zeros at indices cor-
responding to the padded portions of the MSpecs and ones at indices
corresponding to the actual portions of the MSpecs. Each MSpec
was multiplied with its corresponding binary mask before being fed
to the neural network layers. This process ensured that the model
learnt from only the actual regions of the input feature maps and not
from regions that do not correspond to the actual MSpec.

3.2. Model architecture and classification techniques

SegNet [18], a deep convolutional autoencoder architecture, with
13 1D convolutional layers, was employed for the task of learning
acoustic features from swallow signals. Fig. 2 outlines the model
architecture and the proposed methodology. The SegNet encoder-
decoder model preserves spatial information of the input MSpec by
optimizing the network parameters with the aim of learning reduced-
dimension bottleneck features at the encoder layers which are then
used for reconstructing the same features in the layers of the decoder
section. Using the features learnt by the SegNet encoder as input,
three approaches for dysphagia classification were experimented -

• Approach 1 (CNN1) - 1D-CNN Classifier: A 1D-CNN based
deep neural network was first used to perform binary classifi-
cation on the input data. Here the chosen model architecture
was the SegNet encoder followed by a sigmoid activation layer
for classification.

• Approach 2 (Jnt) - Joint Training: Using flattened representa-
tions of the encoder output, a dense layer followed by sigmoid
activation was trained along with the autoencoder. This model
learns by jointly optimizing the sum of the reconstruction loss
at the decoder and the classification loss at the sigmoid layer.

• Approach 3 (TsT) - Two-step Training: The SegNet-learnt
bottleneck features were used to train a linear classifier. A Sup-
port Vector Machine (SVM) model [19] was chosen as the bi-
nary classifier due to their robustness against overfitting (when
working with small datasets) and outliers in the input data.

4. RESULTS & DISCUSSIONS

4.1. Experimental Setup

MSpec features and binary masks were computed for all swallow
signals. No signal pre-processing techniques were employed prior
to computing MSpec from raw signals. All 24 subjects were split
into train, validation and test sets. A 5-fold cross validation setup
was used wherein in each fold the subjects were randomly picked

1142

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 11,2022 at 10:23:45 UTC from IEEE Xplore.  Restrictions apply. 



16
, 2

 X
 2

16
, 2

 X
 2

po
ol

 si
ze

 =
 2

m
as

k 
si

ze
 / 

2
32

, 2
 X

 2
32

, 2
 X

 2
po

ol
 si

ze
 =

 2
m

as
k 

si
ze

 / 
2

64
, 2

 X
 2

64
, 2

 X
 2

64
, 2

 X
 2

po
ol

 si
ze

 =
 2

m
as

k 
si

ze
 / 

2
12

8,
 2

 X
 2

12
8,

 2
 X

 2
12

8,
 2

 X
 2

po
ol

 si
ze

 =
 2

m
as

k 
si

ze
 / 

2
12

8,
 2

 X
 2

12
8,

 2
 X

 2
12

8,
 2

 X
 2

po
ol

 si
ze

 =
 2

m
as

k 
si

ze
 / 

2

12
8,

 2
 X

 2
12

8,
 2

 X
 2

12
8,

 2
 X

 2

fa
ct

or
 =

 2

fa
ct

or
 =

 2
12

8,
 2

 X
 2

12
8,

 2
 X

 2
12

8,
 2

 X
 2

fa
ct

or
 =

 2
64

, 2
 X

 2
64

, 2
 X

 2
64

, 2
 X

 2
fa

ct
or

 =
 2

32
, 2

 X
 2

32
, 2

 X
 2

fa
ct

or
 =

 2
16

, 2
 X

 2
16

, 2
 X

 2
1,

 2
 X

 2

Proposed Approach 1

Proposed Approach 2MaxPooling

Mask size updation

Upsampling

Batch Normalization + ReLU

Encoder Decoder

Output Convolution

Mask + 1D Convolution + Batch Normalization
                                                                    + ReLU

R
C

F1

R
C

F3

R
C

F4

R
C

F5

Linear SVM

Dense Layer

R
C

F2

Mel-spectrogram

Binary mask

Fig. 2: An illustration of SegNet Architecture; Maxpooling layers RCFi (i = 1, 2, 3, 4, 5) have receptive field sizes of 3, 10, 26, 58 and 122

such that there are 2 patients for every 3 controls. In each fold,
none of the train, validation and test sets had common subjects. The
Adam optimizer [20] was used to train the SegNet by optimizing the
mean squared error loss between the input and the reconstructed out-
put under an early stopping criterion (with a patience of 8 training
epochs) based on the mean absolute error on the validation set. The
initial learning rate was set to 10−3, with a decay rate of 10−6. With
respect to the classifier, unlike the baseline scheme, a linear kernel
was used in this work since kernels such as RBF have been found
to be unsuitable when the dimension of features is large [21]. While
training the linear SVM in TsT, a grid search was performed (from
10−5 to 105, in multiples of 10) for determining the regularization
parameter (C). This selection was based on the performance of the
SVM classifier on the validation data. Since the healthy and dysh-
pagic swallow classes were imbalanced, the F1-score metric [22]
was used to evaluate the performance of the proposed approaches. In
this article, standard deviation values are provided in brackets when-
ever mean F1-scores are mentioned. Sensitivity rate and specificity
rate were also calculated to gain insight into the classifiers’ ability
in producing true predictions on the given data. The results obtained
using the baseline scheme and proposed approaches are summarized
in Fig. 3 and Table 1.

4.1.1. Effect of Receptive Field Size

It is important for the model to learn features corresponding to differ-
ent phases of bolus transfer during swallowing (oral, pharyngeal and
esophageal [23]), and also from regions of transition from one phase
to another. This learning can be optimized through finding the right
feature time-scale (i.e., the receptive field size at different depths of
the SegNet encoder) that results in an encoded representation most
suitable for reconstruction. Fig. 2 shows the receptive field size at
different depths of the SegNet encoder architecture. In approaches
CNN1, Jnt and TsT, five RCFi-trials (an RCFi-trial denotes train-
ing the binary classifier using the embedded representations obtained
from the corresponding maxpooling layer denoted as RCFi in Fig.
2) were performed to find out the optimum feature time-scale.

4.2. Results with baseline scheme

The method proposed by Miyagi et al. [12] was considered as the
baseline scheme here since their work also uses microphone record-
ings of swallow signals for dysphagia classification. The RBF-SVM
model was trained (on InD) using their best performing features
computed from discrete time fourier transform and spectrogram of

each signal. While evaluating the performance of the baseline SVM
model on InD, the validation set was clubbed with the training set.
In the proposed approaches however, the training and validation sets
were used to train the SegNet. The test set was kept exclusively
to predicting on unseen data. This model achieved a mean test F1-
score of 71.95% (±9.84%) on InD. The baseline scheme achieved
a corresponding F1-score of 78.9% on their dataset that consisted
of 104 randomly selected signals (at 8000Hz, from 27 healthy con-
trols and 143 patients) in both classes. The poorer performance on
InD shows that the baseline scheme suffers on larger and imbalanced
classes. Though the baseline scheme produced a good sensitivity
rate of 76.67% on the test dataset, it suffered from a poor specificity
rate of 42.92% (ie., high false positive results). Also, since fold-
wise F1-scores were unavailable from the baseline work, it was not
possible to further compare their dataset and InD.

4.3. Results with 1D-CNN Classifier

The 1D-CNN classifier was trained separately as a binary classifier
(with no aim of input reconstruction, unlike that in approaches Jnt or
TsT). In initial trials, 1D-CNN models of different architectures for
the classification task were experimented with. Since all their per-
formances were similarly poor (due to overfitting), finally a model
with the architecture as mentioned in approach CNN1 (in subsection
3.2) was selected. This was done to verify if the bottleneck fea-
ture learning step (as in approaches Jnt and TsT) indeed improves
the discriminative ability of the model. This model was trained un-
der each RCFi-trial. Of all RCF-trials, RCF3 performed the best
with a mean test F1 score of 68.66% (±11.94%). However, this ap-
proach, on all RCF-trials performed poorly on the classification task
- in general, it showed poor sensitivity rates (ie., high false negative
predictions) than the baseline scheme, as shown in Table 1. Hence,
after this, approach JnT was experimented with to possibly improve
model performance using joint training.

4.4. Results with Joint Training

Using approach Jnt in RCF5-trial, the mean test F1-score of 74.22%
(±15.25%), across all 5 folds, was greater than the baseline value
by 2.27% (absolute). These results show the capability of the pro-
posed model to perform better on imbalanced classes. Further, the
other RCF-trials were carried out in this approach. Fig. 3 summa-
rizes the mean test F1-scores across all folds for each RCF-trial. The
RCF4-trial performed the best with an average F1-score of 74.26%
(±8.77%) and mean test sensitivity and specificity of 71.53% and
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Fig. 3: Performance of baseline scheme, CNN1, Jnt and TsT (apart
from error bars, corresponding standard deviation values (rounded to
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67.21% respectively. Every RCF-trial however showed large varia-
tions in their fold-wise performance (high standard deviation values
as illustrated in Fig. 3). This was contributed by the fact that the
neural network suffered from overfitting - large variations on the per-
formance on the validation set with every progressing epoch - which
directly impacted the overall performance of the model. This pre-
sented a necessity to curb overfitting and reduce performance vari-
ation across folds. To address this problem, in the next approach
(TsT), classification was performed using an SVM classifier trained
on the encoder-learnt representations.

4.5. Results with Two-step Training

Here the SegNet encoder-representations were first flattened and
then standardized to zero mean and unit variance before training
the SVM classifier. This method of input data representation and
SVM training is henceforth referred to as TsT-F in this article. The
mean test F1-score of 77.21% (±8.07%) in the RCF5-trial was 2.7%
greater than the baseline value. Of all methods, RCF4-trial in TsT-F
performed the best with a mean test F1-score of 80.13% (±4.62%).
Using the model architecture in RCF4-trial setup, the optimum re-
ceptive field size (feature time-scale value) was calculated to be 58.
The mean test sensitivity and specificity values obtained from RCF4-
trial was the best combination when compared to those from other
methods where atleast one of the two metrics was poorer. From
Fig. 3 it can be observed that the standard deviation of the fold-
wise test F1-scores in RCF4-trial in TsT-F was reduced to ±4.62%
from ±8.77% in the RCF4-trial of Jnt and ±9.84% in the baseline
scheme. Adding to this, the average values of sensitivity and speci-
ficity rates across all RCFi-trials was found to be the largest when
compared against all other methods listed in this work. This indi-
cates the robustness of the features learnt using TsT-F, in general
and when limited to its RCF4-trial, for classifying swallow signal
characteristics from both groups. The improved results from TsT-F
also show that the learning of compressed input feature space and
the usage of SVM classifier help in alleviating the problem of over-
fitting.

Further, to comprehend the influence of temporal characteristics
of the features in dysphagia classification the SVM model was also
separately trained by using a global-maxpooled version of the Seg-
Net encoder-learnt bottleneck features (approach TsT-G). In Global-
Maxpooling, only the maximum value in each convolution channel is
retained. In TsT-G, the model resulted in lower values of sensitivity
rate, specificity rate and mean F1-scores and, higher standard devi-
ations compared to TsT-F. This indicates that the complete absence

Table 1: Mean values of sensitivity and specificity of all approaches
across 5 folds

Mean Sensitivity across folds (%) Mean Specificity across folds (%)
CNN1 Jnt TsT-F TsT-G CNN1 Jnt TsT-F TsT-G

Rcf5 31.74 71.45 79.27 48.67 74.22 67.67 61.49 45.87
Rcf4 40.09 71.53 78.24 51.85 71.75 67.21 74.38 55.43
Rcf3 24.39 68.05 78.48 50.93 73.19 60.04 69.64 57.02
Rcf2 54.29 78.96 81.62 37.31 32.92 49.02 62.81 40.61
Rcf1 64.76 74.54 73.83 57.62 58.62 65.65 66.57 39.73
Mean 43.05 72.91 78.29 49.28 62.14 62.92 66.98 47.73

Baseline Sensitivity = 76.67 Baseline Specificity = 42.92

of temporal dependencies in the bottleneck features fed to the SVM
degrades the performance (especially since duration of swallow can
vary) and that the flattened bottleneck features that retain temporal
dependencies allow the classifier to learn more crucial characteris-
tics for classification. Apart from having the highest mean test F1-
scores, the average standard deviation of mean test F1-scores across
all RCFi-trials in TsT-F (±6.43%) was the lowest value compared
to the average standard deviation values when computed using the
baseline scheme, CNN1, Jnt and TsT-G approaches. This stands in
support to show that the features learnt through the Two-step Train-
ing approach achieves improved generalization in representing swal-
low signals and hence emerges winner in classifying healthy and
dysphagic swallows.

5. CONCLUSIONS

This work presents a deep representation learning approach for clas-
sifying healthy and dysphagic swallows using automatically learnt
representations from mel-spectrogram features. From the experi-
ments conducted, the Two-step Training model performed the best
with a mean test F1-score of 80.13%, mean test sensitivity of
78.24% and mean test specificity of 74.38%. This, in addition to
helping in identifying the optimum feature time-scale for maximiz-
ing model performance, highlights the ability of the model to gener-
alize across swallows of varying bolus volumes from the control and
patient groups. The improved metrics (against the baseline scheme)
indicate the robustness of the model wherein it produces lesser false
predictions and hence implies better feature learning. Future work
includes expanding the swallow signals dataset and adapting the pro-
posed method to learn to categorize the severity and sub-classes of
dysphagia.
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