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Abstract— In this work, we consider the task of automatic
classification of asthmatic patients and healthy subjects using
voice stimuli. Cough and wheeze have been used as voice stimuli
for this classification task in the past. In this work, we focus on
sustained phonations, namely /A:/, /i:/, /u:/, /eI/, /oU/ and
compare their classification performances with the cough and
wheeze. Classification experiments using 35 asthmatic patients
and 36 healthy subjects show that sustained vowel /i:/ achieves
the highest classification accuracy of 80.79% among five vowels
considered. However, it is found to be higher and lower than
the classification accuracies of 78.72% and 90.25% obtained
using cough and wheeze respectively. This suggests that for
speech-based asthma classification, /i:/ would be a better choice
compared to other vowels considered in this work. However,
when non-speech sounds are included for classification, wheeze
is a better choice than sustained /i:/.

I. INTRODUCTION

Asthma is an inflammatory disease of the airways re-
sulting in a number of symptoms including obstruction of
the airways, chest discomfort or pain, cough, and wheezes
or other peculiar sounds during breathing [1]. 235 million
people currently suffer from asthma, with 250k annual deaths
according to World Health Organization (WHO) [2]. Spirom-
etry is the most common pulmonary function test which
measures the severity of asthma. During spirometry, patients
are asked to wear a nose clip, take a deep breath to the
best of their capacity, and then exhale into the spirometer
as fast as and as long as possible, preferably for at least
six seconds. Maneuver primarily depends on patient’s effort
and cooperation causing the spirometry readings to vary
depending on how diligently a patient does the inhalation
and exhalation in the suggested manner. It becomes difficult
to obtain spirometry readings for children and elderly people
[3] as it is strenuous for them to follow the guidance properly
given by the technician.

Peak flow meter (PFM) [4] is used as a substitute which
measures peak expiratory flow rate (PEFR) through the
major airways of patient’s lungs, but it fails to measure
the same through minor airways, which also swells causing
typical asthma symptoms. Therefore, an alternate technique
to diagnose and monitor asthma is required to overcome
limitations of available methods.

The cough and wheeze based asthma detection and mon-
itoring is convenient for people irrespective of their age and
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medical conditions, unlike spirometry. A cough is produced
by closing the glottis till the pressure builds up below the
glottis followed by a sudden release of pressure once the
glottis opens. Wheeze, on the other hand, is a continuous
musical whistling sound produced in the respiratory tract
during breathing. Several works in the literature have pro-
posed techniques for classifying a subject into asthmatic or
healthy person based on his/her cough and wheeze sound
identified in a recording. For example, Wisniewski et al.
used pulmonary wheezes to monitor asthma by using tonal
index [5]. A segmentation scheme of respiratory sounds for
the detection of wheezes in asthma patient was proposed by
Akram et al. [6].

Study carried out by Bentur et al. [7] showed how wheeze
monitoring provides quantitative information that correlates
well with asthma activity of children. Hiew et al. [8]
proposed algorithm for automatic coughs identification and
counting for asthma. Automatic wheezing detection based
on spectrogram processing and back-propagation neural net-
work were also performed by Lin et al. [9]. There are several
works that classify asthma using respiratory sound based on
pitch [10], dominant frequency range [11] and duration of
the breath [12]. Igor et al. [13] did respiratory sound analysis
by using Mel-frequency cepstral coefficients (MFCC) with
cascaded Support Vector Machine (SVM) to detect wheezing
in asthmatic children. Achuth et al. [14] did asthma severity
classification by automatic prediction of spirometry readings
from cough and wheeze.

While the role of non-speech sounds like cough and
wheeze for asthma detection has been extensively investi-
gated, there is no work that investigates how effective several
speech sounds could be for the same task. An understanding
of how asthma signature could be encoded in different speech
sounds could help in developing techniques that could detect
asthma from natural voice of a subject rather than asking
subjects to produce cough and wheeze on demand that
may not be natural. Towards this, we, in this preliminary
work, explore the role of five sustained vowels, namely,
/A:/ (as in ‘father’), /i:/ (as in ‘See’), /u:/ (as in ‘Blue’),
/eI/ (as in ‘Say’), /oU/ (as in ‘Go’) instead of directly
using natural speech from a subject. Sustained phonations
is used in order to quantify the potential of vowel sounds
for asthma classification without any co-articulation effect
which occurs due to the temporal variation of vocal tract,
that often happens in running speech. Since, the signature of
asthma is typically present in the lung volume, [15] which,
in turn, affects the glottal voice source [16]. In this work
we restrict to vowel stimuli because, for non-vowel sounds,
the speech is also modulated by the vocal tract constriction
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unlike that in vowel [17]. We perform an automatic clas-
sification of asthmatic patients and healthy subjects using
acoustic features from these sustained vowels and compare
the classification accuracies with those obtained using cough
and wheeze. Classification experiments using 35 asthmatic
patients and 36 healthy subjects shows that sustained vowel
/i:/ achieves the highest classification accuracy of 80.79%
among five vowels considered. However, it is found to be
higher and lower than the classification accuracies of 78.72%
and 90.25% obtained using cough and wheeze, respectively.
This suggests that although sustained /i:/ could be used for
asthma detection, wheeze is superior to the sustained /i:/ for
the classification task.

II. DATASET

Dataset used in this work consists of total of 71 subjects
comprising 35 patients (17 female, 18 male) and 36 healthy
subjects (18 female, 18 male) recruited from St. John’s Na-
tional Academy of Health Sciences, Bangalore. The healthy
subjects are middle aged with an age range of 19-42 years
and average age of 24 years. The age range of the patients
are 19-78 years with an average age of 43 years.

Recordings have been taken under doctor’s guidance. Prior
approval for the recording was taken from the St. John’s
hospital ethics committee. The consent for recording was
taken from each subject. To verify whether a subject is
suffering from asthma or any lung disease, spirometry and
other lung functional test have been performed and cross-
checked by the doctor for confirmation. The patients in the
database suffer uniformly from various levels of asthma -
mild, moderate, and severe. Forced expiratory volume in 1
sec (FEV1) for 35 patients lies between 0.36 ls−1 to 3.72
ls−1 with an average of 1.56 and standard deviation (SD) of
0.82. Similarly, FEV1 FVC ratio for patients lies between
50%-97% of their reference values where, FVC denotes
forced vital capacity. Following spirometry test, subjects
were asked to first cough, next wheeze followed by sustained
phonations in the following order: /A:/, /i:/, /u:/, /eI/,
/oU/. We refer cough, wheeze and sustained phonations as
stimuli from now onward. Each stimuli is recorded for five
times in a row. Thus, we obtain 355 recordings (175 for
patients and 180 for healthy subjects) for each of the seven
stimuli. Recording was done by using ZOOM H6 handy
recorder at a sampling rate of 48kHz and 16 bits/sample.
All frequencies (till 24kHz) present in the recorded signal
is used in this experiment to consider all spectral varia-
tions.Recordings was performed in the spirometry lab of the
hospital itself. The recording room was moderately noisy
because of fan and conversation between technician and
patients. While recording, microphone was placed near the
mouth to suppress the noise in the room as much as possible
and capture the signal of interest with high SNR.

Sufficient breaks are given between recordings of different
stimuli to ensure that the patient is not tired of recording.
During wheeze and sustained phonations recording, a nose
clip is used to block the air flow through the nose so that
subjects can exhale to their full capacity. During cough

recording, nose clip was not used to ensure free flow of
sudden expulsion of cough air. Average time for the entire
recording was ∼ 8 minutes per subject. Wheeze, cough and
sustained phonations boundary were manually marked after
listening and examining the waveform using Audacity [18].

III. AUTOMATIC CLASSIFICATION BETWEEN ASTHMATIC
PATIENTS AND HEALTHY SUBJECTS

The schematic diagram of proposed approach for healthy
subject vs asthmatic patient classification is shown in Fig.
1. In the training stage of the classification, representative
features from the recording are used along with their respec-
tive class labels to train a classifier. Statistics of the MFCC
sequence over the entire recording of a stimuli are used as
the features for classification. SVM is used as the classifier.
Due to limited data samples, we have not used more complex
classifier such as deep neural network (DNN). In the testing
phase, statistics of the MFCC sequence is computed and is
provided to the trained SVM classifier to obtain a decision
for the test stimuli.

Fig. 1. Schematic diagram for the classification between healthy subjects
and asthmatic patients.

The goal of designing features for classification is to cap-
ture the lung volume, an indicator for asthma, which could
be encoded in the sound generated using different stimuli.
The recordings corresponding to the chosen stimuli in this
work are vocal sounds. Production of the vocal sounds,
particularly speech could be described by the glottal source
signal generated due to pressure from lungs. This signal gets
modulated by the shape of the vocal tract and nasal cavity.
We assume that the influence of asthma on glottal signal
characteristics would reflect on the spectral characteristics
of the vocal sounds. For this purpose, we compute 12-
dimensional MFCC (excluding the energy coefficient) of the
recordings with it first and second derivatives. This results
in a 36-dimensional MFCC vector in an analysis window.
MFCCs are calculated for each of the five repetitions of every
stimuli. Let a stimuli instance has N analysis windows with
a window length of Nw samples and window shift of Nsh

sample. Following MFCC computation we obtain a MFCC
matrix F = [F (k,m)], 1 ≤ k ≤ 36, 1 ≤ m ≤ N . We used
voicebox to calculate MFCC [19].

As cough and wheeze are non-stationary sounds, we
hypothesize that the variation in the MFCC vector sequence
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would provide cues for healthy subjects vs asthmatic patient
classification. In the case of sustained vowels, the voice
characteristics changes as the lung pressure reduces due to
lack of breathing during phonation. We hypothesize that the
variation in the spectral characteristics of a sustained vowels
would indicate whether a subject is healthy or suffering
from asthma. In order to capture the variation in the MFCC
vector sequence, we compute six different statistics along
each dimension k of MFCC, resulting in six dimensional
feature sequence S(k, l), 1 ≤ k ≤ 36, 1 ≤ l ≤ 6. Computing
such statistics from feature vector sequence has been done in
the past [20]. Instead of going for a large number of statistics,
we stick to six statistics only in this work. These are mean,
mode, median, root mean square (RMS), variance and SD
as defined below:

S(k, 1) =
1

N

N∑
m=1

F (k,m), S(k, 2) = mode({F (k, i)}1≤i≤N )

S(k, 3) = median({F (k, i)}1≤i≤N ), S(k, 4) =√ 1

N

N∑
m=1

(F (k,m))2

S(k, 5) =
1

N − 1

N∑
m=1

(F (k,m)−S(k, 1))2, S(k, 6) =
√

S(k, 5)

Fold 1 Fold 2 Fold 3 Fold 4

60

70

80

90

T
C

A
(%

)

 

 

Cough Wheeze/A:/ /i:/ /oU/ /u:/ /eI/

Fig. 2. Bar graph shows fold wise TCA with S216 for all stimuli.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The classification experiments are performed in a four fold
cross-validation setup. For this purpose, we make four groups
(G1 H, G2 H, G3 H, G4 H) of healthy people each having
nine subjects. Similarly, four groups (G1 P, G2 P, G3 P,
G4 P) of patients are formed where all groups have nine
patients except G4 P, which has eight patients. In i-th fold
of the cross validation, Gi H and Gi P are used as the test
set and the remaining healthy and patients groups are used as
the training set. We use an analysis window of duration (Nw)
960 samples and shift of (Nsh) 480 samples to compute 12-
dimensional MFCC, which is obtained by using 32 sub-bands
placed uniformly on Mel-scale in the range of 0Hz-24kHz.
We further calculate velocity and acceleration coefficients
to obtain 36×N MFCC matrix F for a stimuli with N
frames. Using F , the 36×6 dimensional statistical feature
matrix S has been calculated. We vectorized S to a 216-
dimensional (=36×6) feature vector (S216) for classification.
We also experimented with statistical features computed
from static MFCCs (72-dimensional S72) and static MFCCs
along with its first derivatives (144-dimensional S144) and
second derivatives (216-dimensional S216). LIBSVM toolkit
is used to implement SVM classifier [26]. The SVM hyper
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Fig. 3. TCA averaged across four folds using S(k, l), 1 ≤ l ≤ 6 from
wheeze for different feature index k

parameters γ and C are optimized using grid search using
a five fold cross-validation within the training set by using
radial basis function. Grid search was performed for log2(γ)
and log2(C) in the range of -1 to 20 and -1 to 10, respectively
with the step size of 1. The performance of the algorithm was
evaluated by using total classification accuracy (TCA), and
F1 score [21].

TABLE I
MEAN (SD) OF TCA(%) AND F1(%) USING S72 , S144 AND S216 .

Stimuli TCA F1

S72 S144 S216 S72 S144 S216

/A:/ 54.7(8.8) 61.7(6.9) 66.1(9.0) 52.9(9.8) 62.9(4.3) 67.7(7.7)
cough 77.3(6.1) 81.0(2.5) 78.7(3.7) 75.8(9.2) 80.3(5.1) 77.2(6.8)

/i:/ 74.3(3.2) 76.8(9.0) 80.8(7.3) 76.4(3.7) 78.5(8.4) 81.6(7.3)
/oU/ 72.3(10.7) 75.8(5.3) 75.2(7.4) 72.5(7.7) 76.5(2.5) 75.8(6.7)
/u:/ 74.5(4.3) 73.9(2.2) 75.6(3.9) 75.3(3.8) 75.0(3.2) 76.6(3.7)

wheeze 89.8(8.2) 90.5(6.9) 90.2(5.9) 89.4(8.8) 90.3(7.3) 90.2(6.2)
/eI/ 69.4(12.8) 74.0(8.6) 73.6(10.3) 70.4(15.2) 74.6(8.9) 74.2(9.3)

B. Results and discussion

Fig. 2 shows a bar plot of the TCA using S216 with seven
different stimuli in each fold. It is clear from the figure that
wheeze results in the highest mean TCA consistently in every
fold. Among sustained phonations, /i:/ achieves the highest
TCA in all folds except Fold1. In order to obtain an average
performance across all folds, we present average (SD) values
of both TCA as well as F1 score in Table I using S72,
S144, and S216. The highest performance for each feature
set is marked bold in each column. From the table it is seen
that among all stimuli wheeze results in the highest average
TCA and F1 of 90.2% and 90.2% using S216, respectively.
The second highest classification performance is achieved
by /i:/ followed by cough. However, when S144 is used as
the feature, wheeze remains the best performing stimuli with
cough being the second best followed by /i:/. Interestingly,
/i:/ results in the highest classification performance among
all sustained vowels considered using both S144 and S216.
On the other hand, /A:/ results in the lowest TCA and F1

score using S72, S144 as well as S216 features. These results
suggest that among sustained vowels /i:/ is the best candidate
for automatic classification between asthmatic patients and
healthy subjects. However, the best F1 score obtained using
/i:/ is 81.6% (absolute) less than that using wheeze.This sug-
gests that for speech-based asthma classification, /i:/ would
be a better choice compared to other vowels considered in
this work. However, when non-speech sounds are included
for classification, wheeze is a better choice than sustained
/i:/.

As the highest classification performance is obtained using
wheeze, we further investigate the relative role by the sta-
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Healthy Patient

Fig. 4. Histogram plot of mean, mode, median, RMS, SD and variance
statistics of wheeze between asthmatic patients and healthy subjects with
a) S(3, l), 1 ≤ l ≤ 6, b) S(12, l), 1 ≤ l ≤ 6, c) S(7, l), 1 ≤ l ≤ 6.
Fisher discriminant ratio (FDR) of each statistics for above coefficients in
each case is shown at the top right corner of each plot.

tistical features from different coefficients in MFCC feature.
For this purpose, we conduct the classification experiments
using wheeze with 6-dimensional S(k, l), 1 ≤ l ≤ 6 feature
separately for every 1 ≤ k ≤ 36. The TCA obtained for
different values of k is shown using a bar plot in Fig. 3. It
is clear from the figure that S(k, l), 1 ≤ l ≤ 6 for static
coefficients of MFCC (1 ≤ k ≤ 12) performs better than
the first derivatives (13 ≤ k ≤ 24) and second derivatives
(25 ≤ k ≤ 36). This indicates that the nature in which
the energy distributions across frequencies vary over time
in a wheeze signal encodes the asthma specific signature
compared to those for velocity and acceleration coefficients
of MFCCs. From Fig. 3 it can also be seen that three highest
TCAs are obtained by S(k, l), 1 ≤ l ≤ 6 for k= 3, 12, 7.

We further examine the relative role of each of the
statistical features in S(k, l), 1 ≤ l ≤ 6 for k=3, 12,
7. The histogram of S(k, l) for every k ∈ {3, 12, 7} and
l(1 ≤ l ≤ 6) are shown in Fig. 4. In order to quantify
the discriminative capacity of each statistical feature, we
compute Fisher discriminant ratio (FDR) [22] between the
two classes (patients vs healthy) for every feature. FDR
values (as seen at the top corner in every histogram plot)
suggest that the mean, mode and median statistics are rela-
tively more discriminative compared to the RMS, variance
and SD statistics. This, in turn, indicates that the an average
shape of the energy distribution across frequencies provides a
reasonable cues for classification between asthmatic patients
and healthy controls.

V. CONCLUSION AND FUTURE WORK

In this paper we compare wheeze, cough and sustained
vowels for automatic classification between asthmatic pa-
tients and healthy subjects with statistics of MFCC as the
features and SVM as the classifier. The experimental results
demonstrate that wheeze is the best stimuli for classification
with a classification accuracy of 90.5%. However, sustained
/I:/ performs the best among all sustained vowels with an
accuracy of 80.8%. As the best performing stimuli is wheeze
where there is no voicing, our future plan includes investi-

gation of fricatives as stimuli for asthma classification task.
Future work also includes selection of the best feature among
all used in the present study and perform classification.
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