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ABSTRACT

Spirometry is a lung function test used to diagnose and moni-
tor lung diseases like asthma, pneumonia, chronic obstructive
pulmonary disease, etc. Spirometry measures forced vital ca-
pacity (FVC), forced expiratory volume in 1 sec (FEV1), and
their ratio to determine lung health. Spirometry is very time-
consuming, strenuous, and requires proper training. Alternate
methods based on voice for diagnosis and monitoring of lung
health are promising because they are faster, easy to do, and
require minimal training. Non-speech sounds, namely, cough
and wheeze, have been used to predict spirometry variables,
but the role of speech sounds that occur in natural speaking
for a similar task has not been explored. In this work, the
spirometry variable, FVC has been predicted from sustained
phonations of vowel sounds using a convolutional dense neu-
ral network (CDNN). Mel-spectrogram has been used as a
feature. An experiment conducted using 160 subjects indi-
cates, /i:/ is the best sound and /u:/ is worst for the predic-
tion task with an average Mean Absolute Error of 0.67l(±
.07l) and 0.70l(± 0.13l) among all sustained phonations of
vowels sounds considered in this work.

Index Terms— Asthma, sustained phonations, CDNN,
Spirometry

1. INTRODUCTION

544.9 million people were suffering worldwide from chronic
respiratory diseases [1] till 2017. Spirometry is a lung func-
tion test used to measure lung capacity to monitor and diag-
nose obstructive lung diseases like asthma [2], and Chronic
obstructive lung diseases (COPD) [3]. Spirometry measures
parameters namely, Forced vital capacity (FVC), Forced ex-
piratory volume in 1 sec (FEV1), FEV1/FVC, vital capacity,
peak expiratory flow, mid expiratory flow at 25%, 50% and
75% FVC and inspiratory vital capacity [4]. To diagnose ob-
structive lung diseases and grading their severity, FEV1/FVC,
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FVC, and FEV1 are used. FVC (l) indicates the volume of
air exhaled forcefully after deep inhalation, and FEV1 (ls−1)
denotes the volume of air forcefully exhaled in 1 sec after
a deep inhalation. Based on the height, age, weight, and
gender of a person, reference values of FEV1, FVC, and
FEV1/FVC ratio are predicted. During test, subject has to
take deep inhalation followed by forced exhalation for at
least 6 seconds into the spirometer sensor. Throughout the
test, nose of the subject is closed with the nose clip to get
accurate readings. The effort-dependent nature of spirometry
makes it unsuitable for kids and older people. Based on the
European Respiratory Society (ERS) and American Thoracic
Society (ATS) [5] regulations, a subject has to meet multiple
criteria while doing the test like the start of test criterion, end
of test criterion, acceptability criterion, minimum of three
repeatabilities of the test, etc., to obtain accurate readings of
spirometry variables. Schermer et al. [6] have reported 50%
of tests are rejected due to incomplete tests which leads to
risks of misdiagnosis and wrong treatment. To estimate FVC
value accurately, a subject should meet the end of test crite-
ria, which is very strenuous, requires multiple test repetitions,
and induce fatigue, especially in subjects with compromised
lung functions [7]. Vocal sound-based method can be used as
a helping hand of the spirometry.

Few works have been done previously to predict the
spirometry variables using cough and wheeze sounds. Cough
is produced by the sudden release of pressure by the glottis
opening. The obstruction produces wheeze sounds in the
airways during obstructive diseases like COPD and asthma.
Rao et al. [8] have used statistical spectrum descriptor of
cough and wheeze sound to predict spirometry variables in
asthmatic and healthy subjects using support vector regres-
sor (SVR). Sharan et al. [9] have predicted FEV1, FVC,
and FEV1/FVC by using cough sounds recorded at mouth
using mobile phones from 322 subjects. The authors have
used bispectrum scores, non-gaussianity score, formants, log
energy, Shannon’s entropy, zero-crossing rate, kurtosis, and
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Fig. 1. Architecture of CDNN, where fs indicates filter size, n is time step, nf denotes number of filters, p indicates pooling
size and h denotes hidden nodes in the deep neural network.

Mel-frequency cepstral coefficients (MFCC) for prediction.
None of the works till now has explored the use of speech
sounds. In this work, spirometry variable FVC has been
predicted using sustained phonations namely /A:/ (as in ’Fa-
ther’), /i:/ (as in ’Meat’), /u:/ (as in ’Suit’), /eI/ (as in
’May’) and /oU/ (as ’Orange’). Iwarsson et al. [10] have
shown that glottal voice source is a function of lung volume.
They observed that glottal source parameters like closed
quotient, peak to peak flow amplitude, and glottal leakages
decrease with decreasing lung volume. According to source-
filter theory by Fant [11], speech is modeled as a result of
convolution of the source signal, radiation filter, and vocal
tract filter. Therefore, changes in the source characteristics
with varying lung volume should reflect in the speech as well.
Based on this finding, we hypothesize that sustained phona-
tions can encode information related to FVC. Constriction
happens during the production of non-vowel sounds, which
could modify the spectrum of the source signal in addition
to vocal tract filter. Therefore, as a preliminary work, only
vowels sounds are used. The following two questions are
of interest in this work: a) Can FVC be predicted from sus-
tained phonations? b) Out of five sustained phonations used
in this work, which is the best for FVC prediction? Total 160
subject’s data have been used to predict FVC in this work.
Convolutional dense neural network (CDNN) is used for this
purpose, which comprise two layers of Convolutional neural
networks (CNN) with three fully connected layers at the end.
Mel-spectrogram is used as a feature, and eight folds setup
has been used. /i:/ is found to perform the best with mean
Mean Absolute Error (MAE) of 0.67l(±0.07l) among all sus-
tained phonations. /u:/ have performed worst among all with
mean MAE of 0.7l(±0.13l).

2. DATASET

Dataset consists of total 160 subjects. Out of 160 subjects,
62 are healthy subjects, and 98 subjects are asthmatic pa-
tients. Description of the data set is shown in Table 1. Data

Table 1. Description of age(mean(SD)), gender distribution
and spirometry variables namely, FEV1(ls−1)(mean(SD)),
FVC(l)(mean(SD)) and FEV1/FVC(s−1)(mean(SD)) in pa-
tient and control group.

Count Male Female
Age

mean((±)SD) FEV1(ls−1) FVC(l) FEV1/FVC(s−1)

Patient 98 43 55 41(±19) 1.71(±0.77) 2.27(±0.94) 0.75(± 0.12)
Control 62 34 28 34(±10) 2.63(±0.71) 3.02(±0.76) 0.87(±0.06)

is recorded in the hospital under the guidance of the doctor.
Spirometry is performed in the St John’s Medical College
Hospital, Bengaluru, Karnataka, India, hospital by the techni-
cians present in the laboratory, for patients as well as healthy
subjects. For each subject spirometry is done by one of the
three technician present in the laboratory according. Varia-
tion in the spirometry readings, FVC and FEV1, are shown
to be non-significant due to technicians [12]. A consent form
signed by the subjects before the recordings.

Sustained phonation of speech sounds namely /A:/ (as in
’Father’), /i:/ (as in ’Meat’), /u:/ (as in ’Suit’), /eI/ (as in
’May’) and /oU/ (as Orange’) are recorded. Total number of
recordings for /A:/, /i:/, /u:/ , /eI/ and /oU/ are 873, 808,
761, 815 and 810, respectively. On average, five samples of
each sustained phonation are recorded from every subject. All
recordings are done using ZOOM H6 handy recorder in the
hospital at a sampling rate of 44.1kHz. The average duration
of each sample of sustained phonation is around 8 seconds.
The recording has been done in the spirometry lab of the hos-
pital, which, in general, has a noisy background because of
the conversation between patients, technicians, AC noise, and
fans. Recordings are done after 15 minutes of spirometry.
During recording, patients are instructed to take deep breaths
and utter the sustained phonation while breathing out until
they are breathless. To make sure patients breath upto their
full capacity, their nose is closed with the nose clip. Sufficient
breaks are given between recordings to avoid the patients’ fa-
tigue, which can affect the experiment. Boundaries of each
sustained phonation are marked manually by listening and
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visual inspection of spectrogram and waveform in Audacity
[13].

3. METHODOLOGY

In this work Mel-spectrogram is used as the features which
is shown to carry the glottal source information [14]. CDNN
has been used for predicting the FVC values because features
learned through CNN can be analyzed to find the cues con-
tributing to the better FVC prediction. CDNN architecture
used in this work is presented in Fig. 1.

3.1. Architecture

To extract the relevant features for the prediction task CDNN
has two convolutional layers followed by three fully con-
nected layers1. Input to the CDNN is a 2D-matrix of dimen-
sion n × 80, where n is the time steps, and 80 is the number
of Mel-filter bands. In this work, 1D-CNN is used to capture
temporal relation for each Mel-band. Each 1×n dimensional
row of input Mel-spectrogram has been convolved with filter
of length 1×fs, where fs indicates filter size. fs is varied to
determine how much neighborhood information is required
to learn representation for better prediction of FVC. Each
convolution layer of CDNN has nf number of filters. Out-
put of each CNN layer is passed through rectified linear unit
(ReLU) activation functions [15]. Output feature maps are
max-pooled with size p to decrease the dimension. Output of
the 2nd layer of CNN after pooling is flattened and fed into
the 1st layer of dense neural network. Each layer, except the
last layer of the neural network, has h hidden nodes, followed
by ReLU activation. The second last layer’s output is passed
through the last layer of CDNN, which has one node and lin-
ear activation. Linear activation at the output is used to avoid
the problem of vanishing gradient. ReLU activation has been
used as activations functions at every layer of CDNN except
the last layer because both input and output are non-negative.

3.2. Data Augmentation

Initially, experiments are done without augmentation, but
even though training and validation mean MAE are good,
evaluation on the test set yields poor results. By visualizing
training and validation loss, it has been observed that the net-
work is over-fitting to the training data. One way to alleviate
this problem is to have more variability of the data while
training, which is achieved by data augmentation. As known
in literature, lung capacity is a function of age, gender etc.
Therefore, all augmentations used in this work, modify the
environment or recording conditions but not the voice char-
acteristics. For this purpose, three kinds of augmentations,
namely, reverberation, additive uniform noise, and both, have

1All network parameters used in this work are determined after several
rounds of experimental investigation.

been used. These augmentation methods represent the vari-
ability introduced by the environment and do not change any
speaker characteristics.

4. EXPERIMENTAL SETUP

4.1. CDNN

Signal has been framed using 1 sec (n = 101) window length
and 0.2 sec shift. Mel-spectrogram has been calculated at 20
msec window length and 10 msec overlap with 80 Mel-bands.
Randomly ten frames have been chosen from each sustained
phonation for training. For augmentation, the WavAugment
package has been used [16]. Three kinds of augmentation,
namely, reverberation, additive uniform noise, and their com-
bination, have been used. From each of the three augmen-
tation methods, ten frames have been randomly selected for
each sustained phonations. Therefore, total 40 frames from
each sustained phonations, ten from clean signal and ten each
from augmented signal for training. During testing clean sig-
nal is used. During reverberation, augmentation, reverber-
ance, damping factor, and room size are all set to 50. For
noise addition, SNR has been randomly chosen in the range
from 5 to 40. 1D-CNN has nf = 10 and p = 2. fs varies
from 5 to 30 with a step size of 5. For varying fs, the net-
work’s receptive field at the last layer of CNN varies from 16
to 91 with a step size of 15. h in the first two fully-connected
layers is 128. CDNN is optimized for MAE [15] using Adam
optimizer [17] with learning rate 0.001. For each sound, net-
works are trained with the same initialization using Glorot’s
uniform initializer [18] to make a valid comparison. Batch
size of 160 and early stopping criteria with the patience of 10
epochs are used to avoid over-fitting. Training epochs are set
to be 30. Eight folds setup has been used in this work. Each
fold has 20 subjects. Six folds are used for training (120 sub-
jects), one fold for validation (20 subjects), and one for testing
(20 subjects). After each epoch, MAE on the validation set
has been calculated with the current model weights. Model
weights corresponding to the minimum MAE have been used
to get the prediction on the test set. CDNN is implemented us-
ing Keras [19] with TensorFlow [20]. As there is no existing
work on the prediction of FVC using sustained phonations as
a baseline scheme, the median of the training labels has been
used for the FVC prediction, and baseline error is calculated
using these predictions for each fold. The baseline scheme us-
ing this method is referred to as Baseline1. Wilcoxon signed-
rank test has been used to test the significance [21] at the sig-
nificance level of 5% in this work.

4.2. Baseline 2

Work by Rao et al. [8] used cough and wheeze sounds for
the prediction task. As cough and wheeze are non-speech
sounds and method used for the prediction using these sounds
may not be a good choice for sustained phonations. Hence, to
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Table 2. Mean(l) and SD(l) of MAE across 8 folds by using
CDNN and Baseline1 method for all sustained phonation with
varying filter size (fs). The minimum mean MAE on the
validation set and corresponding test set is shown in bold for
each sustained phonation.

fs
/A:/ /i:/ /oU/ /eI/ /u:/

Val Test Val Test Val Test Val Test Val Test

5 0.651
±.125

0.708
±.113

0.614
±.079

0.67
±.1

0.645
±.105

0.678
±.131

0.626
±.077

0.706
±.078

0.638
± .086

0.714
± .139

10 0.66
±.131

0.694
±.105

0.609
± .091

0.647
± .11

0.642
± .119

0.668
± .122

0.633
± .098

0.672
± .109

0.633
±.086

0.7
± .131

15 0.619
±.146

0.683
±.123

0.6
± .095

0.671
± .076

0.639
±.112

0.677
±.11

0.662
± .1

0.732
± .145

0.685
±.182

0.712
±.07

20 0.658
±.119

0.719
±.165

0.614
± .102

0.66
± .098

0.669
± .105

0.695
± .099

0.646
±.076

0.67
±.083

0.703
± .123

0.713
± .117

25 0.668
±.116

0.733
±.149

0.642
±.138

0.711
± .151

0.682
±.118

0.757
± .09

0.673
±.105

0.753
±.086

0.687
±.082

0.804
±.204

30 0.666
±.116

0.746
±.142

0.605
±.1

0.712
±.072

0.69
± .123

0.751
± .085

0.658
± .1

0.739
±.074

0.658
±.103

0.71
±.135

Baseline1 0.792
±.137

0.791
±.151

0.759
±.121

0.759
± .125

0.784
± .103

0.785
± .109

0.794
± .1

0.796
± .114

0.779
± .114

0.778
± .118

check the validity of this hypothesis, FVC is predicted for our
database in a manner similar to that by Rao et al. [8], and
results are compared. This scheme for prediction is referred
to as the Baseline 2.

4.3. Speaker verification

FVC value of the subject depends on height, weight, age, sex,
and racial or ethnic background [22]. In our database a to-
tal of 127 FVC values are unique. The following experiment
has been performed to find out if CNNs are learning repre-
sentation about lung volume indeed, and not speaker charac-
teristics like vocal tract shape, pitch, etc. i-vectors, the state-
of-the-art features used for speaker recognition [23] are used
as input to 3 layer neural network having the same config-
uration as fully connected layer of CDNN with FVC as tar-
get variable. If the performance obtained using i-vectors is
identical or better than the CDNN learned features, it will in-
dicate that features learned by CDNN are not lung volume
specific, rather, they are doing speaker classification. On the
other hand, if the performance of CDNN is better than that us-
ing i-vectors, it shows that learned features are indeed carry-
ing information about the lung volume. For this experiment,
same eight fold structure with augmentation is used to train
neural networks. Open source Kaldi toolkit is used to calcu-
late i-vectors [24] at 1 sec chunk with 0.2 sec shift. In most of
the existing works, i-vector is computed using speech length
greater than 5 seconds but in this work, sustained phonations
are used, so we decided to experiment with 1 second chunks.

5. RESULTS & DISCUSSION

5.1. Comparison of sustained phonations for spirometry
predictions

Results comparing the performance of the proposed CDNN
and the Baseline1 are given in Table 2. It is observed that

MAE has reduced using the CDNN method as compared to
Baseline1 in all sounds. Maximum improvement (0.173l) in
mean MAE is observed over the Baseline1 in the validation
set for sound /A:/. For test sets, the maximum improvement
(0.108l) in mean MAE is observed for sound /oU/ and /A:/.
Minimum change of 0.145l is observed for sound /oU/ in the
validation set over the baseline and 0.078l for /u:/ in the test
set. The best performing sound is /i:/ using both baseline
and CDNN in validation and test case. With varying fs as
shown in Table 2, minimum MAE in the validation set is ob-
served for fs less than or equal to 15 in all sustained phona-
tions. It is interesting because it means that the local fea-
tures learned over receptive field less than 460 msec signal
is enough to predict FVC, even though the average duration
of sustained phonation is 8 secs. Three sounds namely, /A:/,
/i:/ and /oU/ have minimum validation error by using fs =
15. Similar trends have been noticed for the test sets for all
sounds except /eI/ where SD is lower for fs = 20 as com-
pared to fs = 10 even though mean MAE values are similar.
For /A:/ and /u:/, the minimum MAE occur at the same fs
for both validation and test sets. Maximum improvement of
0.07l and 0.104l in the mean MAE over baseline has been ob-
served for sound /u:/ in validation and test set, respectively
among all sustained phonations with varying fs. Among all
the sustained phonations, /i:/ performed the best with a mean
MAE of 0.671l(±.07l), which is an improvement of 0.088
over baseline in the test set by using fs = 15. On the other
hand, the worst performing sound is /u:/ with a mean MAE
of 0.7l(±.013l) by using fs = 10. All sounds have shown
significant improvement over Baseline1 in both validation set
and test set in best performing fs case (shown in bold in the
table).

5.2. CDNN filters analysis

Fig. 2. Frequency versus count above 95 th percentile of
the CNN filter spectrum with fs=15 for the best performing
speech sound /i:/.

Spectral analysis of first layer CDNN filters is done for
the best performing sound /i:/ for fs = 15. First layer of
CDNN has nf = 10 each of size, fs × 80. For every filter,
1024 points spectrum is calculated for each column. Hence
1024×80 dimensional spectrum matrix is estimated. For ev-
ery filter spectrum, all frequencies with a magnitude greater
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than 95th percentile are equated to 1 and others to 0. Hence,
we will get 10 (nf =10) such matrices of 1024 × 80 dimen-
sion with 0 and 1 entries. All 10 filters are summed up along
nf , which leads to one spectrum matrix of size 1024×80.
To see which frequencies are having majority of the weights,
1024×80 dimensional spectrum matrix is summed up along
Mel-bands to get 1024×1 dimensional vector. This analysis
will give us which frequencies in each fold has the most of the
high gain for the filters. Similar steps have been repeated for
each fold. Thus, we obtain a total of eight, 1024×1 dimen-
sional vectors. Each of these vectors is plotted in Fig. 2. Only
the first 512 points are plotted, corresponding to 50Hz, due to
the symmetric property of the spectrum. ith fold is referred
as Fi, where 1≤ i ≤ 8. Fig. 2 shows that all learned filters are
low-pass in nature with a cut-off around 5Hz.

5.3. Comparison between Baseline 2 and CDNN method

/A:/ /i:/ /oU/ /eI/ /u:/

Fig. 3. Error bar graph plot to compare the Baseline 2 and
CDNN method.

Rao et al. [8] (referred to as Baseline 2) have done
FVC prediction using non-speech sounds, namely, cough and
wheeze. The same method is used to predict FVC using
sustained phonations. This experiment shows how well a
method developed for cough and wheeze sound can perform
for sustained phonations used in this work. This experiment’s
result is shown in the error bar graph of Fig. 3. Significant
difference has been observed between proposed CDNN and
Baseline 2 method in all sounds. An error bar graph is plotted
for the mean(SD) of MAE of the test set which is correspond-
ing to best performing fs on validation set (it is shown in
bold in Table 2). Fig. 3 shows that the performance of CDNN
is better than Baseline 2 across all sounds. Best performing
sound using Baseline 2 is /oU/ with an MAE of 0.842l(±
0.129l), whereas for the same sound, MAE using CDNN is
0.677l(± 0.110l). Similarly, poor performing sound using
Baseline 2 /eI/ has MAE of 0.905l(± 0.241l), whereas using
CDNN, MAE becomes 0.706l(± 0.078l) for the same sound.
Minimum and maximum improvement of 0.170 and 0.199 is
observed in mean MAE over Baseline 2 for sound /A:/ and
/eI/, respectively. This experiment suggests that an approach
reported in the literature for cough and wheeze may not be
suitable for the prediction of FVC using sustained phonations.

/A:/ /i:/ /oU/ /eI/ /u:/

Fig. 4. Comparison of mean MAE and SD using i-vector fea-
tures and CDNN.

5.4. Comparison between CDNN and i-vector based pre-
diction

With varying fs, model corresponding to minimum mean
MAE on validation set is selected to obtained the predictions
on test set. Fig.4 is plotted between these test set values
(values are shown in bold in Table 2) and corresponding
mean MAE using i-vector features. Significant difference
has been observed between proposed CDNN and i-vectors
performance in all sounds. From fig. 4, it can be observed
that features learned using CDNN performed better than
the i-vector features across all sounds. By using i-vector
features, minimum and maximum MAE are 0.77l(± .123l)
and .80l(± .144l) for /i:/ and /A:/, respectively. For the
same sounds, MAE using CDNN are, 0.671l(± 0.075l) and
0.682l(± 0.122l). Interestingly, the best performing sound
using i-vectors and CDNN is /i:/, whereas worst performing
are /A:/ and /u:/, respectively. This experiment suggests that
features learned using CDNN encodes information related to
lung volume and not speaker characteristics captured using
i-vectors.

6. CONCLUSIONS

From this work we concluded, FVC can be predicted using
sustained phonations /A:/, /i:/, /oU/, /eI/, and /u:/ with
mean MAE ranges from 0.671l(± .076l) to 0.7l(±0.13l).
Among all the sounds /i:/ performed the best with the min-
imum MAE and /u:/ performed the worst among all. In
future, we plan to work on techniques to improve prediction
of FVC and predicting FEV1 and FEV1/FVC by using sus-
tained phonations and continuous speech. Standardization to
predict spirometry variables using sounds also needs to be
done in work future.
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