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ABSTRACT

In this work, we focus on quantifying speaker identity information
encoded in the head gestures of speakers, while they narrate a story.
We hypothesize that the head gestures over a long duration have
speaker-specific patterns. To establish this, we consider a classifica-
tion problem to identify speakers from head gestures. We represent
every head orientation as a triplet of Euler angles and a sequence of
head orientations as head gestures. We use a database having record-
ings from 24 speakers where the head movements are recorded using
a motion capture device, with each subject narrating ten stories. We
get the best speaker identification accuracy of 0.836 using head ges-
tures over a duration of 40 seconds. Further, the accuracy increases
by combining decisions from multiple 40 second windows when a
recording is available with duration more than the window length.
We achieve an average accuracy of 0.9875 on our database when the
entire recording is used. Analysis of the speaker identification per-
formance over 40 second windows across a recording reveals that
the speaker-identity information is more prevalent in some parts of a
story than others.

Index Terms— Euler angles, Speaker recognition, CNN,
LSTM, Head gestures.

1. INTRODUCTION

Patterns in the movement of the head are referred to as head ges-
tures. It has been well established that head gestures play a vital
role in face-to-face interactions by conveying several para-linguistic
cues [1]. While head gestures are involuntary in general, in certain
cases, they carry specific information [2]. Nod and shake are two
well-known head gestures where the former generally conveys an
approval and the latter a disapproval by the subject. Head motions
have been shown to convey a sense of intensity with which the sub-
ject speaks, in addition to the semantic information [3][4]. Sargin
et al. [5] have shown that there exists a co-occurring pattern be-
tween speech and head gestures [6]. Research has shown that speech
accompanied by proper head gestures improves the listener’s com-
prehension [7][8]. People also form impressions about one another
based on the degree and nature of the head motion they perceive dur-
ing an interaction [9]. Not only are head gestures prevalent during a
dialogue between multiple speakers, but they also significant when
a single speaker is giving either a discourse, a narration, or a mono-
logue. Head gestures are influenced by the emotional state of the
subject in addition to the content being spoken [10][11].

Significant research has gone into inferring para-linguistic cues
from the head motion of human subjects, and also synthesizing re-
alistic head motion. Research has been done to infer emotions from
the head motion and also emotional states from videos [12][1]. Head
gestures have also been used to differentiate a poem recitation from
a story narration [13]. Conversational robots use the para-linguistic

information conveyed by head gestures during a conversation to in-
teract better [14]. Head gestures have also been synthesized using
prosody variation with varying levels of objective and subjective
metrics [15][16][17][18]. Semantic variation descriptors like plea-
sure, arousal, and dominance give informative cues while synthesiz-
ing head gestures [19].

Among all the information conveyed by head gestures, in this
work, we focus on the identity of a speaker. Understanding how the
identity of a speaker is encoded in head gestures can aid in identify-
ing the speaker in noisy videos where the speaker’s face may not be
visible. It can also be used to embed personal identity while synthe-
sizing subject dependent head gestures.

Identifying speakers from head gestures has important applica-
tions in forensics where a face in a video appears blurry or masked.
Several works in the past indicate that personal identity and head
gestures could be related. Multiple experiments have shown that
there exists a correlation between personality traits and non-verbal
cues. Campbell and Rushton [20], with their extensive research,
have established many interesting relationships between personality
and non-verbal communication. Extroverts tend to talk more than in-
troverts, which, in turn, affects their head gestures. Unlike introverts,
they tend to look less at the listeners and also make fewer head ges-
tures. Non-verbal communication gives reasonable cues about per-
sonality and temperament [20]. Luck et al. conducted experiments
and established a correlation between personality traits and move-
ments induced in the subjects by music [21]. Hill and Johnston [22]
designed an interesting subjective experiment to determine whether
human head gestures encode any speaker identity information. The
experiment animated neutral heads (avatars) with the head motion
of real human actors recorded using a motion capture device. Mul-
tiple recordings were animated for every human actor. Another set
of human evaluators were asked to group the animations into groups
belonging to the same human actor. Based on a custom evaluation
metric, Hill and Johnston concluded that humans could discriminate
speakers using head gestures with statistical significance. The re-
sults in this experiment approximately translate to an accuracy of
0.5208 in a four speakers setting, with three test recordings from
each speaker. The experiments conducted by Hill and Johnston [22],
however, has a limitation of being subjective, and, hence, challeng-
ing to automate and scale. Unlike the subjective experiments, we,
in this work, develop algorithms to identify the speaker from head
gestures, which is both automated and scalable.

The average duration of animations shown to human evaluators
in the experiment by Hill and Johnston [22] was 7.2s. This indi-
cates that the head gestures spanning several seconds could encode
speaker identity. Our work analyses head gestures of different du-
rations to identify subject-specific patterns that might be encoded.
For this purpose, we use Convolutional Neural Networks (CNN) to
capture local head motion patterns and Long Short Term Memory
(LSTM) to capture long term subject-specific cues in those patterns.

6314978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 31,2020 at 10:32:02 UTC from IEEE Xplore.  Restrictions apply. 



Among many durations considered in this work, on a dataset of 24
speakers, each narrating ten stories, we get the best speaker identifi-
cation performance for head gestures over a duration of 40s. Com-
bining decisions from multiple windows, we achieve an average ac-
curacy of 0.9875 for the 240 recordings in our database. We use the
same CNN-LSTM architecture to predict the speaker-identity from
the audio. Interestingly, with the same architecture, a much smaller
audio signal of 1.2s duration yields an accuracy similar to that of 40s
of head gestures.

2. DATASET

For all the experiments in this work, we use the database introduced
by Fotedar et al. [23] for our experiments. The dataset consists of
24 subjects in the age range of 20 to 38 years, from 6 different na-
tive languages - Kannada, Tamil, Telugu, Malayalam, Bangla, and
Hindi. For each language, we have four subjects, and each subject
narrates five different stories. Though the set of five stories is com-
mon for all the subjects, every subject narrates the story in his/her
own words. Each subject narrates a story once in English and once
in his/her native language. In total, we have ten recordings per sub-
ject, five in English and five in respective native languages across 24
subjects, resulting in 240 recordings. All these 240 recordings to-
gether amount to 6.6 hours of data, details of which are summarized
in Table 1.

Story E1 N1 E2 N2 E3 N3 E4 N4 E5 N5
Mean 235 232 204 200 231 246 245 250 267 262
Std 67 64 82 87 76 83 71 90 74 113
Min 102 142 79 78 112 144 120 139 123 125
Max 410 38 508 511 507 542 438 552 479 668

Table 1: Story-wise summary of duration (sec) of recordings.
English-i and Native-i refer to the ith story narrated in English and
native language, respectively.

It should be noted from Table 1 that the duration of a story varies
greatly from one speaker to another. As the subjects narrate a story
impromptu, some of the subjects narrate in great detail, resulting in
longer recordings while others summarize the same story in a shorter
duration.

Each of the 240 recordings in the database has parallel audio,
and head motion data. High precision coordinates of 6 different
points from the head captured using a motion capture device con-
stitute the head motion data. The motion capture device captures X,
Y, and Z coordinates of the points at a rate of 120 frames per sec-
ond. More information regarding the entire procedure of recording
can found in the work by Fotedar et al. [23].

While analysing gestures of a head, the head is assumed to be a
rigid body. Any orientation of a rigid body can be captured in terms
of rotation angles along any three axes which span the 3-D space —
Euler Angles. From the coordinates captured by the motion capture
device, we calculate Euler angles for our experiments according to
the procedure adopted by Fotedar et al. [23]. Three calculated Euler
angles [θix, θ

i
y, θ

i
z] serve as a representation at every frame in our

database. Every component of this triplet is mean removed to ensure
that there is no bias in the triplets. In other words, a triplet of Euler
angles represents the orientation of the head of a subject in every
frame.

We use the audio data in the database to compare the subject
identity encoded in audio and head gestures. Kaldi [24] is used to re-
move silent regions in every audio as silent regions do not carry any
speaker-specific information. 13 Mel frequency cepstral coefficients
(MFCCs) are calculated with a frame size of 0.025s and a frame shift

of 0.0083s. This results in 13 audio features in every frame at 120
frames per second, identical to the rate of head gestures.

3. METHODOLOGY

Experiments by Hill and Johnston [22] indicate that the head
gestures spanning several seconds contain subject-identity infor-
mation. However, the optimal duration for obtaining the best
speaker identification performance needs to be determined. To
determine the best duration, we divide every recording of head
gestures into windows {wj

S} of different duration, where wj
S de-

notes the jth window of duration WS seconds. Each recording
with a duration of RS seconds is divided into multiple windows
using a shift of SS seconds. The resultant windows are denoted by
HS =

{
wi

S | 1 ≤ i ≤M,M =
⌊

RS−WS
SS

⌋
+ 1
}

.
Speaker specific head gestures may have any duration and occur

at arbitrary instants over an entire recording. To address these sce-
narios, we propose an architecture shown in Fig. 1(a) for speaker
identification.
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Fig. 1: (a) Network architecture for head gesture based speaker iden-
tification (b) Scheme for speaker identification using head gestures
from multiple windows

In general, CNN applies the same filter throughout its input, thus
extracting features with no importance to the location. In our archi-
tecture, we use 1D CNN to extract the local features present any-
where in the input head gestures. The max-pooling layer is used to
find a single representation for a small kernel spanning KS seconds.
In turn, max-pooling reduces the number of input timestamps for
LSTM by a factor of KS . LSTM captures the temporal dependency
in the sequence of head gestures. LSTM is followed by a global
average layer to ensure that the individual signature of a subject is
captured irrespective of the location of that signature in the input.
The output of the global average is then fed to a softmax layer, which
outputs the speaker-ID corresponding to the speaker with the highest
probability for the given input head gestures.

While predicting speaker-ID, varying degree of speaker identity
specific information might be present at different time locations of
the input head gestures. To address this problem and utilise the in-
formation present in a recording longer than the window size used
while training, we combine the speaker-IDs from multiple windows
using election mechanism illustrated in Fig.1(b). Corresponding to
every window in the input head gestures wi

S , the model predicts
a speaker-ID, denoted by (φj

S). We choose a subset of windows,
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(a) Head Gestures — 5s (b) Head Gestures — 20s (c) Head Gestures — 40s (d) Audio — 5s

Fig. 2: t-SNE plots - Visualization of speaker-wise clusters

ES ⊆ HS to participate in the election mechanism to get the final
prediction for the input head gestures. Windows in ES , wj

SεES ,
are fed separately into the model to get speaker-ID predictions for
those windows φS = {φj

S}. The most frequent speaker-ID in φS

is used as the final prediction (ΨES ) for the input head gestures.

ΨES = arg max
k

{∑|ES |
i=1 [φi

S = k]
∣∣∣0 ≤ k ≤ N − 1

}
, where N

denotes the number of speakers, [] denotes the Iverson bracket [25].

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

We experiment with different window sizes to determine the duration
of head gestures that gives the best speaker identification accuracy.
As the least duration of a story in our dataset is 77.68s (Table 1), we
vary the window size (WS) from 5s to 70s in steps of 5s. As the
sampling rate of the head gesture data is 120Hz, a window of WS

second has 120WS samples. Considering three Euler angles, this
results in an input dimension of 120WS × 3 for the proposed model
(Fig. 1(a)).

Experiments are conducted in a five-fold cross-validation setup.
While preparing the folds, we ensure that out of the ten recordings
belonging to every speaker, six recordings are in the training set,
two in the validation, and the remaining two in the test set in a round
robin fashion. However, it should be noted that no hyper-parameter
tuning is done on the validation set in our experiments. Each indi-
vidual recording is mean removed to ensure that there is no bias in
the recording. We also ensure that each recording is present in the
test set exactly once.

We also examine the speaker identification performance based
on the recorded speech using the same architecture, as in Fig. 1(a),
to ensure reliability of our architecture as an identity classifier. For
this purpose, MFCCs are used as features. Since it is known that
a relatively smaller duration of audio is sufficient for speaker iden-
tification, we vary the window duration from 0.4s to 4.8s in steps
of 0.4s. In addition to these window durations, we also experiment
with 5s audio duration, which is identical to the smallest head ges-
ture window duration considered.

Experiments are run in Keras environment with tensorflow back-
end. Adam is used as the optimizer and categorical cross-entropy as
the loss function. All the experiments are run for 200 epochs with
20 epochs patience for improvement in the categorical accuracy.

Speaker identification experiments are carried out using both
single and multiple windows. While for the former, CNN-LSTM
architecture (as shown in Fig. 1(a)) is used, for the latter an election
mechanism (as shown in Fig. 1(b)) is used in unison with the same
CNN-LSTM architecture. The details of these experimental setups
are described below.
Single Window: The goal of the single window based speaker
identification is to examine how accurately head gestures within a
window can be used to identify a speaker. By varying the window
size, we also examine head gestures over multiple durations to deter-
mine the window duration that provides maximal information about

speaker identity. Single window-based speaker identification accu-
racy is also used to examine parts of the story where head gestures
provide more speaker-specific information relative to the rest of the
story.
Multiple Window: Multiple window analysis is done when the
duration of recording exceeds the window duration used in train-
ing. In multiple window analysis, speaker identity (ΨS) is pre-
dicted by combining the decisions of P contiguous windows of
size WS , which effectively considers head gestures of duration
WS + (P −1)×SS . In our work, we generate windows with a shift
of 1s while analysing the performance of our model (i.e., SS = 1).

We investigate whether head gestures at a particular location of
a story provide more speaker-specific cues than elsewhere. For this
purpose, we perform Location Specific Analysis (LSA) and Location
Independent Analysis (LIA).

Location Specific Analysis (LSA): We compare the multiple-
window based speaker identification accuracy for segments of sto-
ries in the beginning, the middle and the end of the story. This
is done to check for concentration of user-specific information in
different regions of a recording. The segment duration is varied by
varying P . If the segment duration is more than the length of the
story for a chosen P , the entire story is used for speaker identifica-
tion task. In the case of middle, the segment is centered exactly at
the middle of the story.

Location Independent Analysis (LIA): Unlike Location Specific
Analysis, which always considers windows in either the beginning,
the middle, or the end of a recording, this analysis considers all pos-
sible P -contiguous windows for predicting the speaker identity. As a
result, it gives a more robust, location independent metric than LSA
by capturing the performance of our model irrespective of location
in a recording. There could be multiple segments of contiguous P
windows within a recording. As a result, the number of segments for
any P depends on the duration of recordings. Accuracy is used as an
evaluation metric.

4.2. Results and Discussion

Fig. 3(a) shows the speaker identification accuracy across five folds
(bar height shows the average, and errorbar shows the standard devi-
ation (SD)) when theWS is varied. We get the best average accuracy
of 85.2% with the 70s window. We find the windows which have ac-
curacies that are not statistically different from this window using the
Wilcoxon test. These windows are indicated with green solid circles
in Fig. 3(a). We consider the smallest window after which every
window’s performance is similar to the performance of the 70s win-
dow. We declare this smallest window with performance similar to
that of the best performing window as the optimal window. From the
figure, it is clear that 40s is the duration of the optimal window.

The results of similar experiments on audio data are illustrated in
Fig. 3(b). We get the best performance using the 4.8s window, with
an average accuracy of 0.978. We observe that accuracies using all
windows longer than 3.2s (including) duration are statistically simi-
lar to that using the 4.8s window, based on the Wilcoxon test. Thus,
we choose 3.2s as the duration of the optimal window for audio data
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Head
gestures

Fold 0 1 2 3 4 Avg
ValAcc .83 .81 .85 .88 .81 .836
TestAcc .96 .86 .94 .83 .96 .91

Audio
ValAcc .93 .97 .98 .98 .99 .970
TestAcc .93 .99 .99 .99 .99 .978

Table 2: Fold wise speaker identification accuracy using head ges-
tures over 40s duration and audio over 3.2s duration.

in our experiments. Table 2 shows the accuracies using the head ges-
tures and audio from the optimal window duration. We notice that
the audio performs consistently better than head gestures at identify-
ing speakers in all the folds, even though the experiments with audio
receive significantly shorter duration of data. It is interesting to note
that an audio of duration 1.2s results in an accuracy identical to that
using head gestures of duration 40s using the proposed CNN-LSTM
architecture. This suggests that the head gestures over a duration of
more than thirty times that of audio are needed to identify speakers
with similar accuracies.
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Fig. 3: Speaker identification performance across five folds on val-
idation set by varying the window size using (a) head gestures and
(b) audio

When the first 1/3-rd of the story is used for speaker identifi-
cation using the multiple-window based approach, we obtain an av-
erage speaker identification accuracy of 0.942 across all five folds.
When this is repeated for middle 1/3-rd and last 1/3-rd parts of the
story, we obtain a speaker identification accuracy of 0.933 and 0.970,
respectively. Based on the Wilcoxon test, the performances in the be-
ginning, the middle, and the end 1/3-rd of the story were found to be
not statistically significantly different. We further examine how the
speaker identification performance changes when the length of the
segment in a story from the beginning is increased. Fig. 4(a) shows
that the accuracy increases with an increase in segment duration for
all five folds separately. Accuracy with increasing segment duration
is plotted in different colors for different folds. It is clear from the
figure that, in general, the accuracy increases with increasing seg-
ment length, although it differs from one fold to another.

To understand how the speaker identification performance varies
for every 1s in a story, we compute the probability at a location by
finding the percentage of the number of 40s windows overlapping
with that time location that correctly identifies the speaker. Fig. 4(c)
shows such a probability profile for four randomly chosen stories
from four speakers. It is clear that not all locations in a story have
equal probability of identifying the speaker correctly. In fact, the
locations where the probability is high, change, depending on the
story. This could be related to the content of the story at that location,
the way the speaker narrates the story, and also the extent to which
head gestures at those locations capture speaker-specific details.

Fig. 4(b) shows the speaker identification accuracy from LIA
for all the five folds separately with the increasing duration of the
story segment. The accuracy increases with increasing segment du-
ration. This suggests that the majority voting, as defined in Fig. 1(b)
benefits more with the availability of more windows over longer seg-

ments. This, in turn, indicates that the best speaker identification
performance is achieved using the entire story. In fact, when the
entire story is used, we achieve an accuracy of 0.9875.
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Fig. 4: Illustration of location specific and location independent
speaker identification performance

The 2-D plots in Fig. 2 is the t-SNE plot of the output from the
Global-Average layer in the network (Fig. 1(a)) used in the experi-
ments in this work. The four plots are the outputs for 5s, 20s, 40s
head gestures, and 5s audio features (MFCC), respectively. t-SNE is
a non-linear dimensionality reduction algorithm [26], which helps in
visualizing higher dimensional objects in 2-D or 3-D.

From the plot, we observe that most of the data points belonging
to a particular speaker — same color — form a cluster, while the
data points belonging to a different user are a bit apart. Such dis-
crimination is more clearly visible with 5s audio data and 40s head
gesture data. Whereas for 5s, and 20s head gesture data, some of the
clusters are not well separated from the rest of the clusters, resulting
in a performance drop in our model. However, there is more over-
lap among speakers with 5s head gestures compared to that with 20s
head gestures. Though the speaker-specific information in head ges-
tures increases with the duration, the information contained in audio
is much more discriminative, even with considerably lesser duration.

5. CONCLUSION

In this work, we conducted experiments to identify speakers using
head gestures during a story narration and achieved an average accu-
racy of 0.836 with an input window of 40s. We also observe that the
speaker specific head gestures are not equally prevalent in all parts
of the story. While synthesizing head gestures based on cues from
other channels like prosody, this identity specific patterns should
be retained for the gestures to appear realistic and desirable to the
person interacting with the avatar. A neural network can be used
as an adversary while synthesizing head gestures. We plan to run
our experiments on diverse and larger datasets in our future work.
We also intend to collect more data for every language and analyse
language-specific cues in head gestures.
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