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Abstract
We explore the discriminability among /pa/, /ta/, and /ka/ syl-
lables, spoken during diadochokinetic (DDK) task, at varied
severity levels of amyotrophic lateral sclerosis (ALS) induced
dysarthria. Though DDK rate is known to decline with increas-
ing severity, the extent to which the discriminability among the
syllables gets impacted at each severity level is not well under-
stood. We perform manual and automatic classification of these
three syllables on 100 ALS and 35 healthy subjects. Manual
classification is done through listening tests. Spectral and self-
supervised speech cues with deep neural classifiers are used for
automatic classification. Manual classification accuracies de-
cline from 84.07% on healthy utterances to 27.41% on utter-
ances of the most severe patients. Automatic methods are found
to outperform humans achieving 15.93% and 50.37% higher ac-
curacies (absolute), respectively. Thus, discriminative acous-
tic cues seem to persist among the syllables, which automatic
methods capture.
Index Terms: Amyotrophic Lateral Sclerosis, dysarthria, di-
adochokinetic task, syllable classification, listening test

1. Introduction
Oral diadochokinetic (DDK) tasks are widely used by clinicians
during diagnosis and assessment of dysarthria prevalent in dif-
ferent neurological disorders like amyotrophic lateral sclerosis
(ALS) [1]. These tasks are also used for speech-based automatic
classification between patients suffering from such neurologi-
cal diseases and healthy controls (HC) [2, 3]. DDK tasks ex-
amine how quickly and accurately one can repeat, without any
interruption, a series of monosyllabic targets like ‘pa-pa-pa’ or
tri-syllabic targets like ‘pataka’ [4]. Dysarthria due to ALS re-
stricts the speed of movements of lips, jaw, tongue, and velum
[5, 6] causing a reduction in the DDK rate [7]. The discrim-
inability among the target syllables also gets compromised with
increasing dysarthria severity. However, the extent to which the
compromise happens at different severity levels for ALS is not
well understood. This work explores that gap in the literature
by analysing the degree of discriminability among /pa/, /ta/, and
/ka/ syllables produced during the tri-syllabic DDK ‘pataka’
task, at varied severity levels of ALS-induced dysarthria.

Dysarthria due to ALS affects nearly all sub-systems of
speech production. With increasing severity, it gradually col-
lapses the acoustic space of the patients compromising the dis-
criminability among different speech sounds [8]. The vowel
space area is reported to reduce [8] making it difficult to dis-
criminate between vowels. Patients often add unwanted voicing
to voiceless fricatives making them sound like their respective
voiced counterparts [9, 10]. Kumar et al. [11] have performed
classification of different sustained vowels and different sus-

tained fricatives at varied severities of ALS-induced dysarthria
through manual listening tests as well as using automatic deep
neural network approaches and reported that the classification
accuracies decline drastically with increasing severity levels.

Though studies have been reported on discriminability
among certain vowels and fricatives with increasing dysarthria
severity for ALS patients, discriminability among syllables like
/pa/, /ta/, and /ka/ remains relatively unexplored in this regard.
ALS patients are often found to perform incomplete closures
while uttering stop consonants [10]. This, along with impaired
consonant-to-vowel formant transitions [12], may significantly
distort the acoustic characteristics of the syllables under con-
sideration. Tao et al. [13] have analysed automatic speech
recognition on tri-syllabic DDK ‘pataka’ sequences for patients
with traumatic brain injuries and Parkinson’s disease, but not
for ALS. We explore this gap in the literature by conducting
a scientific study on how humans and machines perceive the
discriminability among these syllables during DDK tasks with
increasing dysarthria severity for ALS.

We perform 3-class classification of /pa/, /ta/, and /ka/ syl-
lables using manual and automatic methods at different sever-
ity levels of ALS-induced dysarthria. Manual classification is
conducted through listening tests. For automatic classification,
we explore dense neural networks (DNN), convolutional neu-
ral networks (CNN), and long-short term memory (LSTM) net-
works with spectral and self-supervised (SS) speech representa-
tions as the inputs. Though all the 3 syllables at hand constitute
a voiceless stop and the vowel /a/, the automatic classification
performances may not be solely driven by the phone-level clas-
sification of the stops. With a vowel in the syllable, the stop-
to-vowel transition may give more information and hence better
discriminability. As expected, both manual and automatic clas-
sification accuracies decline with increasing severity. However,
the proposed automatic methods significantly outperform hu-
mans not only on utterances from HCs but also on dysarthric ut-
terances of all severity levels. Automatic methods are found to
achieve 15.93% and 50.37% higher accuracies (absolute) than
humans on utterances from HCs and the most severe patients,
respectively. This might indicate that though humans may fail to
perceive the differences among these syllables with increasing
dysarthria severity, distinct cues persist in the syllables which
data-driven models can capture. Thus, these syllables can be
explored further as potential choices of voice commands for au-
tomatic voice assistants, even for the most severe patients.

2. Dataset
Speech recordings were collected from 100 ALS (64M + 36F;
age range: 28-73 years) and 35 HC (18M + 17F; age range:
31-55 years) subjects at the National Institute of Mental Health
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and Neurosciences (NIMHANS), India. Here, M and F stand
for male and female, respectively. The subjects spoke one of the
following native languages - Bengali, Tamil, Telugu, Hindi, and
Kannada. Three speech-language pathologists (SLPs) rated the
dysarthria severity of each ALS subject following the 5-point
speech component [0 (complete loss of useful speech) - 4 (nor-
mal speech)] of the ALSFRS-R scale [14]. The final severity
score was derived as the mode of these 3 ratings. Following
Kumar et al. [11], we grouped the subjects with severity scores
0 and 1 together as the severe dysarthric group (SV), those with
scores 2 and 3 together as the mild dysarthric group (ML) and
the ones with score 4 as the ALS group with no dysarthria (ND).
Lastly, a normal speech group (NS) was formed with all the HC
subjects. All groups comprised 35 subjects, except SV which
had 30 subjects. The distributions of gender and native lan-
guage were similar for all these groups. The subjects performed
the DDK task where they were asked to take a deep breath and
keep repeating the tri-syllabic sequence ‘pataka’ as fast as pos-
sible. Up to 3 such trials were recorded from a subject depend-
ing on his/her level of comfort. Further details about the data
collection procedure are given in [2]. A total of 86, 106, 105,
and 99 trials were obtained from SV, ML, ND, and NS groups,
respectively, with the mean and standard deviation (SD) of the
durations of the trials being 3.93 (2.84), 4.55 (2.05), 6.01 (2.13),
and 5.45 (2.00) sec, respectively. The hospital ethics committee
approved the data collection protocol. Also, each subject signed
a consent form before data collection.

3. Method
3.1. Data Preprocessing - Syllable Segmentation

We first segment individual syllables in the speech trials com-
prising repetitive ‘pataka’ utterances to form the syllable clas-
sification corpus. A two-phase semi-automatic method is used.
First, we obtain the upper peak envelope of the waveform of
a speech trial using spline interpolation over the local maxima
points which are at least 5 ms apart. It is then low-pass fil-
tered using a 2nd order digital Butterworth filter having a cutoff
frequency of 15 Hz to obtain a smooth envelope of the speech
waveform as shown in Figure 1. The local minima of this
smooth envelope are located such that the corresponding points
in the negated envelope have a minimum peak prominence of
0.2 times the maximum magnitude of the envelope. This thresh-
old is set empirically. This constraint discards the insignificant
minima. The speech segment between two consecutive minima
thus identified is considered to encompass one syllable. These
identified syllables are then labeled cyclically as /pa/, /ta/, and
/ka/ starting from the first syllable identified in the speech trial.
This automatic segmentation process is performed using MAT-
LAB R2021a [15]. However, on manual inspection, it is found
that, the automatically obtained time boundaries are not accu-
rate in many cases. It is particularly erroneous for trials pro-
duced by severely dysarthric subjects. Moreover, the subjects,
even the HCs, are observed to make mistakes while repeating
the syllables, thereby generating sequences like ‘katapa’, ‘pat-
apa’ etc. which can not be detected by this automatic method.
Hence, we manually correct all erroneous segmentations by lis-
tening to each speech trial and modifying the erroneously anno-
tated syllables using the Audacity software [16]. Figure 1 shows
the automatically obtained and the manually corrected syllable
segmentations for an illustrative speech trial. The total number
and durations of the 3 types of syllables thus identified for the
different severity groups are listed in Table 1.

/pa/ /ta/ /ka/
/pa/ /ta/ /ka/ /pa/

Automatic segmentation
Corrected segmentation

Figure 1: Automatic and manually corrected syllable segmen-
tations of an illustrative speech segment; the grey boundary is
missed in the automatic process

3.2. Manual Classification of Syllables

We performed listening tests following Kumar et al. [11] to
carry out the manual classification process. Conducting the lis-
tening test for all data is a time-consuming and tedious job.
Hence, we selected a subset of the data for this purpose. 15
subjects were chosen from each of the 4 severity groups while
maintaining an almost uniform distribution of gender and native
language. Two random utterances of each of /pa/, /ta/, and /ka/
were selected among the longest 50% of the respective syllables
produced by a particular subject. Thus, the total number of ut-
terances used for the listening tests were 360 (4 severity groups
× 15 subjects × 3 syllables × 2 utterances).

The listening tests were carried out through a web appli-
cation. First, a listener was presented with 3 example audios
corresponding to the 3 syllables /pa/, /ta/, and /ka/ uttered by
a healthy individual. Then, the test audios were presented se-
quentially. The listeners had to choose the most likely alterna-
tive among the 3 options, /pa/, /ta/, and /ka/, given for each au-
dio. They also provided confidence scores in [0, 100] signifying
their confidence in making each decision. Thus, though the lis-
tening test was designed as a forced 3-class multiple-choice test,
the confidence score could capture the listener’s uncertainty in
making a decision. Each syllable utterance was assigned to 3
listeners for classification. The listeners were allowed to revisit
the examples and play each test audio as many times as they
wanted. However, once the decision for a test audio was sub-
mitted, it could not be changed further.

27 listeners (19M + 8F; age range: 17 - 54 years) were re-
cruited for the listening tests. The native languages of the listen-
ers included Hindi, Kannada, Tulu, Tamil, Telugu, Malayalam,
and Urdu. None of the listeners reported any hearing impair-
ment. A total of 90 test syllable utterances with almost equal
proportion from each of the 4 severity groups were assigned
to every listener. 10 random utterances out of the 90 (2 or 3
utterances per severity group) were repeated making the total
number of test audios to be classified by each listener equal to
100. For each participating listener, we computed 2 metrics -
accuracy on the utterances belonging to the NS group and con-
sistency on the repeated utterances. Consistency was calculated

Table 1: Number and duration of utterances of different sylla-
bles obtained from subjects of different severity groups; each
cell entry is in the form of x/y/z, where, x is the number of utter-
ances, y is the mean duration (in sec) of the utterances, and z is
SD of the durations (in sec) of the utterances

SV ML ND NS
/pa/ 294/0.33/0.16 730/0.17/0.06 1417/0.13/0.03 1349/0.11/0.03
/ta/ 287/0.32/0.17 621/0.18/0.08 1323/0.12/0.03 1215/0.11/0.03
/ka/ 267/0.38/0.15 716/0.25/0.12 1405/0.17/0.05 1346/0.15/0.03
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as the % of times the labels chosen for an utterance and its re-
peated version matched. The accuracy of the listeners ranged in
50%-100% while their consistency ranged in 40%-100%. The
responses from only the listeners with at least 80% accuracy
and 80% consistency were considered further. Though the lis-
teners did not have hearing disabilities, we put this selection
criteria to ensure that we considered the responses from only
those listeners who were attentive and serious during the test,
thus expecting to discard randomly chosen labels. This process
made us select 12 listeners (9M + 3F) out of the 27 participants.

It is observed that most listeners logged low confidence
scores for some of their responses. These might correspond to
those syllable utterances which did not sound precisely like any
of /pa/, /ta/, and /ka/, although the listener was forced to choose
one option. Utterances produced by severe patients are more
likely to give rise to this situation. Thus, in our subsequent
calculation of manual classification accuracies, we consider a
response as correct only if it matches with the ground truth and
the corresponding confidence score is above a threshold. It is
observed that most of the consistent responses given by the lis-
teners on repeated utterances had confidence scores above 40,
whereas, most of the inconsistent ones had the scores below 40.
Hence, we set the threshold on confidence score at 40.

3.3. Automatic Classification of Syllables

Features: Since different SS speech representations are re-
ported to be well-suited for ASR systems [17, 18, 19], we ex-
plore such representations obtained from 5 different pretrained
models, namely, DeCoAR (2048D) [20], HuBERT (768D) [17],
NPC (512D) [21], TERA (768D) [18], and Wav2Vec 2.0 (768D)
[19] for our /pa/-/ta/-/ka/ classification task. These SS learning
models differ in terms of the dimension of the latent speech rep-
resentation, the speech input format, the self-supervision task
performed, and the objective function considered [22]. Thus
different models encode information differently in the speech
representation. Hence, we explore a variety of models to exploit
the best suited representation for the syllable classification task.
We also use the time-frequency representation of speech cap-
tured through 12D mel-frequency cepstral coefficients (MFCC)
(except the energy term) along with its delta and double-delta
measures. The S3PRL speech toolkit [23] and the pretrained up-
stream model weights available in the toolkit are used to extract
the SS speech representations, whereas, MFCC is computed for
every 20 ms speech frame with 15 ms overlap using the KALDI
speech recognition toolkit [24].
Classifiers: DNN, CNN, and LSTM are used as the classifiers
in this work. The DNN architecture as adopted from Kumar et
al. [11], along with the proposed CNN and LSTM architectures,
are shown in Figure 2. DNN models are trained at the frame-
level. During testing, majority voting is performed over the pre-
dictions obtained for all frames of a particular syllable to arrive
at the syllable-level predictions. On the other hand, training
and testing of CNN and LSTM models are done at the syllable-
level. Since the syllables have varying frame counts, the feature
matrices of all syllables of a speech trial are zero-padded to the
length of the longest one present in that trial and fed as a single
batch during training and testing of CNN and LSTM models.
As reported in Table 1, SV group has much lower number of
utterances of each syllable as compared to the other severity
groups. Hence, to maintain uniformity, while training CNN and
LSTM models at syllable-level for each of ML, ND, and NS
groups, we use a randomly selected subset of the corresponding
syllables such that the cardinalities of the training syllable sets
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Figure 2: Architectures of different classifiers; here, DL: Dense
layer, CL: 1D-Convolutional layer, AL: Adaptive average pool-
ing layer, LL: LSTM layer, NU: Number of units in DL, NF:
Number of filters, KS: Kernel size, OS: Output size of AL, NC:
Number of LSTM cells

for these severity groups are almost equal to that for SV. The
same is not required for frame-level DNN training as the num-
ber of training frames obtained for different severity groups are
found to be similar. All models are initialized randomly with a
fixed seed. We train the models for a maximum of 100 epochs
using Adam optimizer with a learning rate of 0.0001, along with
cross-entropy loss. To avoid overfitting, early stopping is done
with a patience of 5 based on the validation loss. Training and
testing are performed separately for each severity group for all
3 classifiers. All implementations are done in Pytorch v1.11.0
[25]. An NVIDIA GeForce RTX 2080 GPU is used for training
and testing the models.

4. Experimental Setup
Experiments are conducted in two phases. In the first phase, 5-
fold cross-validation of all automatic classifiers are performed
and their performances are compared for each severity group
separately. The subjects of each group are equally and ran-
domly distributed among the 5 folds and the same fold structure
is maintained across all automatic classifiers. For any severity
group, at every iteration, one of the folds acts as the test set and
the remaining folds are used together as the train set. Random 4
subjects from the train set are chosen to form the validation set.
The mean and SD of classification accuracies obtained over 5
folds of cross-validation for every severity group are used as the
performance metrics. The classifier architectures, as mentioned
in subsection 3.3, are tuned by optimizing the average validation
performances over the 5-folds of all 4 severity groups and all in-
put feature representations. The second phase of evaluation is
carried out by evaluating the performance of the automatic clas-
sifiers on the manual listening test set. Thus, for every severity
group, the utterances of the 15 subjects selected for the manual
listening task are used as the test set for the automatic classifiers
and the remaining subjects are used to form the train set. Ran-
dom 3 subjects from the train set are used for validation. We
compare the classification accuracies achieved using the auto-
matic methods against the manual classification accuracies us-
ing the Wilcoxon signed-rank test [26] at 1% significance level.
For this purpose, 30 random subsets, each containing 30 utter-
ances, are formed out of the manual listening test set for every
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Table 2: Mean classification accuracies in % (SD in bracket) over 5-fold cross-validation obtained using different automatic classifi-
cation methods for different severity groups; here, #para indicates the number of trainable parameters in the classifier

Feature Dim DNN CNN LSTM
#para NS ND ML SV #para NS ND ML SV #para NS ND ML SV

MFCC 36 6.9L 83.69
(5.67)

74.82
(11.31)

61.12
(11.11)

50.27
(6.77) 51K 59.07

(6.81)
50.92

(10.95)
45.38
(6.26)

42.70
(6.46) 32L 76.89

(13.15)
74.74

(11.01)
63.12
(7.96)

48.68
(7.28)

NPC 512 11L 45.66
(7.95)

59.97
(20.35)

55.94
(11.69)

48.59
(3.49) 2.9L 47.79

(5.59)
43.19
(4.74)

38.41
(3.68)

35.19
(5.23) 42L 60.47

(17.97)
60.67
(8.17)

58.80
(6.21)

45.83
(6.39)

TERA 768 14L 83.91
(5.23)

90.10
(5.20)

67.80
(9.89)

61.53
(8.92) 4.2L 57.57

(5.98)
54.43
(7.89)

55.64
(5.59)

40.65
(3.07) 47L 83.32

(5.44)
90.82
(3.10)

80.64
(3.25)

47.83
(4.86)

HuBERT 768 14L 99.03
(0.40)

99.46
(0.47)

97.03
(1.45)

79.72
(8.68) 4.2L 94.06

(6.59)
89.25
(4.25)

78.54
(4.29)

54.12
(5.11) 47L 97.98

(2.37)
98.56
(1.44)

94.52
(3.09)

79.75
(10.47)

Wav2Vec 2.0 768 14L 98.13
(0.57)

97.29
(1.43)

91.21
(6.12)

71.14
(6.82) 4.2L 64.49

(14.06)
61.37
(7.25)

46.31
(5.43)

38.02
(1.37) 47L 96.23

(1.54)
94.40
(1.64)

86.40
(4.51)

68.11
(14.22)

DeCoAR 2048 27L 85.53
(7.84)

93.17
(3.47)

74.05
(5.43)

53.01
(6.04) 10L 50.53

(2.86)
49.16
(3.55)

38.84
(3.48)

36.96
(3.33) 73L 85.99

(10.03)
72.07

(19.47)
61.88
(4.21)

48.74
(5.90)

severity group and the accuracies of all automatic and manual
methods on these subsets are considered.

5. Results and Discussion
Comparison of Different Automatic Classifiers: Table 2 re-
ports the 5-fold cross validation performances obtained for the
4 severity groups using different automatic classification ap-
proaches. As expected, the classification accuracies achieved
using most of the approaches drop with increasing severity lev-
els, except a few cases. Like, TERA features with CNN perform
better for ML than ND. Several approaches perform marginally
better for ND than NS. This might be because ND group also
does not have speech impairments like NS and may achieve
better accuracies depending on the dataset considered. For
NS, ND, and ML groups, HuBERT-based features with DNN
achieve the best classification performance. Though for SV,
HuBERT-based features with LSTM classifier turn out to be the
best, DNN with the same features also attains statistically sim-
ilar performance. Only HuBERT-based features are considered
further due to their superior performance over others.

Automatic vs. Manual Classification: Figure 3 illustrates the
automatic and manual classification performances obtained on
the subjective listening test set. Here, for comparison, HuBERT
representations are used as the input features for all automatic
classifiers. Both manual and the highest automatic classification
accuracies obtained for the NS group are at par with the liter-
ature [27, 28]. DNN and LSTM are observed to significantly
outperform the manual classification approach at all severity
levels, though the performance of CNN is significantly better
than the manual performance only for the SV group. LSTM for
NS group and DNN for ND group attain 100% mean classifi-
cation accuracies with 0 SD. For ML and SV groups, LSTM
and DNN, respectively, are observed to be the best performing
models. Though the mean accuracies for both manual and auto-
matic methods decline with increasing severity, the drops from
NS to SV are significantly less for automatic DNN (21.11%)
and LSTM (28.89%) methods than that for manual classifica-
tion (56.66%). These results might indicate that though these 3
syllables become perceptually difficult to discriminate with in-
creasing severity, the acoustic cues present in the utterances can
preserve the differences to a considerable extent. The confusion
matrices obtained using the manual and the best performing au-
tomatic method for each severity group (Figure 4) further sug-
gest that humans can identify /pa/ the best at all severity levels.
They confuse /ka/ the most for NS and ND but /ta/ for ML and
SV. The best performing automatic method faces the highest
confusion in the case of /ka/, followed by /ta/, for SV.

NS ND ML SV
Severity Group

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

DNN
CNN

LSTM
Manual

Figure 3: Mean automatic (using HuBERT features) and man-
ual classification accuracies (SD in error bar) obtained on the
manual listening test set for different severity groups; at each
severity, * indicates the automatic methods which significantly
outperform humans at 1% significance level

/pa/ /ta/ /ka/ CS < 40

/pa/ 0.91
1

0.01
0

0
0

0.08
-

/ta/ 0.02
0

0.84
1

0.06
0

0.08
-

/ka/ 0.12
0

0.06
0

0.77
1

0.06
-

(a) NS

/pa/ /ta/ /ka/ CS < 40

/pa/ 0.83
1

0.02
0

0.01
0

0.13
-

/ta/ 0.1
0

0.73
1

0.04
0

0.12
-

/ka/ 0.11
0

0.02
0

0.66
1

0.20
-

(b) ND

/pa/ /ta/ /ka/ CS < 40

/pa/ 0.8
0.97

0.03
0.03

0
0

0.17
-

/ta/ 0.11
0

0.52
0.97

0.10
0.03

0.26
-

/ka/ 0.08
0

0.14
0

0.6
1

0.18
-

(c) ML

/pa/ /ta/ /ka/ CS < 40

/pa/ 0.36
0.93

0.01
0.03

0.11
0.03

0.52
-

/ta/ 0.08
0.13

0.15
0.73

0.16
0.13

0.62
-

/ka/ 0.18
0.2

0.08
0.13

0.32
0.67

0.42
-

(d) SV

Figure 4: Confusion matrices obtained on the manual listening
test set of different severity groups using manual (in red) and
the best-performing automatic (in blue) classification methods;
here CS: confidence score

6. Conclusion
We analyze the discriminability among 3 syllables /pa/, /ta/, and
/ka/ at varied severities of ALS-induced dysarthria. Automatic
classification methods involving SS speech representations and
deep neural networks are found to be able to differentiate these
syllables significantly better than humans at all severity levels,
though the performances of both automatic and manual meth-
ods decline with increasing severity. In the future, we would
like to incorporate voiced stops like /b/, /d/, /g/, along with the
already explored voiceless /p/, /t/, /k/, in our study.
Acknowledgements - Authors thank the Department of Science
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