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Abstract

Automatic syllable stress detection is typically performed with
a supervised classifier considering manually annotated stress
markings and features computed within the syllable segments
derived from phoneme transcriptions and their time-aligned
boundaries. However, the manual annotation is tedious and the
errors in estimating segmental information could degrade stress
detection accuracy. In order to circumvent these, we propose to
estimate stress markings in automatic speech recognition (ASR)
framework involving finite-state-transducer (FST) without us-
ing annotated stress markings and segmental information. For
this, we train the ASR system with native English data along
with pronunciation lexicon containing canonical stress mark-
ings and decode non-native utterances as pronunciations em-
bedded with stress markings. In the decoding, we use an FST
encoded with the pronunciations derived using phoneme tran-
scriptions and the instructions involved in a typical manual an-
notation. Experiments are conducted on polysyllabic words
taken from ISLE corpus containing utterances spoken by Italian
and German speakers and using the ASR models trained with
three corpora. Among all the three models, the highest stress
detection accuracies with the proposed approach respectively
on Italian & German speakers are found to be 2.07% & 1.19%
higher than and comparable to those with the two supervised
classification approaches used as baselines.

Index Terms: Syllable stress detection, unsupervised approach,
computer assisted language learning, ASR inspired modeling.

1. Introduction

Automatic syllable stress detection is an important compo-
nent in the applications of computer assisted language learning
(CALL) for learning second language (L2) [1, 2]. It is useful in
evaluating L2 learners’ pronunciation, identifying localized er-
rors in their pronunciation and providing feedback to them dur-
ing the learning [3, 4]. In most of the existing works, the auto-
matic syllable stress detection is posed as a supervised classifi-
cation problem and is performed in two steps [4, 5, 6,7, 8, 9]. In
the first step, features are computed heuristically for every syl-
lable using phoneme transcriptions and its time-aligned bound-
aries from all utterances. In the second step, these features are
used to classify a syllable as stressed or unstressed using a clas-
sifier trained using labeled data.

Tepperman et al. used prosodic features derived from fun-
damental frequency (f0), energy, duration to classify each syl-
lable using Gaussian mixture models (GMMs) [4]. Deshmukh
et al. used decision trees to classify similar prosodic features
computed using nucleus level clustering [5]. Zhao et al. trained
support vector machines (SVM) for classification using frame-
averaged features and pitch-variation parameters computed us-
ing Rise/Fall/Connection model [6]. Li et al. trained multi-
distribution deep belief networks (DBNs) with prosodic fea-
tures for the classification [7]. Yarra et al. used SVM classifier
considering the features based on the combination of sonority
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and energy [8]. However, most of these works train the classi-
fier assuming availability of the stress labels on non-native En-
glish data that are obtained from manual annotation, which is
often costly and cumbersome.

In order to avoid the manual annotation, Ferrer et al. [3]
predicted the stress labels on non-native English data using a
classifier trained with the features computed from native En-
glish data and respective canonical stress markings. However,
these methods achieve lower performance than the approach
proposed by Tepperman et al [4], which uses manual annota-
tion. This could be because of the two step approach used
in the stress detection task, in which, an error in estimating
time-aligned boundaries propagates into the feature computa-
tion and affects the classifier and, hence, the stress detection
performance. In order to circumvent this as well as the difficul-
ties in the manual annotation, we propose to estimate the stress
labels in an unsupervised manner without using the labels and
the features.

In this work, unlike the previous approaches where each
syllable was considered separately, we pose the stress detection
task as sequence detection task in an automatic speech recogni-
tion (ASR) framework involving finite-state-transducer (FST).
For this, we consider deep neural network-hidden Markov
model (DNN-HMM) based ASR trained with the stressed and
unstressed acoustic data separately using the native English data
containing canonical stress markings. Further, for predicting
stress label sequence in a non-native English word utterance, we
perform decoding with the FST modified by embedding word
specific multiple stress label sequences derived from the in-
structions used in the manual labelling of stress markings [10].
In order to know effectiveness of the proposed approach, we
perform the experiments on polysyllabic words spoken by Ital-
ian (ITA) and German (GER) speakers taken from ISLE [10]
corpus. We use three ASR models trained respectively with
the entire training set of LibriSpeech corpus [11] (960 hours),
a sub-set of training set of LibriSpeech (30 hours) and a sub-
set of training set of Wall Street Journal corpus [12] (30 hours).
We consider the supervised stress detection works proposed by
Tepperman et al. [4] and Yarra et al. [8] as the first and the sec-
ond baseline methods respectively. Among all the three ASR
models, we achieve the highest stress detection accuracies of
85.24% and 87.00% on ITA and GER speakers, which are found
to be 2.07% and 1.19% higher than and comparable to those
from the first and the second baseline methods respectively.

2. Database

We use ISLE [10] corpus in all our experiments in this work.
The corpus contains utterances from 46 non-native speakers (23
Italian (ITA) and 23 German (GER)) learning English. Each
speaker uttered approximately 160 sentences. Each utterance
was phonetically aligned automatically with a forced alignment
process and then those were corrected manually by a team of
five linguists to reflect the speakers’ pronunciation. They also
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labeled all the syllable nuclei with stress markings by assur-
ing only one stressed syllable, referred to as primary stress, in
each word. In the experiments, we consider only polysyllabic
words, of which, 4233, 1011 and 181 are bisyllabic, trisyllabic
and quadrisyllabic words. These account to 5425 stressed (1)
and 6798 unstressed (0) syllables respectively.

3. DNN-HMM based ASR system

A DNN-HMM based ASR system has three components — 1)
acoustic model (AM), 2) pronunciation lexicon and 3) language
model (LM) [13, 14]. The AM consists of an HMM and a DNN,
where HMM and DNN represent the state transition probabili-
ties for each context dependent phonemes and posterior proba-
bilities of those states given speech acoustics respectively. The
lexicon consists of multiple phoneme sequences representing
pronunciations for each word. The LM consists of an n-gram
model representing probability distribution of word sequences
[15]. The parameters in the AM and LM are learnt indepen-
dently, where for the former one, the lexicon is considered dur-
ing the training. During decoding, the ASR uses an FST com-
posed from the FSTs representing the three components. Typi-
cally, the FSTs for the AM, lexicon, LM and the composed FST
are denoted as HC-FST, L-FST, G-FST and HCLG-FST [16].
It is to be noted that, when the decoding is performed for one
word, the LM is not necessary, thus it is sufficient to consider
HCL-FST.

In general, the syllable nuclei carry the prominence [17].
Hence, the AM could capture stress specific properties from the
speech acoustics when it is trained using lexicon containing the
phonemes encoded with stress prominence on the syllable nu-
clei. However, such training is not possible with a non-native
English data since the stress markings are not readily available.
On the other hand, it is possible with a native English data con-
sidering canonical stress labels on syllable nuclei. Hence, an
HC-FST with native English data, referred to as native HC-FST,
can be trained using such lexicon with stress encoded syllable
nuclei (SESN).

4. Proposed approach

Figure 1 shows the four steps involved in the proposed approach
and we illustrate these steps using an exemplary word “ Tomor-
row”, which has the phonemes T, UW, M, AA, R, OW out of
which the phonemes UW, AA & OW are the syllable nuclei of
the syllables ‘T UW’, ‘M AA R’ & ‘OW’ [18]. For these syl-
lable nuclei, the SESN with labels 1 and 0 are UW1, AAl &
OW1 and UWO0, AAO & OWO respectively. The first step maps
the phoneme sequence {p1, p2, ..., px} in non-native word ut-
terance containing /N syllable nuclei into another phoneme se-
quence ensuring the mapped phonemes belong to the phoneme
set used in constructing native AM. For the exemplary word,
the k£ and N values are 6 and 3 respectively. The second step
constructs an L-FST using /V different phoneme sequences ob-
tained from the modified phoneme sequence replacing the syl-
lable nuclei in the modified sequence by either SESN with la-
bel 1 or 0. We refer these resultant phoneme sequences as
SESN based phoneme sequences. For the exemplary word,
there are 3 SESN based phoneme sequences obtained by re-
placing UW with either UW1 or UW0, AA with AA1 or AAO
& OW with OW1 or OW0. This is done by applying rules
constructed from the typical instructions followed in manual
labeling of stress markings. The third step performs compo-
sition of the constructed L-FST and HC-FST from the native
AM to obtain HCL-FST. The fourth step decodes an SESN
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based phoneme sequence that has maximum likelihood among
all the IV sequences using DNN-HMM based ASR considering
HCL-FST and the uttered speech signal of the respective word.
At the end, the stress markings of the SESNs in the decoded
SESN based phoneme sequence are declared as the estimated
stress markings for the syllables containing those syllable nu-
clei. Let {T, UW1, M, AAO0, R, OW0} be the decoded SESN
based phoneme sequence for the exemplary word, then the es-
timated stress markings are 1, 0, & O for the syllables ‘T UW’,
‘M AA R’ & ‘OW’ respectively.

Native acoustic model ]

Speech signal
Phoneme [Phoneme set lHC-FST
N ¥
in non-
native word Phone_me FST L?;;}Eg:’e d
\—‘mappmg |construction|[=FST| FST [ HCL ] e
Labelling Compose | FST 9
instructions SESN based _L'FST Decoding
construction L
SESN phoneme

sequence

Figure 1: Block diagram representing the steps involved in the
proposed approach

4.1. Background

In this work, we propose to select the best SESN based phoneme
sequence based on the likelihood criteria. However, the likeli-
hood of an acoustic observation sequence given AM would vary
when there is a mismatch between the acoustic data considered
in the observations and in the AM. Hence, it might affect the
proposed criteria when acoustic observation sequence is from
non-native speech but native speech is used to build AM. In or-
der to investigate this, first, we describe the likelihood criteria
and then analyze its effect on the stress detection task due to the
mismatches between the non-native speech acoustics and the
native AM.

Likelihood criteria:  For a given phoneme sequence
{p1,p2...pr}, the likelihood corresponding to an acoustic
observation sequence O = {0 1 < i < k}, where O
is an observation sequence of phoneme p;, given native AM
of those phonemes is defined as: P(0) = [[\_, P(0|p;).
From the equation, it can be observed that the total likelihood
of the observation sequence given the phoneme sequence is
maximum when the likelihood of O given p; is maximum
for every phoneme. In order to compute the likelihoods for
SESN based phoneme sequence, we propose to train the AMs
for both the variants of SESNs i.e. SESNs with label 1 and 0.
We indicate the AMs obtained for SESN with label 1 and O of
the syllable nuclei phoneme p; as (p;, A;), where A; € {1,0}.
It was studied that the likelihoods of acoustics within the
segments of SESN with label 1 and O are higher with their
respective AMs when both the acoustics and models belong to
native speech compared to when they are not [19]. However,
it is not clear how the likelihoods change when the acoustics
are from non-native speech segments and AMs are from native
speech. For this, we analyze the variations in the likelihoods of
acoustic observation sequence belonging to syllable nuclei p;
given (pi, \; = 1) and (p;, A; = 0) separately.

Motivation for using native AM: Instead of the likelihood, we
analyze variations using normalized likelihood, which is equal
to the posterior probability P(X:|O”, p;) shown in Equation 1
under equal likely prior on \;, with the help of Figure 2(a).

PODp;, \i) P(\i)
> PO pi, Ai) P(N)

A;€{1,0}

PO, p;) = (1)

Figure 2(a) shows the distribution of P(X;|O®, p;) for all



p; belonging to unstressed syllable nuclei computed using na-
tive AMs from LibriSpeech corpus [11] for A; = 1 and 0,
where O is the acoustic observation sequence within syllable
nuclei segments from ISLE corpus whose ground-truth stress
label is 0. From the figure, it is observed that P(\;|O", p;)
is higher when A; = 0. It is also observed that the percentage
of number of syllable nuclei having P(A\;]0¥, p;) < 0.5 for
Xi = 0is 17.20%. These together indicates that the O from
non-native English data gives higher (\;|O0(”), p;) with native
AMs when the stress labels on O™ and p; are matched than
that when those are not. We also observe higher P(\;|0, p;)
in the matched scenario when the acoustic observations are
collected from the segments with ground-truth stress label as
1. These together suggests that the likelihood of the acous-
tic observation sequence O is maximum when the considered
phoneme sequence contains syllable nuclei encoded with the
ground-truth stress markings even for the non-native speech.
However, these stress markings are unknown and those need
to be estimated.
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Figure 2: Normalized histogram of the posterior probability
for A=0 and \=1 when unstressed syllable nuclei acoustic seg-
ments are considered from non-native speech and AMs consid-
ered are trained on LibriSpeech (Libri) and Wall Street Journal

(WSJ) corpora
=0

(a) FST representing a phoneme sequence of word

(b) FST representing SESN based phoneme sequences of word

Figure 3: SESN based L-FST construction from a phoneme se-
quence. € represents the null output label

4.2. Rules for FST construction

In order to derive the SESN based phoneme sequence for the
given phoneme sequence in a non-native utterance, we propose
to modify syllable nuclei phonemes in the phoneme sequences
by replacing with their respective SESN with label 1 or 0. Thus,
after the replacement, the length of SESN based phoneme se-
quence is identical to that of the given phoneme sequence. In
the manual labeling, typically, it was followed that there is only
one stressed syllable nucleus in a word and remaining sylla-
ble nuclei are unstressed [10]. Thus, in deriving SESN based
phoneme sequences we propose to replace one syllable nucleus
at a time with the respective SESN with label 1 and the remain-
ing with their respective SESN with label 0. Considering this
constraint, it can be observed that a total of N SESN based
phoneme sequences are obtained for an N syllable nuclei word
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from the given phoneme sequence. Also, it is easy to observe
that the set of SESN based phoneme sequences also include the
phoneme sequence encoded with ground truth stress labels, re-
ferred as ground truth phoneme sequence. Thus, we hypothe-
size that the SESN based phoneme sequence that matches with
the ground truth phoneme sequence results in the maximum
likelihood among all N SESN based phoneme sequences in the
set. The maximum likelihood SESN based phoneme sequence
can be decoded using DNN-HMM based ASR with HCL-FST
composed from HC-FST and L-FST encoded with all of the N
SESN based phoneme sequences.

4.3. SESN based L-FST construction

4.3.1. Phoneme mapping

In order to compute likelihood of an SESN based phoneme se-
quence, all the phonemes in the phoneme sequence should be
present in the phoneme set considered for learning native AM.
In order to ensure this, we replace phonemes that are present in
the non-native English data but not present in the native AM by
a phoneme in the phoneme set that is used in constructing the
native AM [20] [21]

4.3.2. FST construction

Figure 3a shows the FST used to compute the likelihood in a
typical DNN-HMM based system for the phoneme sequence
of the word “Tomorrow”. It is to be noted that there is only
one path in the FST with seven nodes and six transitions. In
the FST, each transition has one input and one output symbol,
where the input symbol on every transition is represented by
each phoneme in the phoneme sequence according to their se-
quence of occurrence. Thus, the number of transitions in the
FST are equal to the number of phonemes in the word. There
are six phonemes in word “Tomorrow” and, hence, six transi-
tions in FST in Figure 3a. Further, as this word has three sylla-
bles, there would be three SESN based phoneme sequences of
length six.

In order to incorporate the SESN based phoneme se-
quences, we modify the FST by increasing the number of paths
to IV without altering the number of transitions as in the FST of
Figure 3a by keeping a constraint of ‘no node should be com-
mon across these paths except the begin node’. In addition, in
each path, we change the input symbol at the transitions corre-
sponding to the syllable nuclei and consider the remaining input
and output symbols identical to those in the FST in Figure 3a.
Figure 3b shows the proposed SESN based L-FST, where the
number of parallel paths is equal to three and the input and out-
put symbols are identical to those in Figure 3a except the input
symbols marked in red. The red marked input symbols at the
marked locations are obtained considering the input symbols
belonging to the respective transitions in the Figure 3a as fol-
lows: (1) Select one transition belonging to one of the syllable
nuclei in each path ensuring that the transition is not selected in
any other paths. Thus, all transitions corresponding to N syl-
lable nuclei are selected with one transition selected in each of
the N parallel paths. In Figure 3a, the red rectangular boxes
indicate three such transitions. (2) Replace the syllable nuclei
in the selected transitions with the respective SESN with label
1. In Figure 3b, the SESN with label 1 {UW1, AA1, OW1}
in the first, second and third paths are obtained by replacing the
syllable nuclei {UW, AA, OW} in the selected first, second
and third transitions respectively from Figure 3a. (3) Replace
the remaining syllable nuclei that are not considered in the step
2 in each path with the respective SESN with label 0. In Figure



3b, such SESN with label 0 in the first, second and third paths
are {AA0, OWO0}, {UW0, OWO0} and {UWO0, AAO} re-
spectively.

5. Experiments and results

Experimental setup: We consider unweighted accuracy [4, 8]
as the objective measure for evaluating the proposed approach.
We consider the works by Tepperman et al. [4] and Yarra et
al. [8] as the baseline techniques and refer them as BL-1 and
BL-2 respectively. We consider a test set of polysyllabic words
identical to those used in the work by Yarra et al. [8] for both
ITA and GER speakers. For these polysyllabic words, we ob-
tain the phoneme transcriptions available in the ISLE corpus.
We learn three native AMs separately using three data sets —
1) 960 hours of LibriSpeech (Libri) [11], 2) 30 hours of Lib-
riSpeech (Libri-S) and 3) 30 hours of Wall Street Journal (WSJ)
[12]. For training with these datasets, we use MFCC as features
and we consider the phoneme set described in Section 4.3.1 by
replacing syllable nuclei with SESN with label 1 and 0. The 30
hours of data in Libri-S is selected randomly from the Libri data
to match with the data size of WSJ in order to study the effect of
the data size on the stress detection performance. We use Kaldi
speech recognition toolkit [13] to construct HC-FST from each
native AM, to compose HCL-FST from HC-FST & L-FST and
to decode the SESN based phoneme sequence.

Table 1: Accuracies obtained for ITA and GER with the two
baselines and the proposed approach using all three native AMs

BL-1 | BL-2 | Libri | Libri-S | WSJ
ITA | 83.17 | 86.26 | 85.24 | 75.39 | 72.05
GER | 85.81 | 87.53 | 87.00 | 7932 | 75.53

Results and Discussion: Table 1 shows the stress detection ac-
curacies obtained with the two baselines and the proposed ap-
proach using all three native AMs for ITA and GER speakers.
In the Table, the bold entries indicate the highest accuracies
achieved with the proposed approach among all the three native
AMs for both sets of speakers. From the table, it is observed
that the highest accuracy with the proposed approach is higher
than that using the BL-1 separately for both the ITA and GER
speakers. The absolute improvements over BL-1 are found to
be 2.07% and 1.19% respectively on ITA and GER speakers.
This indicates that the proposed approach achieves better per-
formance without using the stress labels compared to the BL-1
that takes the advantage of the labels in a supervised manner.
However, it is also observed that the highest accuracy obtained
using the proposed approach are 1.02% and 0.53% (absolute)
lower than the BL-2 for ITA and GER speakers respectively.
This indicates that though the proposed approach does not use
any labels, the accuracies are comparable with those of BL-2.
These together suggest the effectiveness of the proposed ap-
proach for the stress detection task in an unsupervised manner.

From Table 1, it is also observed that the stress detection
accuracy for both ITA and GER speakers using the proposed
approach is higher with the native AM trained with Libri data
set than that with Libri-S and WSJ data sets. It is interesting to
observe that the amount of data considered in Libri-S and WSJ
is lower than that considered in Libri. These together indicate
that the stress detection accuracy with the proposed approach
depends on the amount of data used in training the native AM.
Further, we investigate this with the help of Figure 2(b) con-
sidering the native AMs trained with Libri and WSJ, similar to
the illustration in Figure 2(a). Figure 2(b) shows the distribu-
tion of P(A\;|O™, p;) computed using native AM trained on
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Libri and WSJ data for \; = 0 & 1 for all the acoustic obser-
vations collected from syllable nuclei segments whose ground-
truth stress labels are 0. From the figure, it is observed that the
"P(/\i|0(i),pi) is higher for A; = 0 when native AM is from
Libri data than that from WSJ data. Further, the percentage of
number of syllable nuclei having P(\;|O”, p;) < 0.5 is found
to be 26.59% with WSJ data, which is 9.39% higher than that
with Libri data. A similar trend is observed with Libri-S as well,
where we found P()\;]0®, p;) < 0.5 happens for 29.55% syl-
lable nulcei. These together suggest that the drop in the accu-
racies is due to lesser amount of the training data for the native
AM required for the stress detection task.

Table 2: Accuracies obtained for ITA and GER with the BL-
2 and the proposed approach using all three native AMs for
bisyllabic (B), trisyllalbic (T) and quadrisyllabic (Q) word

ITA GER
B T Q B T Q

BL-2 | 88.85 | 86.97 | 77.21 | 89.13 | 84.31 | 73.58

Libri | 86.92 | 83.37 | 76.83 | 87.02 | 89.27 | 74.24

Libri-S | 76.13 | 72.13 | 79.88 | 78.22 | 81.43 | 83.33

WSI | 71.70 | 72.90 | 72.56 | 75.04 | 76.93 | 75.25

Further, we analyze the stress detection performance using
the proposed approach separately for the bisyllabic (B), trisyl-
labic (T) and quadrisyllabic (Q) words with respect to the best
baseline (BL-2). Table 2 shows the stress detection accuracies
for B, T and Q words separately for ITA and GER speakers with
the proposed approach considering all the three native AMs and
the BL-2. In the table, the bold entries indicate the accuracies
where the proposed approach has a higher accuracy compared
to that with BL-2. Although, the overall accuracy with BL-2
is higher than the proposed approach for both ITA and GER
speakers, it is not so for all B,T and Q categories. For exam-
ple, with Libri based native AM, the proposed approach yields
higher accuracy in T and Q categories on GER speakers com-
pared to BL-2. Similarly, with Libri-S based native AM, the
proposed method does better than BL-2 in Q category in the
case of ITA speakers. This suggests the benefit of the proposed
approach compared to the BL-2.

6. Conclusion

Unlike using a supervised classifier and syllable level features
in the stress detection task, we decode the stress markings on
syllables in non-native word utterances using an ASR based
framework involving FST. The FST is composed using an FST
representing native AM and another FST constructed from a set
of phoneme sequences containing SESN with labels 1 and 0.
Three different native AMs are trained for the SESN with label
1 and O separately using native English data and a lexicon con-
taining canonical stress markings. Experiments with ISLE cor-
pus reveal that the proposed unsupervised approach performs
comparably with the two supervised classification approaches.
Further investigations are required to improve the stress detec-
tion task when there is less data to train the native AM. Future
work also includes study of the stress detection performance
when the phoneme sequence from the non-native utterance is
not available. In the future, we also plan to investigate on first
language specific tendencies for misplacing syllable stress.
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