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Abstract

Dysarthria due to Amyotrophic Lateral Sclerosis (ALS) pro-
gressively distorts the acoustic space affecting the discrim-
inability of different vowels and fricatives. However, the ex-
tent to which this happens with increasing severity is not thor-
oughly investigated. In this work, we perform automatic 4-class
vowel (/a/, /i/, /o/, /u/) and 3-class fricative (/s/, /sh/, /f/) classi-
fication at varied severity levels and compare the performances
with those from manual classification (through listening tests).
Experiments with speech data from 119 ALS and 40 healthy
subjects suggest that the manual and automatic classification
accuracies reduce with an increase in dysarthria severity reach-
ing 59.22% and 61.67% for vowels and 41.78% and 38.00% for
fricatives, respectively, at the most severe cases. While manual
classification is better than automatic one for all severity lev-
els except the highest severity case for vowels, the difference
between the two gradually reduces with an increase in severity.
Index Terms: Amyotrophic Lateral Sclerosis, dysarthria,
severity, vowel, fricative, automatic classification, manual clas-
sification, listening test

1. Introduction

Speech sounds like different vowels and fricatives have their
own individual acoustic characteristics which help in discrimi-
nating them from one another. However, the level of discrim-
ination can change due to a variety of factors like background
noise, reverberation, cross-talk etc. Impairments in speech pro-
duction can also affect this discriminability. Dysarthria is one
such speech disorder that progressively collapses the acoustic
space of the affected individuals, thereby hampering the dis-
criminability of different speech sounds. The effect becomes
increasingly prominent with increase in the severity level. This,
in turn, degrades the overall intelligibility of speech.

In this paper, we focus on dysarthria caused by Amy-
otrophic Lateral Sclerosis (ALS) in particular. This disorder
impairs the speed and/or range of movements of articulators
like lips, jaw, tongue and velum [1, 2]. Regulation of tongue
height control is observed to be disrupted in most of these pa-
tients [3]. Poor laryngeal control further adds to the disabil-
ities [2]. These articulatory impairments lead to a range of
acoustic abnormalities including longer vowel durations, lim-
ited formant transitional extents, shallower formant slopes etc.
[4]. These, in turn, adversely impact the discriminability of dif-
ferent sounds. For example, the vowel space area reduces in
these patients [5] making it difficult to identify different vow-
els. Low vowels are commonly misidentified as high vowels
[6]. The forms and extents of different speech impairments
vary with the degree of severity of dysarthria. Reduced tongue
and lip movement variabilities are observed in cases of mild
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Table 1: Literature review on works and observations involving
vowels and fricatives of dysarthric speech specific to ALS

Analysis:

1. Vowel height dimension is frequently misidentified due
to limited tongue height control [8].

2. Vowel contrasts reduce in severe patients [9, 5, 10].

Manual Classification:

1. /u/ has less vowel intelligibility than /a/, /i/, and /o/ in
control group but not in severe dysarthric group; /i/ is
observed to have declined intelligibility with an increase
in dysarthria severity [11].

Vowel

Automatic Classification: -

Analysis:

1. Articulatory differences are observed between fricatives
produced by speakers with ALS and healthy controls [12].
2. Place of articulation gets affected for lingual fricatives
in men with ALS [3].

3. Unwanted voicing is observed in the voiceless

fricative /s/ [13].

Fricative

Manual Classification: -

Automatic Classification: -

to moderate dysarthria, while significantly elevated variabilities
are displayed by severely dysarthric subjects [7]. In this work,
we particularly focus on analyzing the discriminability of dif-
ferent vowel and fricative sounds with increasing severity of
ALS-induced dysarthria.

Table 1 presents an extensive review of the major works
done in the literature on dysarthric vowels and fricatives sec-
ondary to ALS. The efforts are primarily restricted to the anal-
ysis category where changes, caused by dysarthria, in the ar-
ticulatory and acoustic characteristics of certain vowels and
fricatives are studied. The sole attempt towards classifying
dysarthric vowels has been made by Lee et al. [11]. They have
done manual vowel classification at varied dysarthria sever-
ity levels through listening tests. No attempt has yet been
made to analyze the performance of automatic algorithms for
this purpose. On the other hand, no classification work (man-
ual/automatic) has been carried out in the domain of dysarthric
fricatives. In fact, this type of work for both vowels and frica-
tives is very rare in the case of normal speech itself. Till date,
only Dewa [14] has developed a Convolutional Neural Network
(CNN) based Javanese vowel classifier using Mel-frequency
spectral coefficients obtained from healthy utterances. This
paper aims to explore these gaps present in the literature of
dysarthric vowels and fricatives. Thus our purpose is not to pro-
pose an alternative diagnostic tool for ALS vs. Healthy Control
(HC) classification but to report a scientific study on the dis-
criminability of vowels and fricatives, as perceived by human
and automatic classifiers, at different severity levels of ALS-
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induced dysarthria. This can help enrich our understanding
about how articulation is affected at different dysarthria severity
levels and for different phonemes.

We consider two tasks - classification of (1) 4 sustained
vowels, e.g. /al, /i/, /o/ and /u/, and (2) 3 sustained fricatives,
e.g. /s/, /sh/ and /f/. Both tasks are performed at varied severity
levels of ALS-induced dysarthria. We perform automatic clas-
sifications using deep neural networks with spectral and self-
supervised speech representations as the inputs. The automatic
classification performances are compared with manual classifi-
cation accuracies evaluated through listening tests. Speech data
from 119 ALS and 40 HC subjects are used and 44 listeners
performed the listening tests. Experimental results suggest that,
for vowels, the manual and automatic classification accuracies
drop from 89% and 78% in the case of HC subjects to 59.22%
and 61.67%, respectively, in the case of the most severe patients.
For fricatives, the respective drops are from 85.78% and 81.22%
to 41.78% and 38%. Though humans classify both vowels and
fricatives better than automatic classifiers at all dysarthria sever-
ity levels, except the most severe case for vowels, the gap be-
tween the automatic and manual classification accuracies re-
duces with increasing severity, reaching 2.45% and 3.78% for
vowels and fricatives, respectively, at the most severe cases.

2. Dataset

Sustained utterances of 4 vowels, e.g. /a/, /i/, /o/, /u/, and 3
fricatives, e.g. /s/, /sh/, /f/, were collected from 119 ALS (73M,
46F) and 40 HC (20M, 20F) subjects at the National Institute
of Mental Health and Neurosciences, India. These phonemes
were chosen based on the abilities of the patients to produce the
target sounds. The ALS and HC populations had aged in the
ranges of 23 - 81 and 22 - 55 years, respectively. The subjects
had 5 different native languages - Bengali, Hindi, Tamil, Tel-
ugu and Kannada. Dysarthria severity of each ALS patient was
rated by 3 speech-language pathologists following the speech
component of the ALSFRS-R scale [15]. It is a 5-point (O -
4) measure where 0 indicates complete loss of useful speech
and 4 signifies normal speech. The mode of the 3 ratings was
taken as the final severity. We consider ALSFRS-R scores 0
and 1 together as the severe dysarthric group (G1), scores 2
and 3 together as the mild dysarthric group (G2) and score 4 as
ALS group with no dysarthria (G3). Moreover, the HC subjects
are taken together to form the normal speech group (G4). 40
subjects were recruited from each group except G1 which had
39 subjects. Each group was balanced w.r.t. gender and lan-
guage distributions. During data collection, the subjects were
asked to take a deep breath and prolong a vowel/fricative at a
comfortable pitch (only for vowels) and loudness levels. The
process was repeated 1-3 times for each phoneme depending on
a subject’s level of comfort. More details about the data col-
lection process can be found in [16]. The number of utterances
of each phoneme obtained from different severity groups, along
with the mean and Standard Deviation (SD) of the duration of
the utterances, is given in Table 2. The data collection protocol
was approved by the hospital ethics committee. Also, a consent
form was signed by each subject prior to data collection.

3. Classification Method

3.1. Automatic classification

We explore multi-layer dense neural networks (DNN) for au-
tomatic vowel/fricative classification. Self-supervised speech
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representations obtained through pre-trained models are fed as
the input features to the networks. In particular, we consider
7 different pre-trained models, e.g. Wav2vec [17], Wav2Vec
2.0 [18], Hubert [19], Hubert-large [19], Tera [20], NPC [21]
and Decoar 2.0 [22], for extracting the speech representations.
These representations encode linguistic and paralinguistic de-
tails of the speech utterances in a compact fashion, and hence,
might be suitable for the classification tasks at hand. Apart from
these self-supervised representations, time-frequency represen-
tations of speech captured through mel-frequency cepstral coef-
ficients (MFCC) along with their derivatives are also considered
as input features for the DNN. In addition to these DNN-based
approaches, we consider a CNN-based classifier, as proposed in
[14], which takes mel-spectrograms along with their derivatives
as input features.

3.2. Manual classification

Manual vowel/fricative classification is performed through lis-
tening tests. Since conducting listening tests on the entire cor-
pus is highly time-consuming and extremely tedious, we se-
lected a subset of the corpus for manual listening. We chose
20 subjects from each severity level with an almost equal num-
ber of subjects of both genders from each native language. One
utterance of each vowel was chosen from a subject resulting in a
total number of 320 (4 severity levels x 4 vowels x 20 subjects)
vowel utterances. Similarly, 240 (4 severity levels x 3 fricatives
x 20 subjects) utterances of fricatives were selected. Each ut-
terance was classified by 3 human listeners who also provided a
confidence score in the range of [0, 100] corresponding to each
decision. The mode of these three decisions was taken as the
final manual classification result. In case, all three decisions for
an utterance turned out to be different, the one with the highest
confidence score was taken as the final manual label.

We recruited 44 listeners to conduct this manual classifica-
tion experiment. Listeners had ages ranging from 22 to 40 years
with native languages spanning over Bengali, Hindi, Kannada,
Malayalam, Tamil, and Telugu. Each listener was presented
with 41 - 52 vowel and 31 - 40 fricative utterances with an al-
most equal number of utterances (9 - 12) from each severity
group. This variability in number of utterances for each rater
was due to the condition that each utterance should be rated by
the 3 different listeners. The allotment was done by picking
one utterance at a time and assigning it to 3 randomly chosen
rater splits which had a less total number of utterances than the
maximum possible value, i.e., 52 for vowels and 40 for frica-
tives. Random 8 utterances for both vowels and fricatives were
presented twice to assess the consistency of the listeners. More-
over, the decisions given by the listeners for the utterances of the
healthy group, i.e., G4, were used to calculate their accuracies.
These accuracy and consistency measures can give us an idea

Table 2: Number and duration of utterances of different
phonemes obtained from subjects of different severity groups;
each cell entry is in the form of x /'y (z), where, x is the number
of utterances, y is the mean duration (in sec) of the utterances
and z is SD of the durations (in sec) of the utterances

G1(0,1) G2 (2,3) G3(4) G4 (HC)
/al 104/2.81 (2.17) 117/4.20 (2.44) 113/4.71 (2.60) 112/5.08 (1.78)
fi/ 103/2.21 (1.99) 116/1.93 (1.45) 114/4.51 (2.68) 111/4.94 (2.10)
/o/ 105/2.30 (2.04) 117/3.48 (2.02) 113/4.71 (2.75) 110/4.90 (2.08)
ha/ 97/2.09 (2.04) 116/3.42 (2.08) 113/4.53 (2.50) 112/4.73 (1.91)
/sl 69/0.79 (0.97) 116/1.93 (1.45) 114/2.86 (1.47) 111/3.84 (1.74)
/sh/ 78/0.40 (0.61) 115/1.47 (1.20) 114/2.42 (1.75) 112/3.11 (1.51)
/f76/0.36 (0.60) 114/1.35 (1.35) 114/1.89 (1.47) 111/2.47 (1.91)




about how good a listener is. Only the responses from listeners
with at least 75% accuracy and 75% consistency in the case of
vowels and at least 60% accuracy and 60% consistency in the
case of fricatives were considered further. This screening is ex-
pected to discard randomly chosen labels. This process resulted
in the selection of only 20 listeners out of the 44 participants.

The entire manual classification experiment was conducted
through two web applications designed for vowels and frica-
tives. Test audios were presented one at a time to a listener and
multiple choices for the possible vowel/fricative classes (4 for
vowels and 3 for fricatives) were shown. The listeners had to
choose the correct option and mark their confidence level for
each decision. The decisions once made could not be changed
later. All listeners were presented with healthy utterances as
examples before performing the classifications. They were al-
lowed to listen to those examples, as well as the test audio, as
many times as needed while performing the test. Moreover,
the listeners were instructed to use earphones/headphones to be
able to closely listen to the audio without any noise.

4. Experimental setup
4.1. Feature extraction

S3PRL [23] speech toolkit is used to compute self-supervised
speech representations using pre-trained wav2vec, wav2vec 2.0,
Hubert, Hubert-large, Tera, NPC, and Decoar 2.0 models. On
the other hand, 12D MFCC and 40D mel-spectrogram (exclud-
ing the energy coefficients) with delta and double-delta mea-
sures are computed from every 20 ms speech frame with 10 ms
overlap using the KALDI speech recognition toolkit [24], and
MATLAB R2022b respectively. Table 3 lists the dimensions of
all the considered speech representations along with the stride
used for their computation.

4.2. Classifiers

In this work, we use 4-layer DNNs as one set of vowel/fricative
classifiers. The networks have 1024, 512 and 256 neurons in the
hidden layers with ReLU activation function. The output layer
has 4 neurons in the case of vowel classification and 3 neurons
in the case of fricative classification. Softmax is used as the ac-
tivation function of the output layer for both classification tasks.
The classifiers are trained using Adam optimizer with a learn-
ing rate of 0.0001 considering cross-entropy as the loss func-
tion. The batch size is set to 16 and the models are trained up
to 100 epochs. We implement early stopping with patience of
5 to avoid overfitting. For the CNN-based classifier considered
in this work, we adopt the same settings as described in [14].
All DNN model trainings are done at the frame level and the
CNN training is done at 80 ms chunk level. While testing, the
mode of the predicted labels for all frames/chunks is considered
as the final decision for the utterance. Training and testing are
performed for each severity group separately. All implementa-

Table 3: Strides and output dimensions of different types of self-
supervised speech representations

Details MFCC  wav2vec wa;Zovec Hubert
Stride (ms) 10 10 20 20
O/P Dim 36 512 768 768
Hubert Tera NPC Decoar
large 2.0
Stride (ms) 20 10 10 10
O/P Dim 1024 768 512 768
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tions are done in Pytorch v1.11.0 [25]. An NVIDIA GeForce
RTX 2080 GPU is used for training and testing the models.

4.3. Evaluation method

We perform the experimental evaluation in two phases. In the
first phase, we evaluate all automatic classifiers through 5-fold
cross-validation separately at each severity level for both vow-
els and fricatives and analyze their relative performances. Folds
are created randomly with an equal number of subjects in each
fold. The same fold structure is maintained across all the clas-
sifiers. In the second phase, we evaluate the performances of
the classifiers on the same dataset as used for the manual lis-
tening tests. In each severity level, we have nearly 40 subjects
among whom 20 are used for listening tests, or in turn, as the
test set. We use 3 subjects from the remaining as the valida-
tion set while the rest of the subjects are used as the training set
for the automatic classifiers. Lastly, we perform the Wilcoxon
signed-rank test [26] at 1% significance level to determine if
the classification performances achieved through automatic and
manual modes are significantly different.

A 5-fold evaluation method is performed to check the con-
sistency of the models as the human test set involving more
subjects results in less training data. Two levels of comparison
give a better understanding of the performance of models with
changes in the training set size for automatic classification. The
second phase of comparison is considered for all conclusions.

5. Results and discussion
5.1. Comparison of different automatic methods

Table 4 and 5 summarize the performances of all models men-
tioned above for the classification of vowels and fricatives. We
observe a decline in the performance with an increase in severity
for all speech representations except a few cases. Tera and De-
coar 2.0 achieve better performance for G3 than G4 in the case
of vowels. The same pattern is observed for Tera and NPC in
the case of fricatives. For vowels, CNN model achieves the best
performance for G1 and G2 whereas Hubert performs the best
for G3 and G4. In the case of fricatives, Hubert-large shows
the best performance for G1 while CNN shows the best per-
formance for all other severity groups, i.e., G2, G3, and G4.
Overall no single model achieves the best performance across
all severity levels for both vowels and fricatives. Though CNN
performs the best for G2, G3, and G4 for fricative classification,
it fails with a notable difference for the severe group G1.

5.2. Comparing automatic and manual classification

Comparison of the automatic classification with manual clas-
sification at different severity levels is presented in Figure 2.
Hubert for vowels and wav2vec 2.0 for fricatives outperform all
other models on the manual test set when we consider average
performance across all severity levels. Even though CNN shows
the best performance during 5-fold cross-validation, it is unable
to achieve similar performance on the manual test set. Con-
sidering both the 5-fold accuracies and manual test set accura-
cies, the best performing model for vowels turns out to be CNN,
followed by DNNs with speech representations from wav2vec,
Hubert and Hubert-large. For fricatives, the top 4 models in-
clude CNN, followed by DNNs with wav2vec, wav2vec 2.0 and
Hubert representations.

Itis observed that, for the severe group G1, automatic vowel
classification with Hubert shows better performance (though



Table 4: Mean vowel classification accuracies in % (SD in bracket) over 5-fold cross-validation obtained using different automatic

classification methods

SGeverlty MFCC wav2vec wav2vec Hubert Hubert Tera NPC Decoar CNN

roups 2.0 large 2.0

G1(0,1) 33.82(5.24) 50.17(1.79) 49.06 (7.18) 46.34 (12.36) 43.85(6.58) 34.57 (3.05) 24.8(4.76) 28.34(4.58) 55.43(14.34)
G2(2,3) 38.67(4.54) 64.97(6.38) 64.59(7.41) 59.56 (15.19) 64.2(6.25) 43.58(4.71) 25.44(2.67) 29.95(4.68) 66.21 (8.01)
G3(4) 42.58(6.29) 66.58 (5.75) 69.16 (6.66) 74.21 (5.69) 68.54 (6.00) 54.45(5.09) 29.52(4.63) 44.31(3.50) 70.63 (6.58)

G4 (HC) 41.11(2.21) 73.44(5.25) 72.69 (7.11) 7839 (7.87) 73.43(5.05) 52.19(6.87) 29.87 (4.63) 42.58 (4.69) 77.34 (4.20)

Table 5: Mean fricative classification accuracies in % (SD in bracket) over 5-fold cross-validation obtained using different automatic

classification methods

Séver“y MFCC wav2vec wav2vec Hubert Hubert Tera NPC Decoar CNN
roups 2.0 large 2.0

GI(0,) 3175657 4188(757) 3404 (13.24) 4053 (5.44) 4438 (11.07) 37.64 (6.10) 30.11(732) 3305 (275) 3236 (6.00)
G2(23) 3683 (7.52) S7.81(11.19) 54.61(821) 46.84(1138) 43.26(8.86) 44.93(5.04) 33.46(33.46) 37.87(590) 63.93 (6.31)
G3(4) 4049 (5.71) 67.37(775) 5449 (420) 5827 (6.17) 48.85(10.27) 45.19(6.72) 3576 (2.95) 48.09(7.12) 70.36(6.65)
G4 (HC) 4386(636) 73.01(4.65) 552(5.55 6533 (1342) 58.11(12.42) 4133(7.90) 354(529) 48.17(626) 73.6(8.12)

Figure 1: Confusion matrices for vowels and fricatives using manual (in black) and the best-performing automatic (in red) classification

G1(0,1) G2(23) G34) G4 (HC)
/a/ i/ lo/ fa/ /a/ i/ /o/ fu/ /a/ h/ o/ Ju/ /a/ fi/ lo/ fa/
/al 20,147 00 [ 03 [ 03 20,17 00 [ 02 [ 0,1 20,19] 0,0 | 0,1 | 00 20,19 0,0 | 0,1 | 0,0
Al 70 o0 01 | 26 30 [1616] 1,1 | 03 0,0 [20,19] 00 | 0,1 0,0 [20,18] 0,0 [ 02
lo/ | 9,2 0,0 8,14 | 34 2,2 0,0 |16,14] 1,3 1,3 0,0 |17,10] 2,7 1,1 0,0 [18,12| 1,7
/a3 | 1,0 |55 [ 9,10 00 | 03 | 98 | 11,9 00 | 00 | 55 |1515 02 | 04 | 61 [1413
/sl /sh /f/ /sl /sh /f/ /s/ /sh /f/ /s/ /sh /f/
/st 165 T 28 | 1,6 17,15 ] 2,1 13 15,15 3,1 13 18,16 02 | 1.2
/sh/| 89 | 47 | 84 57 | 85 | 7.8 0,9 | 157 | 54 0,5 [13,14] 7,1
w122 | 3,6 | 4,11 32 | 13 [16,15 03 | 51 |14,15 02 | 00 [29,17
Vowel Fricative Automatic
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20 —+Decoar 2.0 2
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G1 G2 G3 G4 G1 G2 G3 G4 _
Severity Groups 25

Figure 2: Mean automatic and manual classification accuracies
(SD in error bar) for vowels and fricatives at different severity
levels evaluated on the manual test set

not significant) than manual classification, whereas for other
severity groups manual classification shows significantly better
performance than automatic. But in the case of fricatives, man-
ual classification shows the best performance at all severity lev-
els. This comparison reveals that, apart from the classification
of vowels for the severe group, manual classification performs
better than the automatic one in all other cases. However, the
gap between the performances of automatic and manual classi-
fication methods is observed to reduce with an increase in the
severity level for both vowels and fricatives. From this pattern,
we can conclude that the different speech representations con-
sidered here may fail to capture the discriminative information
for different dysarthric vowels/fricatives even when human per-
ception is still able to perceive the differences. Figure 1 further
illustrates that, for the most severe group, both in automatic and
manual classification, more confusion happens between vowels
and most utterances are misclassified as vowel /a/.

5.3. Language analysis

Language-wise performances of the automatic and manual clas-
sification at different severity levels for vowels and fricatives are
shown in Figure 3. For the automatic classification of vowels,
we consider the best case on the manual test set which is Hubert
and similarly wav2vec 2.0 for fricatives. We observe mostly
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Gl G3 G4 G1

Severity Groups

G2 G3 G4
Figure 3: Language wise accuracies of automatic and manual

classification of vowels and fricatives at different severity levels

similar trends in all languages for vowels and fricatives except
in a few cases where the performance on a higher severity group
is better than a lower one. No other notable trend is observed
in the performances. This might be because we are studying
isolated utterances of certain vowels and fricatives, all of which
are present in all the five languages under consideration. Hence,
the effect of language might be minimal.

6. Conclusion

In this work, we analyze the relative performance of manual and
automatic classification of voiced vowels and voiceless frica-
tives for dysarthric speech secondary to ALS. Classification per-
formances decline with an increase in severity. Manual classi-
fication is always better than automatic classification except for
the highest severity case of vowels and the performance gap re-
duces with an increase in severity level. Vowel classification
performances are always higher than fricatives concluding that
voiced sounds are more differentiable than voiceless sounds in
ALS. Moreover, no language-specific pattern is observed.
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