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Abstract
Analysis of speech waveform through automated meth-

ods in patients with Amyotrophic Lateral Sclerosis (ALS), and
Parkinson’s disease (PD) can be used for early diagnosis and
monitoring disease progression. Many works in the past have
used different acoustic features for the classification of patients
with ALS and PD with healthy controls (HC). In this work, we
propose a data-driven approach to learn representations from
raw speech waveform. Our model comprises of 1-D CNN layer
to extract representations from raw speech followed by BLSTM
layers for the classification tasks. We consider 3 different clas-
sification tasks (ALS vs HC), (PD vs HC), and (ALS vs PD).
We perform each classification task using four different speech
stimuli in two scenarios: i) trained and tested in a stimulus-
specific manner, ii) trained on data pooled from all stimuli, and
test on each stimulus separately. Experiments with 60 ALS,
60 PD, and 60 HC show that the frequency responses of the
learned 1-D CNN filters are low pass in nature, and the center
frequencies lie below 1kHz. The learned representations form
raw speech perform better than MFCC which is considered as
baseline. Experiments with pooled models yield a better result
compared to the task-specific models.
Index Terms: Amyotrophic Lateral Sclerosis, Parkinson’s dis-
ease, Bidirectional LSTM, Convolutional neural network

1. Introduction
Amyotrophic Lateral Sclerosis (ALS) is one of the most preva-
lent motor neuron diseases that progressively damage both up-
per (UMN), and lower motor neurons (LMN) in the brain, and
spinal cord, respectively. Symptoms appear in the muscles that
control speech (dysarthria), and swallowing (dysphagia) or in
the limbs occurring in different orders in different patients as the
disease progresses [1]. Nearly 25 to 30% of ALS patients have
dysarthria [2] as the first or predominant sign in the early stage
of the disease resulting in slow, slurred, strained, or whispered
speech. Men are affected more frequently than women with a
ratio of 3:1 [3]. The life expectancy of a person with ALS, on
average, lies in the range of 2 to 5 years from the time of di-
agnosis and about 5-10% of patients live more than 10 years
[4]. The worldwide annual incidence of ALS is 1.9/100,000
[5] whereas in India, it is 1/100,000 with a prevalence rate of
4/100,000 [3]. Revised El Escorial criteria is used for the di-
agnosis of ALS [6]. The ALS Functional Rating Scale-Revised
(ALSFRS-R) is used to monitor the progression of ALS [7].
Similar to ALS, Parkinson’s disease (PD) is also a progressive
nervous system disorder that affect voluntary movements [8]. It
is caused due to the loss of nerve cells in the part of the brain

called the substantia nigra which are responsible for producing
a chemical called dopamine that acts as a messenger between
the parts of the brain and nervous system. Reduced levels of
dopamine result in slow and abnormal movements and show
symptoms like bradykinesia, tremors in hands and arms, mus-
cle stiffness, balance problems, and dysphagia. About 90% of
the individuals with PD experience voice disorders in the early
stages, while 45% experience articulation problems, and 20%
experience fluency disorders as the disease progresses [9]. It is
estimated that about 7-10 million people are affected with PD
worldwide. Many people with PD live for 10 to 20 years after
being diagnosed.

Currently, there are no specific laboratory tests to diagnose
ALS or PD. Tests such as EMG, nerve conduction study, MRI,
muscle biopsy have been used to rule out other diseases rather
than confirming ALS. ALS and PD are difficult to diagnose. It
is also difficult to distinguish the two in the early stages due to
some common symptoms. Diagnosis of both ALS and PD is
based on clinical observation of about 14 months [10]. By that
time, the disease condition may reach its final stages and the sur-
vival rate may fall drastically. Presently, there is no treatment
to cure both ALS and PD but treatment with the early diagnosis
can prevent complications, and slower the progression. Experi-
enced physicians have to diagnose ALS and PD which becomes
impossible as the patient population increases. Hence, there is a
need for automated methods for early prediction, differentiation
of the diseases and monitoring the progression of the diseases
which reduces the risk of false or late diagnosis and also avoids
clinicians’ subjectivity in the diagnosis of the diseases.

The speech production in an individual involves multiple
nerves which control the movement of the lips, jaw, tongue,
facial muscles, and vocal cords. ALS causes a reduction in
the stimulation of these muscles resulting in a slow, effortful,
slurred speech, and breathy or hoarse voice. With the reduced
levels of dopamine, PD makes patients experience freezing of
the jaw, tongue, and lips, repetition of the same words or phrases
over and over again and slurred speech. As speech is affected in
both the cases, it is often used as a biomarker for automated
methods. It is observed that there is reduction in the vowel
space area in bulbar ALS patients compared to Healthy control
(HC) [11]. The rate of articulatory movement of ALS patients
is found to be lower than those with HC [12]. There have been
works on speech for automatic classification of ALS and HC
with syllable rate and maximum phonation duration based on
fractal analysis using diadochokinetic (DIDK) rates as speech
stimuli in ALS patients [13]. Bandini et al. [14, 15] used both
speech and non-speech tasks from a video based analysis of fa-
cial movements and kinematic features of the jaw, and lips for
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automatic detection of ALS patients. Aravind et al. [12] used
acoustic and articulatory features for classification of ALS pa-
tients with HC using support vector machines (SVM) and deep
neural networks (DNN). Suhas B N et al. [16] studied the per-
formance of three different speech stimuli namely, spontaneous
speech, diadochokinetic rate, and sustained phoneme produc-
tion in the classification of ALS vs HC using SVM and DNN.

In all the above mentioned approaches (SVM and DNN),
they have used hand crafted features like MFCCs, which are
computed at a frame level and further statistics are computed
from them at a supra-segmental level. MFCCs are cepstral co-
efficients derived based on human auditory perception, which
performs well in speech recognition, speaker verification and
several other speech related problems. However, these hand-
crafted features may not be optimal for classifying patients and
healthy controls. Recent advancements in machine learning
techniques enable learning task-specific features from the raw
waveform using an end-to-end network [17, 18]. We hypoth-
esize that such representation learning discriminates speech of
ALS and PD from those of the healthy subjects in a better way
compared to handcrafted features. In this work, we consider
four speech stimuli, namely, image description (IMAG), spon-
taneous speech (SPON), diadochokinetic rate (DIDK), and sus-
tained phoneme production (PHON). Following the works in
[19, 20], we deploy a 1-D convolutional neural network (CNN)
layer to learn representations from raw waveform. It is known
that, LSTM networks are well-suited to capture the temporal
dynamics on time series data. So, in this work, following 1-
D CNN layer, we use a bidirectional long short term memory
(BLSTM) network.

2. Data collection
Data was collected from the patients recruited at the National
Institute of Mental Health and Neurosciences (NIMHANS),
Bengaluru, India following the approval of the NIMHANS
ethics committee. The data was collected once the patients
were diagnosed to have ALS (using El Escorial criteria) or PD
by neurologists at NIMHANS. Severity ratings for ALS and
PD are given by 5 speech-language pathologists (SLP) from
the Speech Pathology and Audiology Department, NIMHANS
as per ALSFRS-R (0:Loss of useful speech to 4:Normal) [7],
UPDRS-III (0:Normal to 4:Unintelligible speech) [21] for ALS
and PD patients, respectively. Here ALSFRS(4), and UPDRS-
III(0) indicate that there is no human intelligible loss of function
in speech but patients with these scores have other symptoms
of the diseases. Due to the lack of PD subjects with severities
above UPDRS-III of 2, we considered a UPDRS-III range of
0-2. We considered the majority of severity scores by five SLPs
as the final score.

For the experiments in this study, we used 60 ALS, 60 PD,
and 60 HC subjects’ speech data. For ALS, the mean age of 30
men is 58.60 (range of 33-76) and that of 30 women is 56 (range
of 38-75). For the case of the PD, the mean age of 34 men is
58.22 (range of 34-78) and that of the 26 women is 56.99 (range
of 36-74). For HC, the mean age of 30 men is 44.21 (range of
26-48) and that of 30 women is 46.93 (range of 31-65). The re-
cruited subjects in this work come from six different native lan-
guages, namely, Bengali, Kannada, Tamil, Hindi, Telugu, and
Odiya in an approximately equal proportion. None of the sub-
jects in the HC group had any history of symptoms related to
ALS or PD. More details of the dataset used in this study can
be found in [22]. Zoom H-6 recorder with XYH-6 X/Y capsule
high-quality unidirectional microphone [23] was used to record
the speech data from a distance of 2 feet from the subject at a

sampling rate of 44.1 kHz.
As mentioned earlier, we considered 4 different speech

stimuli, namely IMAG, PHON, DIDK, and SPON. In IMAG,
the subjects were asked to describe images (ranging from 30
to 70 depending on the subjects’ comfort level) shown to them
on a computer screen in front of them. Subjects described in
their own native language. In PHON, sustained phonemes are
produced corresponding to 5 vowels (/a/, /i/, /o/, /u/, /æ/ ) and
3 fricatives (/s/, /sh/, /f/ ). DIDK consists of recordings of a se-
quence of monosyllabic targets (“pa-pa-pa”, “ta-ta-ta”, “ka-
ka-ka”) and their combinations (“pataka” and “badaga”). In
SPON, the subjects were asked to spontaneously talk about two
events (“a place that they have recently visited”, “a festival
they celebrate”), each for one minute in their native language.
In PHON and DIDK, each phoneme (or fricative or syllable se-
quence) was repeated thrice in succession. For the SPON task,
preparation time was given to the subject before recording un-
til they were ready to speak. The choice and the significance
of all the above speech stimuli are explained in [16, 22]. The
total duration of the recordings from all the subjects for IMAG,
PHON, DIDK, and SPON is 12.83, 5.79, 4.65, and 5.62 hours,
respectively.

3. Proposed Approach
Fig. 1 and Fig. 2 illustrate the 1D-CNN based representation
learning and BLSTM based classification tasks (ALS vs HC,
PD vs HC, and ALS vs PD), respectively.
Learning representations from the raw speech waveform:
Given a speech utterance, we slice it into overlapping frames
of length fl and shift fs and remove the silence frames using
voice activity detection (VAD) [24]. As VAD provides variable
length speech segments, we further chunk them using a window
length of cl and shift cs. The resulted chunks are given as input
to 1-D CNN layer which has nm number of filters with a filter
length of lm. The nm number of filters and the corresponding
bias vector are denoted as F={Fk}nm

k=1 (where, Fk ∈ R1×lm ),
and b∈ Rnm , respectively. The output of each filter in the CNN
layer for a speech chunk sn ∈ R1×fl with index n, is computed
by

On = σ(log(|F ∗ sn + b|)) (1)

where, On ∈ R(fl−lm+1)×nm , σ denotes non-linear activa-
tion function and * indicates the convolution operation. With
reference to the work in [25], log operation is applied on the
absolute value of CNN filter before performing non linear acti-
vation. Max-pooling of size (fl − lm+1) is applied over time to
reduce the output size of the CNN layer On which could help
in discarding the short term phase information and results in
1×nm dimensional output on. As shown in Fig. 1, for a given
speech chunk, the representations are learned using a 1-D CNN
and max-pooling layers with a batch normalization layer in be-
tween.
Classification using BLSTM network:
In this work, we propose a cascaded 1-D CNN and BLSTM net-
work for the classification of patients with ALS, PD, and HC
using raw speech waveform as shown in Fig. 2. The BLSTM
network comprises of 3 BLSTM layers with tanh as activation
function. The output of the BLSTM network is fed to a dense
layer and the softmax layer generates a 2 dimensional output
with probabilities using the dense layer output. Binary cross-
entropy loss function is used to optimize the weights of the
BLSTM network. Fig. 2 illustrates the block diagram of the
proposed approach. For the given speech waveform, the repre-
sentations are learned using 1-D CNN and given as input to the
BLSTM layers which are used to capture the temporal dynam-
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Figure 1: Illustration of the proposed approach of learning
representations from the raw waveform.

ics of the sequence. The last hidden state output of the BLSTM
layer is given to the dense layer. Finally, we use softmax as
an activation function at the output of the dense layer to clas-
sify patients of ALS or PD or HC. The classification tasks us-
ing BLSTM are performed at chunk level. Decisions from all
the speech chunks are combined to perform majority voting and
obtain a decision on the entire speech utterance.

4. Experimental setup
For experiments with raw speech waveform, we first downsam-
ple the data from 44.1kHz to 8kHz. The 1-D time-series data
is then framed with fl=20ms (160 samples) and fs=10ms (80
samples). Following VAD, we chunk speech segment with du-
ration cl=2sec (200 frames), and shift cs=1 sec (100 frames).
We perform experiments with a 5-fold cross-validation setup,
each fold comprising 12 subjects from each of the three classes,
namely ALS, PD, and HC. Among these five folds, three folds
are used for training, one for development, and one for the test.
In all the five folds, the data is equally distributed in terms of
age, gender, severity, and language. The optimal number of
CNN filters nm is experimentally determined in each fold sep-
arately by maximizing the performance on the validation set.
For this purpose, we experimented with different choices of the
number of CNN filters nm=256, 128, and 64, with filter length
lm= 120. For BLSTM network, we choose three BLSTM layers
each with 150 units, and tanh as activation function.

To compare the performance of the proposed approach, we
perform classification using MFCCs with the proposed BLSTM
network as a baseline. Similar to the proposed approach using
learned representations, for MFCCs also, we perform chunk
level (2 sec) classification and obtain utterance level decision
using majority voting. We use classification accuracy and p
value from sign-rank test [26] as evaluation metrics. The sign-
rank test is performed using the five folds’ classification accura-
cies of the baseline and the proposed approach where each test
fold is again split into three sub folds since a minimum of five
variables are required for this sign-rank test.

5. Results and Discussion
We present the results for three different classification tasks
(ALS/HC, PD/HC, ALS/PD) each with four different speech
stimuli (IMAG, DIDK, PHON, and SPON) in terms of aver-
age classification accuracy along with standard deviation (SD).
In each classification task, we present the results for all speech
stimuli in two scenarios: (i) stimuli-specific model, (ii) pooled
model. In the first scenario, we train the classifier in a stimulus-
specific manner (e.g., ALS/HC, for IMAG, train with IMAG
data and test on IMAG data) whereas in the second scenario,
we train a classifier with data of all the speech stimuli (pooled
model) and test on each stimulus separately. We also present an
analysis of the use of pre-emphasis (PE) [27, 20] in the proposed
approach and compare it with baseline. Table 1 consists of three
major columns where each column presents the results of differ-
ent classification tasks (column1- ALS/HC, column2- PD/HC,
column3- ALS/PD). As mentioned above, the results in each
column divide into two scenarios, namely stimulus-specific and
pooled.

Figure 2: Illustration of proposed classifier with raw waveform
using BLSTM.
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Figure 3: Magnitude response of 256 filters for ALS/PD,
PD/HC, and ALS/HC without using pre-emphasis.

Classification between ALS and HC (ALS/HC): In the case
of ALS/HC (first column in Table 1), we observe that, the pro-
posed approach using the task-specific model shows significant
improvement in all speech stimuli compared to using MFCCs.
Though MFCCs with the pooled model perform better than
MFCCs with the stimulus-specific model, the proposed method
with the pooled model performs even better in all cases except
for SPON. The proposed approach provides relative improve-
ments of 7.88%, 4.67%, 3.11%, and 1.76% in IMAG, PHON,
DIDK, and SPON stimuli, respectively compared to the base-
line (MFCCs with stimulus specific model).

Classification between PD and HC (PD/HC): In PD/HC
(second column in Table 1), compared to the baseline (MFCCs),
the proposed approach using a stimulus-specific model show
significant improvement in all speech stimuli using both
stimulus-specific and pooled model. Interestingly, in PHON,
the proposed approach with the pooled model significantly im-
proves about 8.61% and 16.79% compare to the proposed ap-
proach with the stimulus-specific model and baseline, respec-
tively. The proposed approach provides relative improvements
of 12.37%, 16.79%, 11.19%, and 8.13% in IMAG, PHON,
DIDK, and SPON stimuli, respectively compared to the base-
line (MFCCs with stimulus specific model).

Classification between ALS and PD (ALS/PD): In ALS/PD
classification (third column in Table 1), compared to baseline
(MFCCs), the proposed approach using the stimulus-specific
model shows significant improvement in all speech stimuli ex-
cept in PHON. Though there is no improvement in PHON, it
improves in SPON by 14.37% and 16.85% using the stimulus-
specific model and pooled model, respectively. Overall there
is an improvement of 6.40%, 0.03%, 2.95%, and 16.85% in
IMAG, PHON, DIDK, and SPON, respectively, by using the
proposed representation learning over the baseline. The rea-
son behind the minute improvements in ALS/PD compared to
ALS/HC, and PD/HC could be because of some similarities
between the speech during the progression of these two dis-
eases. Those similarities pose a challenge to the classifier to
learn disease-specific characteristics from speech.

In Table 1 the values in blue color represent the cases where
p <0.05 from the statistical test indicating significant improve-
ment over baseline MFCC features. From the classification
accuracies of the pooled models, it is shown that the classi-
fier is learning the features of ALS and PD unlike learning the
stimulus-specific features. We also observe that in most cases
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Classifiers ALS/HC PD/HC ALS/PD
Speech stimuli IMAG PHON DIDK SPON IMAG PHON DIDK SPON IMAG PHON DIDK SPON

Stimulus-specific model Stimulus-specific model Stimulus-specific model

MFCC 90.14
(4.85)

87.67
(1.10)

93.63
(3.35)

96.51
(3.37)

84.91
(2.13)

65.39
(2.92)

81.89
(5.32)

90.14
(2.92)

71.88
(3.08)

72.72
(2.91)

79.73
(3.90)

68.25
(10.06)

Raw- PE(0.97) 96.98
(1.72)

87.81
(2.69)

94.86
(1.65)

98.27
(1.84)

96.11
(1.57)

59.45
(7.01)

90.26
(3.30)

96.20
(2.67)

74.73
(5.90)

72.75
(4.61)

81.22
(4.96)

82.62
(9.85)

Raw- No PE 97.31
(1.75)

89.47
(3.82)

96.39
(1.94)

96.16
(2.80)

95.01
(2.17)

73.57
(5.05)

89.51
(2.20)

95.71
(4.10)

76.87
(8.20)

72.67
(5.76)

76.43
(2.75)

78.00
(7.84)

Pooled model Pooled model Pooled model

MFCC 93.08
(1.2)

85.56
(5.0)

95.88
(2.2)

98.69
(1.9)

91.51
(2.06)

70.25
(8.93)

89.87
(3.48)

95.34
(2.73)

74.56
(4.83)

66.54
(3.81)

78.71
(2.08)

73.47
(10.09)

Raw- PE(0.97) 97.97
(1.68)

90.98
(1.91)

96.74
(2.31)

98.27
(2.36)

96.95
(2.92)

78.61
(6.46)

92.59
(2.63)

98.27
(3.78)

75.08
(4.85)

72.40
(6.36)

82.68
(6.09)

85.10
(8.61)

Raw- No PE 98.02
(1.75)

92.34
(1.43)

96.73
(2.45)

97.86
(2.38)

97.28
(2.01)

82.18
(9.86)

93.08
(4.92)

97.41
(3.88)

78.28
(7.32)

69.33
(4.67)

82.09
(3.16)

82.36
(7.84)

Table 1: Average classification accuracy (SD in brackets) of the proposed approach and baseline (MFCC) for three classification
tasks, with four different speech stimuli. Blue entries indicate the cases where the proposed approach performs significantly

(p < 0.05) better than MFCC.
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Figure 4: Illustration of /pa/ sequence spoken by ALS and PD patients using (a) speech waveform, (b) 1-D CNN output without PE, (c)
1-D CNN output with PE, and (d) spectrogram

the results without PE are performing better than using PE on
the raw waveform. The six pooled CNN-BLSTM results ( 3
classifications tasks with and without PE) reported in Table 1
are obtained from different choices of nm=64, 128, and 256,
out of which 37.5%, 33.3%, and 29.16% of models perform the
best with 64, 128, and 256 filters, respectively. We plot the
magnitude response of 256 learned filters without PE to under-
stand the frequency of the 1-D CNN filters in the representation
learning. In Fig. 3 the center frequencies of the filters and the
corresponding filter indices are indicated in x-axis, and y-axis,
respectively. The filter indices are sorted according to the center
frequencies and the colour intensity variation indicates the mag-
nitude response of the filters. From Fig. 3, it is observed that
the frequency responses are low pass in nature and are centered
at a frequency below 800Hz, 500Hz, and 400Hz for ALS/PD,
PD/HC, and ALS/HC, respectively. In Fig. 4, we plot the out-
put of the 1-D CNN layer with PE, without PE, and spectrogram
for a sample of DIDK sequence, for both ALS and PD patients
saying repetitions of phoneme sequence /pa/. From Fig. 4, it
is observed that the CNN filters of 1-D CNN layer are learning
to identify vowel pattern /a/ and similar observations are found
in other speech tasks too. This could allow the classifier to ex-
tract features related to speech rate cues by enhancing vowels
in low-frequency regions. It is known that speech rate tends to

decline in dysarthric speech compared to HC. Hence, the rep-
resentations learned by 1-D CNN from raw waveform help to
achieve better classification accuracies compared to the base-
line (MFCC).

6. Conclusion
In this work, we propose a cascaded architecture comprising
1-D CNN layer and BLSTM layers for the classification of pa-
tients with ALS, PD, and HC using raw speech waveform. From
the analysis of the learned CNN filter response, it is revealed
that the filters are low pass in nature and the center frequencies
lie below 800Hz, 500Hz, and 400Hz for ALS/PD, PD/HC, and
ALS/HC, respectively. Experiments with stimulus-specific and
pooled models revealed that the pooled model performs better
than stimulus-specific ones. A comparison of the proposed ap-
proach with baseline acoustic features (MFCC) revealed that the
proposed approach significantly performs better than baseline.
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[9] G. Moya-Galé and E. S. Levy, “Parkinson’s disease-associated
dysarthria: prevalence, impact and management strategies,” Re-
search and Reviews in Parkinsonism, vol. 9, pp. 9–16, 2019.

[10] B. R. Brooks, R. G. Miller, M. Swash, and T. L. Munsat, “El Es-
corial revisited: revised criteria for the diagnosis of amyotrophic
lateral sclerosis,” Amyotrophic lateral sclerosis and other motor
neuron disorders, vol. 1, no. 5, pp. 293–299, 2000.

[11] B. Yamini, N. Shivashankar, and A. Nalini, “Vowel space area in
patients with Amyotrophic Lateral Sclerosis,” Amyotrophic Lat-
eral Sclerosis, vol. 9, no. 1, pp. 118–119, 2008.

[12] A. Illa, D. Patel, B. Yamini, N. Shivashankar, P. K. Veeramani,
K. Polavarapui, S. Nashi, A. Nalini, P. K. Ghosh et al., “Compar-
ison of speech tasks for automatic classification of patients with
amyotrophic lateral sclerosis and healthy subjects,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 6014–6018.

[13] A. S. Mefferd, G. L. Pattee, and J. R. Green, “Speaking rate effects
on articulatory pattern consistency in talkers with mild ALS,”
Clinical linguistics & phonetics, vol. 28, no. 11, pp. 799–811,
2014.

[14] A. Bandini, J. R. Green, B. Taati, S. Orlandi, L. Zinman, and
Y. Yunusova, “Automatic detection of amyotrophic lateral sclero-
sis (ALS) from video-based analysis of facial movements: speech
and non-speech tasks,” in IEEE International Conference on Au-
tomatic Face & Gesture Recognition (FG 2018), 2018, pp. 150–
157.

[15] A. Bandini, J. R. Green, L. Zinman, and Y. Yunusova, “Clas-
sification of Bulbar ALS from Kinematic features of the Jaw
and Lips: Towards computer-mediated assessment,” in INTER-
SPEECH, 2017, pp. 1819–1823.

[16] B. Suhas, D. Patel, N. Rao, Y. Belur, P. Reddy, N. Atchayaram,
R. Yadav, D. Gope, and P. K. Ghosh, “Comparison of speech tasks
and recording devices for voice based automatic classification of
healthy subjects and patients with amyotrophic lateral sclerosis,”
Proc. Interspeech 2019, pp. 4564–4568.

[17] D. Palaz, R. Collobert, and M. M. Doss, “Estimating phoneme
class conditional probabilities from raw speech signal using con-
volutional neural networks,” arXiv preprint arXiv:1304.1018,
2013.

[18] H. Muckenhirn, M. M. Doss, and S. Marcell, “Towards directly
modeling raw speech signal for speaker verification using CNNs,”
in IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2018, pp. 4884–4888.

[19] H. Dinkel, N. Chen, Y. Qian, and K. Yu, “End-to-end spoof-
ing detection with raw waveform CLDNNS,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, pp. 4860–4864.

[20] A. Illa and P. K. Ghosh, “Representation learning using convo-
lution neural network for acoustic-to-articulatory inversion,” in
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 5931–5935.

[21] D. J. Gelb, E. Oliver, and S. Gilman, “Diagnostic criteria for
Parkinson’s disease,” Archives of neurology, vol. 56, no. 1, pp.
33–39, 1999.

[22] J. Mallela, A. Illa, B. Suhas, S. Udupa, Y. Belur, N. Atchayaram,
R. Yadav, P. Reddy, D. Gope, and P. K. Ghosh, “Voice based clas-
sification of patients with Amyotrophic Lateral Sclerosis, Parkin-
son’s Disease and healthy controls with CNN-LSTM using trans-
fer learning,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 6784–6788.

[23] “Zoom high-quality unidirectional microphone, available on-
line: https://www.zoom-na.com/, last accessed:10/15/2019.” [On-
line]. Available: https://www.zoom-na.com/products/product-
accessories/zoom-xyh-6-xy-stereo-microphone-capsule

[24] V. Panayotov, M. Maciejewski, and D. Povey, “Voice ac-
tivity detection.” [Online]. Available: https://github.com/kaldi-
asr/kaldi/blob/master/src/ivector/voice-activity-detection.h

[25] P. Ghahremani, V. Manohar, D. Povey, and S. Khudanpur, “Acous-
tic modelling from the signal domain using CNNs.” in Inter-
speech, 2016, pp. 3434–3438.

[26] D. Rey and M. Neuhäuser, Wilcoxon-Signed-Rank Test. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1658–1659.
[Online]. Available: https://doi.org/10.1007/978-3-642-04898-
2 616

[27] N. Zeghidour, N. Usunier, G. Synnaeve, R. Collobert, and
E. Dupoux, “End-to-end speech recognition from the raw wave-
form,” arXiv preprint arXiv:1806.07098, 2018.

8. References 

5


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Links to Other Manuscripts by the Authors
	------------------------------
	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
	------------------------------

