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ABSTRACT

In this paper, we consider 2-class and 3-class classification problems
for classifying patients with Amyotrophic Lateral Sclerosis (ALS),
Parkinson’s Disease (PD), and Healthy Controls (HC) using a CNN-
LSTM network. Classification performance is examined for three
different tasks, namely, Spontaneous speech (SPON), Diadochoki-
netic rate (DIDK) and Sustained phoneme production (PHON).
Experiments are conducted using speech data recorded from 60
ALS, 60 PD, and 60 HC subjects. Classifications using SVM and
DNN are considered as baseline schemes. Classification accuracy
of ALS and HC (indicated by ALS/HC) using CNN-LSTM has
shown an improvement of 10.40%, 4.22% and 0.08% for PHON,
SPON and DIDK tasks, respectively over the best of the baseline
schemes. Furthermore, the CNN-LSTM network achieves the high-
est PD/HC classification accuracy of 88.5% for the SPON task and
the highest 3-class (ALS/PD/HC) classification accuracy of 85.24%
for the DIDK task. Experiments using transfer learning at low
resource training data show that data from ALS benefits PD/HC
classification and vice-versa. Experiments with fine-tuning weights
of 3-class (ALS/PD/HC) classifier for 2-class classification (PD/HC
or ALS/HC) gives an absolute improvement of 2% classification
accuracy in SPON task when compared with randomly initialized
2-class classifier.

Index Terms— Amyotrophic Lateral Sclerosis, Parkinson’s
Disease, CNN-LSTM

1. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s Disease (PD)
are some of the most prevalent neuro-degenerative movement dis-
orders. Early detection can help to prolong survival and quality of
life. ALS, a progressive motor neuron disease, affects nerve cells
in the brain and spinal cord, causing loss of muscle control. Life
expectancy of a person with ALS averages from 2 to 5 years from
the time of diagnosis. About 5-10% of all ALS patients live to sur-
vive beyond 10 years [1]. The annual worldwide incidence is about
1.9/100,000 [2] while in India, the prevalence of ALS is 4/100,000
with an annual incidence of 1/100,000 and a male to female ratio
of 5:7 [2]. Diagnosis of ALS is based on the revised El Escorial
criteria [3], with a median diagnosis time of 14 months [4]. ALS
Functional Rating Scale-Revised (ALSFRS-R) is used for monitor-
ing the progress of the disease [5]. Symptoms of ALS include pro-
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gressive muscle atrophy and weakness, leading to problems that in-
clude dysphagia, dyspnoea, orthopnea and dysarthria [1]. About
30% of all ALS patients experience dysarthria as the first symp-
tom [6]. Dysarthria is a frequently occurring symptom as the disease
progresses [7]. There is currently no single definitive test that can be
used to accurately diagnose ALS [5]. Despite all the benefits of the
ALSFRS-R, it remains a subjective score where the judgements may
be inconsistent [8].

PD, on the other hand, is a brain disorder that occurs when the
dopamine generating neurons (neurotransmitters) in the brain are
damaged or die. Subjects begin to experience difficulty in speaking,
writing, walking, or completing other simple tasks. Patients suffer-
ing from PD have an average survival expectancy of 5 to 10 years.
For individuals between the ages of 30 and 39, the incidence of
the disease is about 41/100,000 while it goes beyond 1,900/100,000
among those who are 80 and older. It is observed that men are 1.5
times more likely to have PD when compared to women. About
40% to 95% of PD patients experience dysphagia. Different struc-
tures of the articulatory subsystem (e.g., the lips, tongue, and jaw)
are affected at different times during the progression of the disease.
Presumably, this non-uniform rate of deterioration leads to compen-
satory interactions between the articulators (e.g., tongue and jaw).
Early movement studies revealed evidence supporting this notion
and showed a decrease in the size of tongue movements but exagger-
ated jaw movements during speech tasks [9]. Similar to ALS, there
are currently no blood or laboratory tests to diagnose non-genetic
cases of PD. Diagnosis is based on medical history and a neurologi-
cal examination.

Early detection of ALS and PD through automated methods can
avoid clinicians’ subjectivity in the diagnosis. It could also reduce
diagnosis time. The speech impairment due to ALS is caused by
muscle disorder while in PD, it is due to reduced levels of dopamine
which, in turn, affect speech articulators. There have been attempts
to use Electromyography (EMG) to assess neuromuscular disorder
[10] and perform automatic classification using features extracted
from EMG signal [11]. The rate of articulatory movement of ALS
patients have been studied [12–14] and are found to be lower than
those with healthy control (HC). Gomez et al. [15] have used run-
ning speech segments to infer articulation kinematics to detect early
symptoms and monitor the evolution of the disease. Yamini et al.
[16] observed a reduction in the vowel space area in case of bulbar
ALS patients compared to that of HCs. Using syllable rate and maxi-
mum phonation duration, Taylor et al. [17] attempted automatic clas-
sification of ALS patients based on fractal analysis and using diado-
chokinetic (DIDK) rates as speech tasks. Suhas B N et al. [18] stud-
ied the performance of three different speech tasks namely, Sponta-
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neous speech (SPON), Diadochokinetic rate (DIDK), and Sustained
phoneme production (PHON) in automatic classification of ALS/HC
using SVM and DNN.

Data collection from ALS and PD patients is often tedious mak-
ing a large corpus development a challenging task. In order to han-
dle such a low resource condition in the classification task, in this
work Transfer Learning (TL) approach is explored. Even though
the speech characteristics in PD and ALS could be different from
speech of a HC, there could be similarities in the way speech disor-
der manifests in these two diseases. Such similarities could be ex-
ploited in the classification of ALS/HC and PD/HC separately when
a large amount of data is not available. For this purpose, we fol-
low a TL approach for classification tasks of ALS/HC and PD/HC.
To the best of our knowledge this is the first work that utilizes the
ALS (PD) data for classifying PD (ALS) using transfer learning ap-
proach. Further in this work, we propose a CNN-LSTM based clas-
sifier for 2-class classification between ALS and HC (ALS/HC), PD
and HC (PD/HC) and a 3-class classification between ALS, PD, and
HC (ALS/PD/HC). Experiments with CNN-LSTM, in comparison to
the baseline SVM and DNN classifiers, show an improvement in the
classification accuracy. Under low resource training data, initializ-
ing the CNN-LSTM classifier from other classification tasks shows
an improvement compared to randomly initialized weights, which
could imply that the data from PD could help in ALS/HC classi-
fication and vice-versa. Also, experiments with the 3-class clas-
sifier (ALS/PD/HC) reveal that further fine-tuning of the weights
with only ALS (or PD) data improves the 2-class classification of
ALS/HC (or PD/HC).The rest of the paper is organised as follows.
We will begin with the description of the data collection process in
Section 2, followed by the proposed approach in Section 3. In Sec-
tion 4, we present the experiments and results.

2. DATA COLLECTION

In this work, the speech data was collected from 60 ALS, 60 PD
and 60 HC subjects at the National Institute of Mental Health and
Neurosciences (NIMHANS), Bengaluru, India. Ethics committee
of NIMHANS approved for data collection and consent forms have
been signed by the patients prior to data collection. The data used
in this study was collected from patients, diagnosed to have ALS (
El Escorial criteria) or PD by Neurologists at NIMHANS. Details of
the severity, age, and gender of subjects used in this study are pro-
vided in Table 1 and 2. Severity ratings for patients as per ALSFRS-
R (5-point scale, 0:Loss of useful speech to 4:Normal), UPDRS-III
(5-point scale, 0:Normal to 4:Unintelligible speech) severity scales
have been confirmed and rated by the five speech language patholo-
gists (SLP) from the Speech Pathology and Audiology Department,
NIMHANS. Although the UPDRS-III severity ratings are based on
a 5-point scale (0 to 4), we consider scores from (0 to 2) due to lack
of PD data for severities over UPDRS-III (2).

The subjects in this work come from six different native lan-
guages, namely, Bengali, Hindi, Odiya, Tamil, Telugu, Kannada in
an approximately equal proportion.

The speech data used in this study was recorded by using Zoom
H-6 recorder with XYH-6 X/Y capsule high quality unidirectional
microphone [19] from a distance of 2 feet from the subject at 44.1
kHz. The data was then downsampled to 16 kHz for classification
experiments. We use three tasks in this work: 1) Spontaneous speech
task, 2) Diadochokinetic task and 3) Sustained Phoneme task.

Spontaneous speech task (SPON): Two parts are considered,
where in the first part, the subject was asked to spontaneously talk
about “a festival they celebrate” and in the second part, they had

ALS Subjects ALSFRS - R Severity Score
0 1 2 3 4

Male 5 8 5 8 4
Female 5 8 5 8 4

Mean age 57.30 55.36 56.10 53.90 55.11
Std. Dev 7.18 10.86 11.16 9.74 7.22

Table 1: ALSFRS-R Severity, gender and age details of ALS
patients

to describe “a place that they have recently visited” for one minute
each in their native language. A few minutes of preparation time
was given to the subjects before they started. The total duration of
recordings from all subjects for this task is 5.62 hours. Even, SPON
is an informal assessment measure, as it has a good representation of
the natural speech of a subject, thus making it a useful task for as-
sessing a subject’s articulation [20]. It is a task where we can eval-
uate integrated functioning of all components in speech production
(respiration, phonation, articulation, resonance, and prosody) [20].

Diadochokinetic rate task (DIDK): In DIDK, there are two
parts: (i) Alternating Motion Rates (AMRs), (ii) Sequential Motion
Rates (SMRs). For AMRs, subjects were asked to repeat, without
interruption, the sequence of monosyllabic targets “pa-pa-pa”, “ta-
ta-ta”, “ka-ka-ka” as fast as possible and without losing articulatory
precision. It determines the speed and regularity of reciprocal jaw,
lip, and tongue movements and also represents the articulatory accu-
racy and the respiratory and phonatory support. For SMRs, subjects
were asked to repeat “pataka” and “badaga” for a duration of up to
5 seconds that measure the ability of articulators to move quickly and
in a proper sequence from one articulatory position to another [21].
The total duration of recordings from all subjects for this task is 4.65
hours for all subjects.

Sustained phoneme production task (PHON): In this, there
are two parts: (i) Vowel Prolongation (VP), (ii) Fricative Prolon-
gation (FP). In VP part, subjects were asked to produce sustained
phonemes corresponding to five vowels, namely, /a/, /i/, /o/, /u/, /æ/.
In the FP part, subjects were asked to produce sustained phonemes
corresponding to three fricatives, namely, /s/, /sh/, and /f/. The sub-
jects were asked to do this at a comfortable pitch and loudness level,
after taking a deep breath. For each vowel and fricative, the process
is repeated three times. The total duration of recordings from all
subjects for this task is 5.79 hours. It is a task which isolates the
respiratory-phonatory system for speech [21] and depends on the
respiratory function that reflects information on respiratory abilities,
voice quality and phonatory support. The fricative prolongation re-
quires respiratory-articulatory competence which could be affected
by ALS and PD.

Based on the speech recordings of ALS, PD and HC subjects, it
is observed that in the DIDK task, the HC is able to utter multiple
“pa” in a second while a patient with an ALSFR-S score of 0 (ALS)
and patient with UPDRS-III score of 2 (PD) are able to repeat “pa”
only one time and four times, respectively. In SPON task it is ob-
served that pauses occur more frequently in HC whereas in ALS and
PD patients there are no pauses over one second duration.

3. PROPOSED APPROACH
In this section, we first briefly review convolutional and recurrent
neural networks and then describe the proposed CNN-LSTM and
transfer learning approach.

Convolutional neural networks (CNN): Recently, convolutional
neural networks have shown great success in the field of computer
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PD & HC
Subjects

UPDRS - III
Severity Score Healthy Control

0 1 2 5
Male 10 15 9 30

Female 6 12 8 30
Mean age 57.31 56.06 60.04 45.57
Std. Dev 10.61 10.08 8.59 8.68

Table 2: UPDRS-III Severity, gender and age details of PD patients
and Healthy Controls

vision [22] and gained attention in speech processing to extract
local features. We deploy the convolutional network to perform
temporal convolution to extract features from the acoustic features.
Let us consider, a CNN layer (m) with number of convolution
filters Nm with filter length lm and denote the collection of fil-
ters by Km=

{
Km

j

}Nm

j=1
, for Km

j ∈ RNm−1×lm with a bias vector

bm ∈ RNm . Then given an input signal (from the output of pre-
vious convolution layer (m − 1)) Sm−1 ∈ RNm−1×Tm−1 , (Tm

is mth layer CNN output sequence length) we compute output
Sm ∈ RNm×(Tm−1−lm+1)by

Sm = σ(Km? Sm−1 + bm) (1)

where, ? denotes 1-D convolution operator along time axis (t) and σ
denotes non-linear activation function.

Long short-term memory networks (LSTM): For modelling se-
quential information, recurrent neural networks, especially long
short-term memory (LSTM) networks, have been shown to perform
well [23]. Let xt be a D-dimensional input at time t, and C be the
number of memory cells in an LSTM layer with output yt ∈ RC .
There will be weight vectors for each LSTM layer of type: input
weights W∗ ∈ RC×D , recurrent weights R∗ ∈ RC×C and bias
weights b∗ ∈ RC , (where ∗ indicates: input gate i, forget gate f ,
cell memory c, output gate o) . The output of each gate for LSTM
layer is obtained as follows [23, 24]:

it = σ(Wixt + Riyt−1 + bi) input gate

ft = σ(Wfxt + Rfyt−1 + bf ) forget gate

ct = ct−1 � ft + it � tanh(Wcxt + Rcyt−1 + bc)

cell memory
ot = σ(Woxt + Royt−1 + bo) output gate

(2)

where, σ is an element-wise non-linear activation function, � de-
notes point-wise multiplication of two vectors. The block output of
forward pass for LSTM layer is computed by yt = tanhct � ot.

CNN-LSTM for speech disorder classification: The character-
istics of speech disorder are known to encode as para-linguistic
information, which span over a long duration of time and are known
as supra-segmental features. These are computed over a speech
segment by computing statistics on the frame level acoustic fea-
tures like Mel Frequency Cepstral Coefficients (MFCCs). These
supra-segmental features are further utilized as input features for
SVM/DNNs to perform classification tasks [18]. In this work,
instead of computing the statistical features like mean, median,
and standard deviation on frame level features, we derive supra-
segmental features on a speech segment in a data driven manner.
We propose a CNN-LSTM architecture for classifying ALS, PD
and HC with different speech tasks. Fig. 1 illustrates the current
approach to classification task. First we use 1D-CNN to extract
the local temporal structure by performing temporal convolutions
followed by a max-pooling layer. Upon the extracted local features

Fig. 1: Illustration of proposed classifier using CNN-LSTM.

computed by CNN, LSTM layers are used to capture the temporal
dynamics of the sequence. The last hidden state output of LSTM
layer is given to dense layer. Finally at the output of dense layer,
we use softmax activation layer to classify HC with patient of ALS
or PD. The classification tasks using CNN-LSTM are performed
at segment level (each speech utterance is split into segments with
overlapping frames). Decisions from all speech segments are com-
bined to perform majority voting and obtain a decision on the speech
utterance.

Transfer learning across ALS/HC, PD/HC and ALS/PD/HC:
Transfer learning is a machine learning approach where weights
of a neural network model trained for a particular task are utilized
as the initialization of weights for a model with a different task.
These approaches have been shown to benefit classifications, espe-
cially in the unavailability of large amounts of training data. In this
work, we deploy a transfer learning approach for the classification
of ALS/HC, PD/HC. We perform two different training techniques
in transfer learning i) train a 2-class ALS/HC classifier and use it
as an initialization for PD/HC classifier and vice-versa. ii) train a
3-class classifier (ALS/PD/HC) and fine-tune the weights to two
separate classifiers, i.e., ALS/HC and PD/HC using respective data
from ALS and PD separately.

4. EXPERIMENTAL SETUP AND RESULTS

For acoustic features, we compute 36-dim MFCCs at frame length
20ms and frame shift 10ms. Experiments are performed in a 5-fold
cross validation setup comprising five groups, where each group con-
sists of twelve subjects of ALS, HC and (or) PD. Subjects in each
group are chosen such that they are balanced in all aspects such as
age, gender and ALSFRS-R, UPDRS-III scores, as mentioned in Ta-
ble 1 and 2. In each fold, three groups are used for training, one
group for validation and one for testing in a round robin fashion. We
trained the CNN-LSTM by chunking a speech signal into segments
of length 2sec with an overlapping of 0.1sec. For this work, we have
used 1 layer of CNN with 1D convolution across each dimension of
the input with ‘relu’ activation function. For each dimension, 30 fil-
ters of length 20 with stride of 1 were chosen which was followed
by a max-pooling of window size 4. The output of CNN is fed to
LSTM, comprised of two hidden layers each with 64 units. To eval-
uate the classification performance, we use classification accuracy as
a performance metric.

We presented the experiments and results with three main objec-
tives – i) Comparing the performance of CNN-LSTM to ALS clas-
sification with those of baseline schemes based on SVM and DNN,
ii) Transfer learning approach for 2-class classifications (ALS/HC;
PD/HC) in low resource data condition, iii) 3-class classification
(ALS/PD/HC) with CNN-LSTM.

Comparison of CNN-LSTM with SVM and DNN for ALS/HC
classification task: We compare the results of the proposed CNN-
LSTM approach with the baseline (SVM, DNN) reported in [18].
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Fig. 2: Classification accuracy by varying percentage of training data.• RI, • TL from PD/HC, • TL from ALS/HC. Top (bottom) row
corresponds to ALS/HC (PD/HC) classification task for SPON, DIDK, and PHON tasks in three columns.

ALS/HC SPON DIDK PHON
SVM 89.99(3.2) 94.52(4.3) 78.52(5.1)
DNN 92.44(3.1) 93.43(3.2) 78.80(4.3)
CNN-LSTM 96.96(2.8) 94.60(2.7) 89.20(1.5)

Table 3: Average (SD) accuracy of ALS/HC classification

The suprasegmental features which are mean, median, and standard
deviation (SD) of each MFCC are computed in a manner similar to
that in [18]. The SVM classifier with the radial basis kernel has been
trained using the libsvm package [25]. Optimal values of C and γ
have been selected by maximizing the performance of the valida-
tion set. While for DNN, we use 2 hidden layers with 128 units [18].
Like CNN-LSTM, majority voting was also used for SVM and DNN
based classification schemes to obtain utterance level decision. Ta-
ble 3, reports the performance results of CNN-LSTM in comparison
with SVM and DNN with different speech tasks in terms of aver-
age (and standard deviation (SD) in brackets) classification accuracy
across five folds. In the SPON task, we observe an absolute improve-
ment of 7% and 5% over SVM and DNN, respectively. While the
performance of the DIDK task remains the same compared to SVM,
there is a 2% improvement over DNN. In the PHON task, CNN-
LSTM achieves 9-10% improvement compared to SVM and DNN.
The improvements with the CNN-LSTM could be due to better mod-
elling of temporal pattern from the acoustic features, by learning the
supra-segmental features in a data driven manner, unlike fixed statis-
tical features used for classification in SVM and DNN.

Transfer learning for ALS/HC and PD/HC with CNN-LSTM:
The performance of the neural network based models depends on the
amount of data used for training. In this experiment, we investigate
to determine whether PD data will benefit the ALS/HC classification
and vice-versa, especially under low amount of training data. For
ALS/HC classification, we utilize the data available from PD to train
a CNN-LSTM model to classify PD/HC; we further use this model
as an initialization for training model to classify ALS/HC and vice-
versa. In Fig. 2, bar height indicates the average (SD as error bar)
classification accuracy across five folds, for ALS/HC and PD/HC
classification, with random initialization (RI) and TL approach. We
observe that at 100% of training data, the performance with TL in
ALS/HC and PD/HC for all the speech tasks remains similar to those
of RI. While the amount of training data is varied from 10, 25, and
50%, we observe that there is a reduction in accuracy’s for both RI
and TL based approaches. But interestingly, TL, on average, per-
formed consistently better than the RI in most cases (23 out of 24).

SPON DIDK PHON
3-class ALS/PD/HC 83.04(2.17) 85.24(4.25) 77.20(1.95)

2-class

ALS/HC 95.2(2.33) 87(2.36) 86.1(1.0)
PD/HC 90.7(3.94) 87(2.36) 74.1(5.67)

ALS/HC (FT) 98.22(1.87) 95.5(1.72) 89.28(1.10)
PD/HC (FT) 90.98(4.03) 84.62(5.69) 73.52(4.61)

Table 4: Average accuracy (SD) of ALS/PD/HC model and pair-
wise accuracy’s of ALS/HC and PD/HC.

Three class classification ALS/PD/HC using CNN-LSTM: We
also perform experiments with 3-class classification to classify
ALS/PD/HC. We train CNN-LSTM to perform a 3-class classifica-
tion with a similar architecture and an additional node at the output.
Table 4 reports the accuracy values with ALS/PD/HC in the first
row and ALS/HC, and PD/HC accuracy values computed from the
3-class classifier in the second and third row. While comparing the
two class accuracy with respect to Fig. 2, we observe a drop in the
individual two class performances both in ALS/HC and PD/HC. So,
we further Fine-Tune (FT) the weights of ALS/PD/HC model with
ALS/HC data and PD/HC data separately. The accuracy values of
these FT models have been reported in the last two rows in Table 4.
When these are compared with 100% training data accuracy in Fig.
2, interestingly we observe an absolute improvement of ∼2% on
SPON task using FT for both ALS/HC and PD/HC tasks, while the
performance did not change much in the case of DIDK and PHON.

5. CONCLUSION

In this work, we have considered three classification problems
(ALS/HC, PD/HC, ALS/PD/HC) using three different speech tasks
(SPON, DIDK, PHON) with CNN-LSTM. In the case of ALS/HC,
the experiments showed that the classification with CNN-LSTM
consistently performs better than baselines (SVM and DNN) in
all speech tasks. Experiments with low resource of training data
showed that PD and ALS data are beneficial for cross classification
tasks and showed improvements compared to random initialization.
Further, fine-tuning the weights from 3-class to 2-class classification
has also shown improvements in the SPON task of both ALS/HC
and PD/HC. In future, we would like to examine the scientific ra-
tionale behind such benefits due to PD in classification for ALS and
vice-versa. We also plan to investigate CNN-LSTM and transfer
learning techniques on severity estimation of ALS and PD patients.
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[22] Stéphane Mallat, “Understanding deep convolutional net-
works,” Phil. Trans. R. Soc. A, vol. 374, no. 2065, pp.
20150203, 2016.

[23] Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Ste-
unebrink, and Jürgen Schmidhuber, “LSTM: A search space
odyssey,” IEEE transactions on neural networks and learning
systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[24] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[25] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A library
for support vector machines,” ACM Transactions on Intelligent
Systems and Technology, vol. 2, no. 3, pp. 27:1–27:27, 2011.

6788

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 31,2020 at 09:55:51 UTC from IEEE Xplore.  Restrictions apply. 


