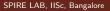
Low frequency characteristics are the key differentiators between dysarthric speech in ALS and healthy speech

Jhansi M¹, Aravind I¹, Yamini BK², Nalini A³, Seena V³, Saraswathi N³, Ravi Y³, Prasanta Kumar Ghosh¹

¹SPIRE Lab, Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India ²Dept. of Speech Pathology and Audiology, ³Dept. of Neurology, NIMHANS, Bangalore, India


イロト イポト イヨト イヨト

October 19, 2020

Introduction

Amyotrophic Lateral Sclerosis (ALS): A motor neuron disorder which occurs due to gradual degeneration of motor neurons

イロト イヨト イヨト イヨト

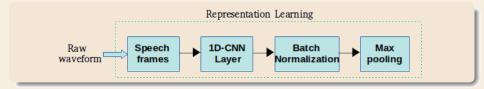
Introduction

Amyotrophic Lateral Sclerosis (ALS): A motor neuron disorder which occurs due to gradual degeneration of motor neurons

Objective of this work: To learn representations through neural network based approach for classification of dysarthric speech in ALS and healthy (HC) speech

イロト イポト イヨト イヨト

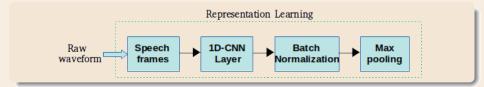
Introduction

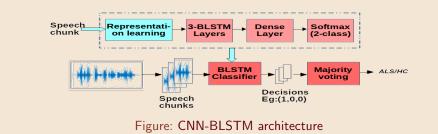

Amyotrophic Lateral Sclerosis (ALS): A motor neuron disorder which occurs due to gradual degeneration of motor neurons

Objective of this work: To learn representations through neural network based approach for classification of dysarthric speech in ALS and healthy (HC) speech

Motivation: To develop a speech based application to detect and monitor the progression of ALS at an early stage

Proposed approach




3

・ロン ・御と ・ヨン ・ヨン

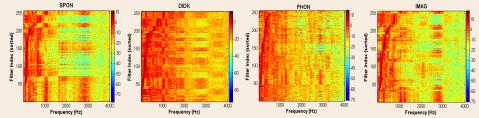
Proposed approach

Experimental setup:

- Input features: Raw speech waveform
- Number of CNN filters: 256 (size: 12X1)
- Number of BLSTM layers: 3 (each with 150 units)
- Activation function: ReLU log (softmax @ output)
- **Evaluation metric**: Classification accuracy
- **Baseline**: Mel Frequency Cepstral Coefficients (MFCCs)

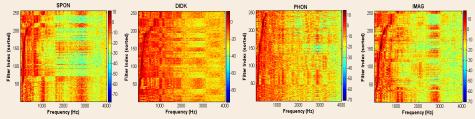
イロト イポト イヨト イヨト

Experimental setup:


- Input features: Raw speech waveform
- Number of CNN filters: 256 (size: 12X1)
- Number of BLSTM layers: 3 (each with 150 units)
- Activation function: ReLU log (softmax @ output)
- Evaluation metric: Classification accuracy
- Baseline: Mel Frequency Cepstral Coefficients (MFCCs)

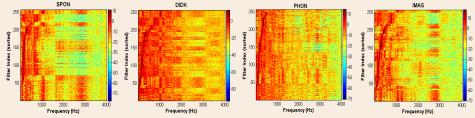
Data collection:

- Speech data is collected from National Institute for Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
- Number of subjects: 60 ALS (30M, 30F), 60 HC(30M, 30F)
- Recorder: Zoom H-6 recorder
- Speech tasks: Spontaneous speech (SPON), Diadochokinetic rate (DIDK), Sustained phonation (PHON), and Image description (IMAG)


Magnitude response of CNN filters

Magnitude response of CNN filters

Key findings


 Center frequencies of most of the learned filters are less than 400Hz leading to an average classification accuracy of 94.83%

3

イロン イロン イヨン イヨン

Magnitude response of CNN filters

Key findings

 Center frequencies of most of the learned filters are less than 400Hz leading to an average classification accuracy of 94.83%

Acknowledgement

We thank the Department of Science and Technology, Govt. of India, for their support in this work