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Abstract
We analyze the temporal co-ordination between head gestures
and prosodic patterns in spontaneous speech in a data-driven
manner. For this study, we consider head motion and speech
data from 24 subjects while they tell a fixed set of five sto-
ries. The head motion, captured using a motion capture sys-
tem, is converted to Euler angles and translations in X, Y and
Z-directions to represent head gestures. Pitch and short-time
energy in voiced segments are used to represent the prosodic
patterns. To capture the statistical relationship between head
gestures and prosodic patterns, mutual information (MI) is com-
puted at various delays between the two using data from 24 sub-
jects in six native languages. The estimated MI, averaged across
all subjects, is found to be maximum when the head gestures lag
the prosodic patterns by 30msec. This is found to be true when
subjects tell stories in English as well as in their native lan-
guage. We observe a similar pattern in the root mean squared
error of predicting head gestures from prosodic patterns using
Gaussian mixture model. These results indicate that there could
be an asynchrony between head gestures and prosody during
spontaneous speech where head gestures follow the correspond-
ing prosodic patterns.
Index Terms: Head gestures, prosodic patterns, mutual infor-
mation

1. Introduction
Head gestures among many other body gestures are naturally
produced during speech and often convey information critical
for face-to-face interaction. Studies [1], [2] report that head mo-
tion is important for auditory speech perception and can change
the emotional perception of animations. The relationship be-
tween head gestures and corresponding speech is known to be
complex [3]. Predicting the former from the latter has been an
area of research for creating realistic avatars in natural human-
computer interaction. In this work, we consider analyzing the
temporal co-ordination between the two modalities. This could
help in improving the accuracy of prediction of head gesture
from speech.

To quantify the asynchrony between head gestures and
speech, we use prosodic patterns to represent the speech acous-
tic. Prosodic patterns have been shown in literature to be tightly
coupled with head gestures. For example, Kuratate et. al. [4]
presented a system to estimate facial motion from speech and
showed a high correlation between head motion and fundamen-
tal frequency F0. Yehia et al [5] developed a system to animate a
talking head based on speech acoustics. They used F0 as a fea-
ture along with some constraints to estimate the head motion.
Graf et al. [6] studied head and facial movements accompa-
nying speech and concluded that despite differences from per-
son to person, these movements are strongly correlated to the
prosodic structure of text. Based on such studies many groups

have proposed methods to synthesize head gestures based on
prosody using models such as Hidden Markov Models(HMM)
[7] [2] [8] [9], Multi-Stream HMM [10], Coupled HMM [11],
Input-Output HMM[12], Dynamic Bayesian Networks(DBNs)
[13] [14] and Neural Networks [15].

There have been a number of works investigating the tem-
poral relation between speech and several body gestures includ-
ing hand gestures [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25], lips, eyebrows [26] and other internal articulatory ges-
tures [27]. Unlike these, there are relatively few studies that
quantify the temporal coordination between speech and head
motion. For example, Loehr [28] studied the rhythmic relation-
ship between head, hands, eyeblinks and speech. He reported
that each articulator produced pikes in complex synchrony with
other articulators. Alexanderson et al. [29] [30] have studied
the alignment of beat gestures such as head nods with sylla-
bles and reported that while there is considerable variation in
fine temporal synchronization, syllables co-occurring with ges-
tures generally have higher intensity, F0 and F0 range. Asor
et al. [31] studied the alignment of head nods with respect to
the prosodic structure in semi-spontaneous speech. They re-
port that the timing of nod apexes and intensities are affected
by stress, number of syllables and prosodic boundary positions.
Paggio [32] studied time alignments of various kinds of head
movements including nods, shakes, tilts, waggles with respect
to words or phrases these movements are associated with. She
reported that though there is a considerable variability in delay
between the start of the gesture and corresponding speech (es-
pecially in case of waggles and shakes), there is a correlation
between delay length and duration of associated speech.

All the above findings are based on datasets where spe-
cific head gestures and the associated events in speech or text
are manually labelled. For example, Loehr [28] recorded four
subjects in natural conversation with each other. Finally, four
clips of range 20-60 seconds were manually annotated and used
for analysis. Alexanderson et al. [29] [30] worked with a 20
minute dialogue motion capture data where head gestures were
annotated in a semi-automatic way. Asor et al. [31] created
Discourse Completion Tasks (DCT) which placed the partici-
pants in a hypothetical situation designed to elicit a declarative
sentence expressing confirmation. Participants were required to
use a pre-specified target word in their responses. The authors
conducted their study with 155 instances of manually anno-
tated head nods from this data. Paggio [32] used data from the
Danish NOMCO corpus [33] which contains about an hour of
video recordings of first-encounter dialogue interactions. Time
stamps for head movements and associated speech segments are
available with the database. While studies with such limited
number of example events yield interesting results, time coordi-
nation between head gestures and prosodic patterns across large
spontaneous dataset remains unclear. Hence, unlike example
driven analysis of asynchrony between these two modalities,



Figure 1: Marker placements and story duration statistics

we follow a data-driven approach. We quantify the statistical
relationship between prosodic patterns and head gestures using
an information theoretic measure, namely mutual information
(MI). Instead of hand picking example speech segments and
gesture types, MI is computed across all segments allowing us
to investigate the temporal coordination in a more global sense.

We perform this information theoretic analysis with 15
hours of spontaneous speech where 24 subjects tell a fixed set
of five stories in their own words. We study the asynchrony
between head gestures and prosodic patterns when the stories
are spoken in English as well as in speakers’ native language.
MI between head gestures and prosodic patterns is calculated at
various delays. We find the MI, averaged across all subjects, to
be maximum when head gestures lag the prosodic patterns by
30 msec. We have also trained Gaussian mixture model (GMM)
based head gesture prediction from prosodic patterns at various
delays and found that the root-mean squared error of the es-
timated head gestures follows a similar pattern across various
delays.

2. Database
We collected data from 24 subjects comprising two males and
two females each from six different Indian languages, namely,
Bengali, Hindi, Kannada, Malayalam, Tamil, and Telugu. Dur-
ing recording, each subject had to tell a fixed set of five stories
in his/her own words. The stories were chosen to be general
and eventful so the subjects could articulate them easily with-
out memorizing them word for word. The weblinks1 of these
stories were given to the subjects well in advance so they could
read at their own pace and come prepared. Subjects were asked
to rephrase every story in English as well as in their native lan-
guage. Thus, we obtained ten recordings from each subject –
five in English and five in their native language. During record-
ing, subjects were not given any specific instructions. Each sub-
ject told the story in the manner they liked; this ensured that the
head gestures during story-telling were natural.

Head motion was captured through the Optitrack motion
capture system. Seven Optitrack IR cameras were connected
to a PC through USB hubs to track reflective markers and give
their 3D coordinates at 120 fps. Each subject wore a headband
with four markers and two additional markers were placed on
the nose as indicated by orange and red circles respectively in
Figure 1. Sometimes the motion trajectories generated by the
system had missing values in segments of duration ranging 10-
40 frames. This was due to the markers getting occluded from
the cameras either by the subject’s hands while gesturing or in
the process of a large head movement. Such gaps were filled
using cubic interpolation in the Optitrack Arena software. The
audio was recorded at 16kHz using a close-talk microphone. A

1http://www.worldstories.org.uk/stories/story/45-the-monkey,
https://www.shortstories.co.in/birbals-journey-to-paradise/,
http://mocomi.com/tenali-rama-and-the-three-dolls/,
http://greece.mrdonn.org/greekgods/demeter.html,
http://norse-mythology.org/tales/thor-the-transvestite/
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Figure 2: Synchronization of the two modalities

frontal face video was also captured through a Sony Handycam
– model HDR-CX280E with a resolution of 1440×1080.

The Optitrack motion capture system used for recording the
head gestures did not have the facility of simultaneous record-
ing of speech. Hence, a separate laptop was used for audio
recording. For synchronizing the audio and motion capture data
streams, we utilized a clapping mechanism. Four optical mark-
ers were placed on the subject’s hands (2 markers on each hand)
as shown in Figure 1A using green circles. After both audio
recorder and motion capture system started capturing data, the
subject was asked to clap thrice with an interval of approxi-
mately 2 seconds before he/she started telling a story. The clap-
ping sound is produced in a brief moment where the two hands
touch each other i.e. when the distance between the two hands is
minimum. Hence, the clapping sounds and the distance minima
between left and right markers were used together to synchro-
nize the two modalities. This is illustrated in Figure 2 where
the top subplot shows the three clapping bursts while the re-
spective three local minima in the distance between markers in
left and right hands are shown in the bottom subplot. The delay
between the two modalities was found by taking the difference
between the time instant of the clapping burst and that of the
corresponding local minimum in the distance.

Different subjects took different amounts of time to finish
each story. Figure 1B shows the average duration of a story
from speakers of each language. Interestingly, Tamil subjects
took the least time to complete the story-telling task compared
to subjects from other languages. This could be due to the
speaking rate of the subjects as well as the manner in which
they covered the events in the story. The total amount of data
collected from 24 subjects is approximately 15 hours and the
average duration of one story across all languages and subjects
is 237 seconds (±83 seconds).

3. Representation for head gestures and
prosodic patterns

We compute the features representing head gestures and
prosodic patterns from the 3-dimensional position data of all
Optitrack markers and the audio recordings respectively. Con-
sider a 6×3 matrix Mi containing the X, Y and Z coordinates
of six sensors (four headband and two nose markers) in the i-th
frame. Suppose there are N frames in a recording. At first we
compute an average position matrix M̄ = 1

N

∑N
i=1Mi. We

consider the bottom nose marker as the center of rotation and
compute the translation vector and rotation angles for the matrix
Mi, 1 ≤ i ≤ N . We translate Mi to M̄ such that their centers
coincide yielding a new matrix M ′i . The translation vector is
denoted by T i = [T ix T iy T iz ]. Following translation, we use
the singular value Decomposition (SVD) method as proposed



by Arun et al. [34] to find the rotation matrix that defines the
Euler angles θi = [θix θiy θiz]. T i and θi together are used
to define a 6-dimensional feature vector representing the head
gestures.

We compute pitch [35] and energy in a short-time window
of duration 10msec with a shift of 10msec on the audio record-
ings. We do not consider the unvoiced frames as there is no
pitch. Thus, in each frame of a voiced segment, combining
pitch and short-time energy, we obtain a two-dimensional fea-
ture vector representing the prosodic patterns. This results in
a two-dimensional prosodic feature sequence at 100Hz. How-
ever, the six-dimensional head gesture features are computed at
120Hz, the rate of the motion capture system. We resample the
head gesture features at 100Hz to synchronize with the prosodic
features. We discard frames which belong to a voiced segment
of duration less than 0.5 sec. This results in 28771(±13389) and
36350(±15406) number of frames for each subject in English
and native languages respectively.

4. Mutual information based analysis
We use mutual information (MI) [36] for quantifying the statis-
tical relation between head gestures and prosodic patterns. MI
indicates the statistical dependency between two random vari-
ables. Let x be a random vector representing the head gestures
and z be a random vector representing the prosodic patterns. MI
(I(z,x)) between z and x is calculated using their realizations
in all voiced frames. We know:

I(z,x) = H(x)−H(x|z), (1)

whereH(x) is the entropy of x [36]. Thus, higher the MI, lower
is the uncertainty of the head gestures (x) given the prosodic
patterns (z), i.e.,H(x|z). Note that both z and x are continuous
random variables. Thus, to compute MI, the probability density
functions (PDF) of z and x need to be known. Since their PDFs
are unknown, we quantize the space of z (denoted byQ(z)) and
x (denoted by Q(x)) using the realizations of the head gestures
and prosodic patterns with a finite number (K) of quantization
bins using the K-means vector quantization [36, 37]. Then, we
compute the MI by estimating the joint distribution of z and x
in the finite alphabet space (RK×K ) using standard maximum
likelihood criterion – frequency counts [37] and finally applying
the definition of MI for discrete random variables as follows:

I(Q(z), Q(x)) =

K∑
z=1

K∑
x=1

P (Q(z) = z,Q(x) = x)×

log
P (Q(z) = z,Q(x) = x)

P (Q(z) = z)P (Q(x) = x)
(2)

It can be shown that I(Q(z), Q(x)) is a lower bound of the
MI between z and x. I(Q(z), Q(x)) converges to the actual MI
with more quantization bins (K). We have chosen K=64 since
increasing K further does not change the results significantly.

5. Experiments and results
5.1. Experimental setup

We consider thirteen different delays δ (including the zero de-
lay case) to analyze the temporal coordination between head
gestures and prosodic patterns. Half of these delays are chosen
where head gestures lead the prosodic patterns and for the re-
maining half the head gestures lag the prosodic patterns. The
values of δ are -200, -150, -100, -70, -50, -30, 0, +30, +50, +70,
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Figure 3: MI averaged across all subjects for each delay when
stories told in English and subjects’ native languages are con-
sidered separately.
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Figure 4: MI averaged across stories in English (top row) and
Native languages (bottom row) from subjects in each language
separately.

+100, +150, +200 milliseconds. Let tis and tie denote the start
and end time of the ith voiced segment containing Ni frames.
The pitch and short-time energy values in each frame between
tis and tie give the 2× Ni feature matrix P i. For a given δ, the
three dimensional angle vector (θi) and the three dimensional
translation vector (T i) between tis + δ and tie + δ give a 6×Ni
head gesture feature matrix Hi

δ .
For each subject, concatenating all P i from all five stories

spoken in one language results in an overall prosodic feature
matrix P . Similarly, for a given δ, concatenating all Hi

δ we
obtain an overall head gesture feature matrix Hδ . This is done
separately for both English and speaker’s native language. Each
of the two features in P is separately normalized such that it has
zero mean and unit standard deviation. Similarly, six features
in Hδ are also normalized separately. Following normalization,
P and Hδ are used to estimate the MI.

MI estimation as outlined in Section 4 requires K-means
vector quantization which depends on the initialization. To in-
corporate the variability in the initialization, we repeat the MI
computation ten times for each delay. In each of these ten times,
we randomly choose 90% of the data pairs from Hδ and P .
The average of ten estimated MI values is reported for every
delay separately for stories in English and subjects’ native lan-
guages. MI values for different delays are reported after aver-
aging across all 24 subjects. This is done to obtain an over-
all picture of the time coordination between head gestures and
prosodic patterns. To investigate language and gender specific
behaviors, we also report MI values for different delays by av-
eraging across all subjects having the same native language as
well as by averaging across subjects of the same gender.

To cross validate the findings on the temporal coordination
using MI, we also develop a Gaussian mixture model (GMM)
based head gesture prediction model from the prosodic patterns
and examine the accuracy of prediction at different delays fol-
lowing the work by Toda et al.[38]. We consider a GMM with
16 mixture components. Since GMM parameters also vary de-
pending on the initialization during training, we run the head
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(a) MI averaged across all female subjects
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(b) MI averaged across all male subjects
Figure 5: Gender specific MI for different delays considering
stories in English and Native languages separately

gesture prediction experiment ten times in a subject-dependent
manner. The average root mean squared error (RMSE) between
the original and predicted head gestures for each delay is re-
ported across these ten trials.

5.2. Results

Figure 3 shows the plots of the MI between head gestures and
prosodic patterns at all delays considered in this study with the
stories in English and native languages considered separately.
The MI values in these plots are the average of the MI across all
24 subjects. It is clear that the highest average MI is obtained
when the head gestures lag the prosodic patterns by 30msec (in-
dicated by red dotted vertical line in Figure 3). This is true
for stories when told in both English and subjects’ native lan-
guages. This indicates that there is an asynchrony between the
speech and the associated head gestures. It is also interesting to
observe that the MI vs delay plot is asymmetric around the lo-
cation of the highest MI for both English and native languages.
This suggests that over a delay of 200msec between the head
gestures and prosodic patterns, the prosodic patterns, when lead
the head gestures, carry more information about the head ges-
tures compared to when the prosodic patterns lag the head ges-
tures for the same amount of delay. This could suggest that the
head motion primarily follows what is spoken.

While Figure 3 shows the asynchrony between head ges-
tures and prosodic patterns averaged across all subjects from
six languages considered, we examine the temporal coordina-
tion between head gestures and prosodic patterns in a language
specific manner. For this purpose, we average the MI across
subjects who have the same native language. Figure 4 shows
the MI vs delay plots for each of the six languages separately
(one column for one language) when the subjects in the respec-
tive language tell the stories in English (top row in Figure 4)
and in their native languages (bottom row in Figure 4). It is
interesting to see that all twelve MI vs delay plots in Figure 4
are asymmetric similar to those in Figure 3. It is also interest-
ing to observe that the highest average MI occurs when head
gestures lag the prosodic patterns by either 30msec or 50msec
or 70msec (indicated by red dashed line in Figure 4). A de-
lay of 70msec is observed when MI is averaged over Bengali
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Figure 6: RMSE of GMM based head gesture prediction for
various delays
subjects using stories spoken in English. Similarly, the delay
of 50msec is observed when MI is averaged over Hindi subjects
when stories were told in Hindi as well as for Kannada speakers
when stories were told in both English as well as in Kannada.
These results suggest that the asynchrony between head ges-
tures and prosodic patterns is consistent across subjects from
six different languages. We also examine the temporal coordi-
nation between head gestures and prosodic patterns in a gender
specific manner. For this purpose, we average the MI across all
female subjects considering stories in English and their native
languages separately. Figure 5a shows the MI profile for various
delays for female subjects. It is interesting that the MI profile
appears similar to those in Figure 3 with the highest average MI
appearing at +30msec (indicated by red dashed line) consider-
ing stories told in both English and native languages. Similarly,
figure 5b shows the MI profile for various delays for male sub-
jects. It is interesting to note that while the highest MI occurs
at +30msec when stories spoken in subjects’ native languages
are considered, the highest MI occurs at 0msec when stories in
English are considered although the MI at +30msec drops by
only 0.03% compared to that at 0msec delay. Thus, the gender
specific results also indicate that head gestures lag the prosodic
patterns in spontaneous speech.

The RMSE of predicting head gestures from prosodic pat-
terns using GMM at various delays averaged across all subjects
is shown in Figure 6. We observe that minimum RMSE is ob-
tained when the delay is +30msec in both English and speakers’
native languages. This result is consistent with our observations
from MI.

6. Conclusions
We conduct an information theoretic study of the temporal rela-
tionship between head gestures and prosodic patterns in speech.
Head gestures along with spontaneous speech are captured from
24 subjects telling a fixed set of five stories in English and in
their native languages. 3D Euler angles and translations are
used to represent the head gesture while pitch and short-time
energy are used to represent the prosodic patterns. MI is com-
puted at various delays between head gestures and prosodic pat-
terns for voiced segments. It is found that the MI averaged
across all subjects is maximum when head gestures lag behind
the prosodic patterns by 30 msec. This is found to be also true
when subjects within each language as well as each gender are
considered separately. The findings in this work are purely data-
driven and obtained across different linguistic contexts and head
movement types. It would be interesting to study the time asyn-
chrony between these two modalities in a context-specific man-
ner. This is part of our future work.
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