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The principles of the existing pitch estimation techniques are often different and com-1

plementary in nature. In this work, we combine the complementary characteristics of2

two existing methods, namely, sub-harmonic to harmonic ratio (SHR) and sawtooth-3

wave inspired pitch estimator (SWIPE), to improve pitch estimation. Using variants4

of SHR and SWIPE, the proposed method, named FSDP, classifies all the voiced5

frames into two classes – the first class consists of the frames where a confidence6

score maximization criterion is used for pitch estimation, while for the second class,7

a dynamic programming (DP) based approach is proposed. Experiments are per-8

formed on speech signals separately from KEELE, CSLU and PaulBaghsaw corpora9

under clean and additive white Gaussian noise at 20, 10, 5, and 0dB SNR conditions10

using four baseline schemes including SHR, SWIPE and two DP based techniques.11

The pitch estimation performance of FSDP, when averaged over all SNRs, is found12

to be better than those of the baseline schemes suggesting the benefit of applying13

smoothness constraint using DP in selected frames in the proposed FSDP scheme.14

The VuV classification error from FSDP is also found to be lower than that from all15

four baseline schemes in almost all SNR conditions on three corpora.16
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I. INTRODUCTION17

Accurate estimation of pitch is useful in various applications including gender classification1,18

emotion recognition2, automatic intonation identification3, automatic music transcription4,19

query by humming5, speech disorders identification6 and source-filter model based speech20

coding systems7,8. The reliability of these applications depends on the accuracy of the pitch21

estimation. Typically pitch is considered as the fundamental frequency of the quasi-periodic22

speech signal perceived by the human auditory system9–13. An accurate pitch estimation for23

speech signal is non-trivial because – a) speech is not perfectly periodic due to non-stationary24

variations in the frequency and the amplitude8, b) speech can be noisy, for example, in the25

case where the distance between the microphone and speaker is large, c) the signal to noise26

ratio (SNR) can be low14.27

In the literature, several estimation techniques15–17 have used the dynamic programming28

(DP) to impose temporal continuity in the estimated pitch contour12,18–24. Typically, DP29

based approaches divide the input signal into frames and identify multiple pitch candidates30

for every frame. Often, these candidates are associated with a measure of confidence18,31

referred to as confidence-score. These scores are considered in DP cost function for selecting32

the best candidate in a frame, which is declared as the estimated pitch at that frame.33

The manner in which the pitch candidates and their confidence-scores are computed34

varies across different DP approaches. For example, in neutral network based approaches,35

probabilistic outputs of pitch candidate states are produced where a typical number of pitch36

candidates is approximately 6822,23. Among these, a deep neural network (DNN) based37
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approach is shown to be effective in noisy speech, although it requires a large amount of38

data for training. In contrast to these data driven approaches, several knowledge based39

approaches are proposed with fewer number of pitch candidates. The robust algorithm for40

pitch tracking (RAPT) uses normalized cross correlation function (NCCF) to estimate mul-41

tiple pitch candidates and their confidence-scores20. The yet another algorithm for pitch42

tracking (YAAPT) also uses NCCF to estimate multiple pitch candidates, but these candi-43

dates are further refined using spectral information25. The algorithm proposed by Ba et al.,44

named BaNa, computes multiple pitch candidates by combining the approaches of harmonic45

ratio and cepstrum analysis26. The algorithm proposed by Gonzalez et al., named PEFA,46

uses a convoluted normalized periodogram to estimate multiple candidates and then pitch47

is estimated using DP12. While RAPT and YAAPT have been shown to perform well for48

clean and telephone channel speech respectively, PEFAC has been shown to perform better49

in low SNR conditions. However at higher SNRs and clean conditions, PEFAC does not50

have a satisfactory performance. In this work we propose a frame selective DP (FSDP)51

approach which works better with few number of pitch candidates in clean as well as in52

noisy conditions in both high and low SNR conditions. The proposed FSDP exploits speech53

characteristics in order to estimate pitch using small amount of training data.54

Similar to the pitch candidates, the computation of the confidence-scores plays an impor-55

tant role in pitch estimation performance for both clean and noisy conditions. For example,56

RAPT has a robust confidence-score computation associated with each candidate, which57

could be the reason for it to have a better accuracy in clean case compared to other DP58

based algorithms. However RAPT involves the selection of many parameters on a training59
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corpus, causing performance degradation across corpora as well as in noisy conditions12.60

To improve the performance under noisy conditions, PEFAC introduces another confidence-61

score computation that uses several parameters heuristically designed during training under62

noisy conditions.63

Another critical factor for the performance of a DP based method is the weight given64

to the continuity constraint. While the continuity constraint often helps in correcting pitch65

halving and doubling errors, a large weight on the continuity constraint might introduce66

errors12,27 by not recognizing gradual pitch transitions. Conversely, a weak continuity con-67

straint may produce undesired fluctuations in the estimated pitch contour. These variations68

in the pitch estimation using RAPT and PEFAC are illustrated in Figure 1. In box 4, the69

estimated pitch from PEFAC is smoother than the ground truth, which has pitch transitions.70

This could be due to the strong continuity constraint in the DP. However, in boxes 1 and71

2 (RAPT), the inaccurate transitions could be due to relaxed continuity constraint. In box72

3, the pitch estimation error occurs due to the absence of the pitch candidate. This could73

be caused by inaccurate estimation or insufficient pitch candidates. Increasing the number74

of pitch candidates would require a carefully designed cost function for the DP to result75

in an accurate pitch contour. Hence, the effectiveness of a DP based approach depends76

on the degree of the continuity constraint and the accuracy of pitch candidates and their77

confidence-scores.7879

In this work, we propose a technique for computing pitch candidates and their confidence-80

scores by combining complementary characteristics of two existing methods, namely, sub-81

harmonic to harmonic ratio (SHR)10 and sawtooth wave inspired pitch estimator (SWIPE)9.82
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FIG. 1. An illustrative example describing two DP based techniques, namely RAPT and PEFAC –

a) spectrogram of an exemplary voiced segment using an FFT of 1024 with frame shift and length

of 10ms and 20ms respectively, b) pitch estimation by the RAPT algorithm, c) by the PEFAC

algorithm. The erroneous regions in the estimated pitch contour are indicated with black boxes

with box number at the top right corner.

Using these candidates, we employ a DP scheme to provide continuity in the pitch contour83

only in a few selected frames, called DP frames, unlike a typical DP method that works for all84

frames within a voiced segment. In the remaining non-DP frames, pitch is estimated using a85

maximal confidence-score criterion. We observe that SHR achieves a significant accuracy in86

the pitch estimation because it uses a good strategy for estimating reliable pitch candidates.87

However, it only computes two candidates, causing estimation error in cases where the88

ground truth pitch does not correspond to any of the candidates. We propose an extended89

candidate estimation strategy based on SHR to increase the number of pitch candidates, such90
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that one of those candidates becomes more likely to correspond to the ground truth pitch.91

Similarly, we extend the confidence-score computation strategy in SWIPE by exploiting the92

window dependent properties (hanning window dependent kernel) and speech perception93

and production based properties. The latter includes equivalent rectangular bandwidth94

(ERB) frequency scale and decaying spectral envelope (1/f) similar to the glottal pulse95

spectrum. These confidence-scores are also used to automatically determine the DP and96

non-DP frames.97

In addition to the proposed FSDP method for pitch estimation, we perform voiced-98

unvoiced (VuV) classification in each frame using the pitch candidate confidence-scores.99

Experiments for both pitch estimation and VuV classification are performed using three cor-100

pora: KEELE28, CSLU29 and PaulBaghsaw (PB)30 in clean as well as noisy conditions with101

additive white Gaussian noise in 20, 10, 5 and 0dB SNRs. Gross pitch estimation (GPE)-20102

error, root mean squared error (RMSE) and voiced and unvoiced (VuV) classification er-103

ror are used as the evaluation metrics. We consider RAPT, PEFAC, SHR, and SWIPE as104

the baseline schemes. For pitch estimation, the proposed FSDP is found to achieve lower105

GPE-20 and RMSE compared to those of four baseline schemes, when the performance is106

averaged across all SNR conditions. FSDP performs better than all four baseline schemes107

for all three corpora in clean and in all SNR conditions, except for PaulBaghsaw corpus at108

0dB SNR. For VuV classification, the proposed FSDP performs better than all four baseline109

schemes for all three corpora in clean as well as all SNR conditions except at 20dB SNR on110

CSLU corpus, where RAPT has the least VuV error.111
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II. PROPOSED FSDP APPROACH112

The proposed FSDP approach has five stages, shown in Figure 2 and these stages are113

described using an exemplary voiced segment shown in Figure 3. The first stage computes114

pitch candidates (pkt , 1 ≤ k ≤ K) at the t-th frame, where K is the total number of pitch115

candidates. In the second stage the confidence-score Ct(k) associated to each candidate116

is computed. In the third stage, a VuV decision is taken at each frame based on the117

confidence-scores Ct(k), and using a support vector machine (SVM) classifier, which was118

learnt in the training. This VuV decision is used in the fourth and fifth stages. We consider119

contiguous estimated voiced frames as one estimated voiced segment. Figure 3 shows the120

pitch candidates from the first stage for K = 2 in an estimated voiced segment. In the fourth121

stage, all frames in each estimated voiced segment are divided into two sets – DP frames122

and non-DP frames based on Ct(k), 1 ≤ k ≤ K. In Figure 3, the pitch candidates of the123

non-DP and DP frames are shown using red squares and blue diamonds respectively. The124

fifth stage estimates pitch (magenta line in Figure 3) for both types of frames separately.125

For the non-DP frames, pitch is estimated using the following maximization criteria:126

kopt = arg max
k

Ct(k); p̂t = pk
opt

t (1)

For the remaining frames, a DP based solution is used which selects one of the K pitch127

candidates in each frame such that the resultant pitch trajectory is maximally smooth within128

the segment.129130

It should be noted that the estimated unvoiced frames are not processed in the fourth131

and fifth stages. However, we use the maximization criteria in (1) to obtain pitch in the132
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FIG. 2. Block diagram illustrating the steps of the FSDP method
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FIG. 3. An illustrative example explaining the proposed FSDP method

estimated unvoiced frames so that pitch is predicted in all frames of an utterance. This is133

done to obtain the pitch values at all ground truth voiced frames.134

A. Pitch candidate selection135

Pitch candidates are computed by following the two steps of the SHR method10. In the136

first step, we define St(f) at the t-th frame as:137

St (f) =
N∑
n=1

At (nf)− At
((

n− 1

2

)
f

)
(2)
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where At(f) is the short time amplitude spectrum at the t-th frame and N is the maximum138

number of harmonics contained in At(f)10. The St(f) measures the difference between139

amplitude sums at harmonic and at sub-harmonic components of the frequency f . This value140

is expected to be maximum at the pitch frequency because a typical spectrum of a periodic141

signal has high amplitudes at the harmonics of fundamental frequency and low amplitudes142

at the sub-harmonics. In the case of non-periodic signals, for example an unvoiced sound,143

the sum of the spectrum at the sub-harmonics would be relatively higher compared to that144

of a periodic signal and, hence, the St(f) might not be as high as that of voiced (periodic)145

speech signal.146

We observe that for some voiced speech segments the maximum of St(f) may not cor-147

respond to the pitch frequency. Hence, pitch estimation based on a strategy that selects148

the frequency by maximizing St(f) would introduce errors. We observe that most of these149

errors are pitch halving and doubling, which are also common source of errors in most of150

the existing pitch estimation methods19. This suggests that the candidate pitch frequency151

could be obtained by multiplying frequency corresponding to the highest peak of St(f) with152

integer powers of 2.153

In the second step, based on the above observation, we compute K pitch candidates as:154

pkt =


arg max

f
St (f) for k =

⌈
K
2

⌉
arg max

p
k−dK2 e
t,Left ≤f≤p

k−dK2 e
t,Right

St (f) for k 6=
⌈
K
2

⌉ (3)

where pkt is k-th pitch candidate at t-th frame for k ∈ {1, 2, ..., K}, dK
2
e is the small-155

est integer greater than K
2

and p
k−dK2 e
t,Left and p

k−dK2 e
t,Right are equal to

(
1− 1

16

)
= 0.9375 and156
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(
1 + 1

16

)
= 1.0625 times 2k−d

K
2 epd

K
2 e

t respectively. In particular, for 1 ≤ k < dK
2
e, pkt in-157

cludes the frequencies around the sub-harmonics (negative integer powers of 2) of p
dK2 e
t that158

fall within the frequency band ranging from p
k−dK2 e
t,Left to p

k−dK2 e
t,Right , based on 1

6
octave band at159

each candidate, which is a linear approximation for the critical bands of the ear31,32. The160

1
6

octave band at 2k−d
K
2 epd

K
2 e

t is equal to (2
1
6 − 1) ≈ 0.125 times 2k−d

K
2 epd

K
2 e

t , which is161

equal to p
k−dK2 e
t,Right − p

k−dK2 e
t,Left . Similarly, for k > dK

2
e, pkt includes the frequencies around the162

harmonics (positive integer powers of 2) of p
dK2 e
t . We do not compute pkt beyond the typical163

pitch frequency range (50-550Hz). Hence the value of K is upper bounded by the total164

number of pitch candidates within the pitch range. The value of K is learnt in the training165

stage and is kept fixed for all the frames during the estimation of pitch and VuV decisions.166

B. Candidate confidence-score computation167

We modify the confidence-score computation steps in SWIPE9 and define the confidence-168

score (Ct(k)) associated with each pitch candidate as:169

Ct(k) =

∑
f ′

Φ
(
pkt , f

′)√
Λt

(
pkt , f

′) 1√
f ′∣∣∣∣Φ+

(
pkt , f

′) 1√
f ′

∣∣∣∣ ∣∣∣√Λt

(
pkt , f

′)∣∣∣ (4)

where, Λt(p
k
t , f

′
) is the amplitude spectrum of a windowed speech signal at the t-th frame170

with frequency index f
′
. The amplitude spectrum (Λt(p

k
t , f

′
)) is computed for every pitch171

candidate pkt using Hanning window of size equal to 8
pkt

. Φ+(pkt , f
′
) is the positive part of172

the kernel Φ(pkt , f
′
)9, which is defined for every pitch candidate pkt with frequency index f

′
173
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as
∑

i∈{1}∪P
Φi

(
pkt , f

′)
where P is the set of prime numbers and Φi

(
pkt , f

′)
defined as:174

Φi

(
pkt , f

′
)

=



cos
(

2π f
′

pkt

)
,

∣∣∣ f ′
pkt
− i
∣∣∣ < 1

4

1
2

cos
(

2π f
′

pkt

)
, 1

4
<
∣∣∣ f ′
pkt
− i
∣∣∣ < 3

4

0, otherwise

As demonstrated by Camacho et al9, the Ct(k) is typically high at the pitch frequency when175

the window and the kernel are chosen appropriately.176

C. VuV decisions estimation177

We consider an SVM based classifier for estimating VuV decisions as a binary classification178

task. We obtain VuV decisions from the K candidate confidence-scores Ct(k) belonging to179

each frame as a feature vector. Along with these feature vectors, we use ground truth180

VuV decisions labeled from the ground truth pitch values to train the SVM. In the labeling181

procedure, we consider the frames corresponding to zero pitch values as unvoiced and the182

remaining frames as voiced for all three corpora.183

D. Frame selection strategy using nearest neighborhood184

We observe that due to the mismatch between window and kernel choices, Ct(k) could be185

high at a pitch candidate different from the correct pitch frequency. Thus, determining pitch186

frequency by finding the frequency corresponding to the highest confidence-score (SWIPE187

strategy) may not work uniformly well in all frames. We propose a method to automatically188

determine the frames (referred to as non-DP frames) where taking the frequency correspond-189
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ing to the highest confidence-score would accurately estimate the pitch frequency. In the190

remaining frames (referred to as DP frames), we use DP for estimating pitch. For DP, confi-191

dence scores are not used; rather, only pitch candidates are used. This helps in overcoming192

the errors in the pitch estimated by SWIPE strategy in DP frames. Towards this, in the193

training stage, we define two groups of pitch candidates – 1) the pitch candidate frequencies194

lying within ±20% of the ground truth pitch called required pitch candidates (RPCs); 2)195

other pitch candidates (non RPCs) away from (more than 20%) the ground truth pitch.196

We refer to the voiced frames corresponding to RPCs with the highest confidence-score as197

non-DP frames and the remaining voiced frames as DP frames and consider them as ground198

truth DP and non-DP frames. In order to determine the DP and non-DP frames in testing199

stage, we propose a frame selection strategy in the following section.200

In the frame selection strategy, each frame of a voiced segment is categorized into either201

a DP frame or a non-DP frame. For this, we utilize the confidence-score associated with202

each candidate in developing the frame selection strategy. We use the confidence-scores203

of all pitch candidates as K-dimensional feature vector and pose the frame selection as a204

binary classification problem – non-DP frames as one class and DP frames as another class.205

The classification is done using the nearest neighborhood (NN) classifier33,34 where r-nearest206

neighbors are computed based on the Euclidean distance. The parameter r is learnt during207

the training phase.208
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Algorithm 1 Pitch contour estimation algorithm based on DP
1: Initialization: K = {1 : K}, T = length of voiced segment

2: for each voiced segment do

3: Initialization: D1(i) = 0 ∀ i ∈ K

4: for each frame t from 2 to T do

∀ i ∈ K

5: if t ∈ DP frames then

Dt(i) = min
j∈K

{
Dt−1(j) +

(
pit − p

j
t−1

)2}
kt(i) = arg min

j∈K

{
Dt−1(j) +

(
pit − p

j
t−1

)2}
6: else

kopt = arg max
j∈K

{Ct(j)}

pit = pk
opt

t

Dt(i) = min
j∈K

{
Dt−1(j) +

(
pit − p

j
t−1

)2}
kt(i) = arg min

j∈K

{
Dt−1(j) +

(
pit − p

j
t−1

)2}
7: end if

8: end for

9: Back tracking: ηT = arg min
i∈K

{DT (i)} , p̂T = pηTT

10: for each frame t from T − 1 to 1 do

ηt = kt+1(ηt+1)

p̂t = pηtt

11: end for

12: end for
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E. Dynamic programming209

Most of the pitch estimation algorithms are prone to octave errors, in which the estimated210

pitch contour has abrupt transitions and differs from the original pitch by a factor of two or211

a half12,19. However, realistic pitch contour does not vary such abruptly and pitch variation212

across frames is, in general, smooth in nature12,19,27. In order to avoid these abrupt jumps213

due to erroneous pitch estimates, we incorporate a temporal continuity constraint to estimate214

the pitch in the DP frames. The continuity constraint is implemented using DP approach35,36
215

with the Euclidean distance as an objective measure. The objective function involved in the216

DP approach is given by217

p̂t = arg min
pt;t∈F

∑
t

(pt − pt−1)2 (5)

such that p̂t = pk
opt

t ∀ t ∈ non-DP frames

where F is a set of frames in a voiced region. The detailed algorithmic steps for solving (5)218

are provided in Algorithm 1.219

III. DATABASE220

We use KEELE28, CSLU29, and PaulBaghsaw (PB)30 corpora for all experiments in221

this work. Table I shows the details of the three corpora and the number of recordings222

considered in our experiments. In the experiments, we consider only the sentences belonging223

to both the male and the female subjects from all three corpora and exclude the sentences224

belonging to the children. In all three corpora, each spoken utterance has been recorded225

simultaneously with a laryngograph signal, which is used to compute the reference pitch226
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considered as the ground truth. KEELE database consists of utterances from five male, five227

female and five children speakers reading “The North wind story”. CSLU database consists228

of 50 phonetically rich sentences spoken by seven male and five female speakers. These229

sentences have been collected from the TIMIT and Harvard Psychoacoustic corpora37. Each230

speaker has uttered every sentence in three different contexts. PB database consists of 50231

sentences spoken by one male and one female speakers.232

TABLE I. Details of the three corpora used in the experiments in this work

KEELE CSLU PB

Number of
sentences

Overall 15 1800 100

considered 10 1800 100

Number of
speakers

male 5 7 1

female 5 5 1

children 5 – –

Availability of laryngograph Yes Yes Yes

IV. EXPERIMENTAL RESULTS233

A. Experimental setup234

We compare the performance of the proposed FSDP for pitch estimation and VuV classi-235

fication with four existing methods (SHR, SWIPE, RAPT and PEFAC) using speech signal236
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in clean condition and in additive white Gaussian noise in four SNR conditions: 20, 10, 5237

and 0dB. KEELE, CSLU and PausBaghsaw (PB) corpora have been used for this purpose.238

Among the four existing methods, Matlab implementations of the four methods, namely,239

SHR, SWIPE, RAPT and PEFAC are directly available38–40 and are used for the compar-240

ison. The gross pitch error (GPE-20) and root mean squared error (RMSE)14 are used as241

the metrics for comparing the performance of pitch estimation using different methods. The242

GPE-20 is computed as 100× Nerr

Nv
, where, Nerr is the total number of erroneous frames, in243

which the estimated pitch values fall outside ±20% of the ground truth pitch value and Nv244

is the total number of voiced frames. Ground truth pitch is computed from the laryngo-245

graph signal available with individual corpus. Both GPE-20 and RMSE are computed by246

discarding the estimated pitch at the boundary frames (first and last frame) in every voiced247

segment. The parameters K and r are learnt using ground truth VuVs separately for each248

corpus from randomly chosen 20% data in clean condition among which 75% of the data is249

used for the training and the remaining used for the development. Among K and r, first, we250

obtain the best K which results in the least GPE-20 error on the entire 20% data. Then, the251

best r is learnt using the best K considering the errors computed on the development set.252

The parameters corresponding to the least GPE-20 error on a corpus are used to estimate253

pitch within the corpus and across several other corpora in clean and noisy conditions using254

estimated VuVs to examine the generalizability of the proposed method.255

The performance of VuV classification using different methods are compared using the256

classification error41. We use SVM classifier with RBF kernel for the classification task with257

the complexity parameter (C) equal to 1.0 and with kernel coefficient (γ) equal to 1/number258
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of features. SVM classifier is implemented using Scikit-learn42. We train the SVM using a259

training set identical to that for learning the parameters in the pitch estimation task. These260

trained SVM models are used to estimate VuV decisions within the corpus and across the261

corpora in clean and noisy conditions. During comparison, we use readily available VuV262

decisions from all four existing methods except SWIPE for which classification error is not263

reported.264

The performance of the proposed FSDP method depends on the accuracies in the es-265

timation of DP & non-DP frames and VuV decisions. To understand the effect of each266

of these factors on the overall performance, we present the results in three sub-sections in267

Section IV B. Section IV B 1 discusses the pitch estimation accuracy with ground truth DP268

& non-DP frames and VuV decisions. Section IV B 2 discusses the effect of estimated DP &269

non-DP frames on the overall performance. Similarly, Section IV B 3 explains the effect of270

estimated DP & non-DP frames and VuV decisions. Following this, we analyze the reasons271

for a better performance using the proposed FSDP methods over four baseline schemes in272

two sub-sections – IV B 4 and IV B 5. For this analysis in Section IV B 4 and IV B 5, the273

benefit of FSDP are highlighted by comparing with SHR & SWIPE and with RAPT &274

PEFAC respectively. Note that, the performance of the proposed method also depends on275

the accuracy of the pitch candidates and their confident scores, which is discussed in Section276

IV B 6. Finally, in Section IV B 7, we present the accuracy of VuV classification.277
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TABLE II. GPE-20 obtained using the FSDP with ground truth DP and non-DP frames. A bold

entry for a corpus and noise condition indicates the least GPE-20 among different K.

K = 2 K = 3 K = 4

Clean

KEELE 0.79 0.74 0.75

CSLU 1.16 0.91 0.95

PB 1.34 1.33 1.25

20dB

KEELE 0.85 0.81 0.81

CSLU 1.18 0.92 0.96

PB 1.36 1.34 1.26

10dB

KEELE 1.20 1.18 1.20

CSLU 1.49 1.14 1.20

PB 1.90 1.89 1.78

5dB

KEELE 2.09 1.99 1.97

CSLU 2.11 1.67 1.73

PB 3.15 3.13 2.92

0dB

KEELE 5.29 5.08 4.86

CSLU 3.88 3.16 3.14

PB 6.25 6.21 5.56

TABLE III. GPE-20 obtained using the FSDP within and across all the three corpora using corpus

specific parameters K and r learnt on the development set.

FSDP

KEELE CSLU PB

clean

KEELE 0.79 1.04 1.17

CSLU 1.61 1.52 1.74

PB 1.49 1.45 1.36

20dB

KEELE 1.12 1.15 1.24

CSLU 1.65 1.57 1.79

PB 1.45 1.49 1.36

10dB

KEELE 1.56 1.60 1.67

CSLU 2.01 2.02 2.15

PB 2.03 2.02 1.92

5dB

KEELE 2.91 2.73 2.93

CSLU 2.73 2.75 2.87

PB 3.61 3.37 3.21

0dB

KEELE 6.90 6.48 6.59

CSLU 4.78 4.73 4.88

PB 7.57 6.88 6.42
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B. Results and discussions278

1. GPE-20 using FSDP with ground truth DP & non-DP frames and VuV deci-279

sions280

Frame selection is one of the key components in the proposed FSDP approach. An error in281

frame selection causes errors in pitch values estimated using FSDP. Hence, we first compute282

the GPE-20 using FSDP where we use the ground truth DP and non-DP labels and VuV283

decisions (i.e., no errors due to either automatic frame selection or VuV classification). This284

could be used as the lower bound on the GPE-20 of the FSDP scheme. Table II shows285

these GPE-20 values computed on entire data from three corpora under clean and all noisy286

conditions for K ∈ {n; 2 ≤ n ≤ 4}. It is clear from Table II that the least GPE-20 increases287

with decreasing SNR. It also varies across different corpora. From the table, it is observed288

that the best K (corresponding to the least GPE-20) is 3 in clean, 20dB and 10dB SNR289

conditions and 4 in 0dB SNR conditions for KEELE and CSLU corpora. For PB, the best290

K is found to be 4 in clean and all noisy conditions. This indicates that the best K varies291

even within a corpus in clean and all noisy conditions; it also varies across three corpora.292

However, we consider the best K obtained in clean condition for each corpus to find the293

best choice of parameter r for NN based frame selection strategy.294
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2. GPE-20 using FSDP with estimated DP & non-DP frames and ground truth295

VuV decisions296

The best choice of r is obtained for the frame selection strategy separately for each297

corpus using ground truth VuV decisions. We find the best choice of the parameter298

r ∈ {1 + 2n; 0 ≤ n ≤ 12}) on the development set for clean condition using GPE-20. The299

parameters K and r corresponding to the minimum GPE-20 are found to be (3 and 1), (3300

and 21) and (4 and 1) for KEELE, CSLU and PB corpora respectively. From the optimal301

choice of r, it is observed that the parameter value changes in a corpus dependent manner.302

Table III shows GPE-20 values on the entire data from all three corpora separately in303

clean and noisy conditions using K and r learnt for each corpus. In the table, each column304

indicates the corpus that is used for optimizing the parameters. It should be noted that305

the parameters are optimized for clean conditions. The diagonal entries (shaded regions in306

every 3×3 sub tables in Table III) indicate the GPE-20 values within the corpus (matched307

development and test corpora) and the off-diagonal values indicate errors across corpora308

(mis-matched development and test corpora). Bold entry for each corpus (every row) in309

Table III indicates the least GPE-20 value among all columns, which indicates the best310

development set. From the table, it is interesting to observe that the least errors are not311

confined to diagonal entries only, particularly at low SNR.312

21



TABLE IV. Comparison of pitch estimation and VuV classification performance of RAPT, PEFAC,

SHR, SWIPE and FSDP. The performance of different methods is compared using GPE (%) and

RMSE (%).

KEELE CSLU PB

GPE-20 RMSE VuV GPE-20 RMSE VuV GPE-20 RMSE VuV

Clean

RAPT 2.85 17.27 8.99 4.39 20.85 6.77 2.24 34.93 10.40

PEFAC 12.16 41.21 12.68 5.93 27.99 10.12 3.39 15.79 9.32

SHR 1.73 13.16 12.72 2.63 17.12 13.51 1.93 11.14 8.13

SWIPE 4.31 21.69 – 3.41 22.34 – 2.52 15.95 –

FSDP 0.89 8.90 6.43 1.65 13.31 5.91 1.50 9.01 7.29

20dB

RAPT 4.07 21.18 6.30 5.12 24.99 4.43 3.94 16.12 7.49

PEFAC 12.35 46.58 12.81 6.09 28.26 10.31 3.39 16.17 9.25

SHR 1.87 12.95 8.22 2.73 17.54 5.82 1.99 11.56 6.54

SWIPE 4.68 21.94 – 3.78 22.63 – 2.83 16.99 –

FSDP 1.17 9.91 6.12 1.69 13.54 5.45 1.48 8.85 6.51

10dB

RAPT 16.48 35.51 9.46 14.81 34.37 6.31 16.19 27.31 7.75

PEFAC 11.91 41.13 13.79 6.56 28.28 11.19 3.72 16.02 10.02

SHR 2.50 14.97 15.01 3.42 19.31 11.07 2.46 12.08 9.05

SWIPE 8.12 28.56 – 6.02 26.44 – 4.42 21.02 –

FSDP 1.59 11.39 7.09 2.05 14.56 5.58 2.00 9.60 5.87

5dB

RAPT 31.70 53.35 17.03 24.07 46.78 10.94 25.39 42.36 10.47

PEFAC 12.69 39.47 15.00 7.24 28.10 12.11 4.58 17.22 11.01

SHR 4.24 18.28 26.48 4.59 21.50 21.42 3.87 14.45 17.17

SWIPE 15.07 39.10 – 10.72 33.62 – 8.09 28.42 –

FSDP 2.79 13.43 9.73 2.79 16.01 6.82 3.39 12.12 6.69

0dB

RAPT 59.77 75.76 30.62 48.67 69.38 23.21 51.63 69.01 20.07

PEFAC 14.65 37.73 16.90 8.53 28.28 13.41 6.38 19.28 12.00

SHR 8.26 23.99 41.10 7.52 26.23 36.24 7.90 20.38 28.27

SWIPE 30.68 55.55 – 23.33 48.80 – 20.99 45.80 –

FSDP 6.56 18.81 16.26 4.77 19.15 10.61 6.91 17.18 10.87

3. Comparison of GPE-20 and RMSE from FSDP and baseline schemes313

Once the corpus and the SNR for a given test utterance is known, an accurate pitch314

contour could be achieved by using the parameters (K and r) corresponding to the least315

GPE-20 values (marked in bold) in Table III. However these corpus dependent parameters316

and the corresponding GPE-20 values might not be generalizable for unseen data. So, it317
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may not be fair to compare these corpus and SNR specific GPE-20 values with the GPE-20318

values computed using four baseline methods across all corpora and SNR conditions. Hence319

in FSDP, we consider one parameter set for frame selection strategy across all corpora and320

SNR conditions. This parameter set corresponds to the least GPE-20 value on the entire321

data among all corpora and SNR conditions (marked in blue in Table III). K and r in this322

parameter set are found to be the ones learnt on KEELE, i.e., K=3 and r=1. Using these323

parameters, we estimate VuV decisions using the SVM model learnt on KEELE with K=3.324

Following this, GPE-20 and RMSE are computed for all three corpora.325

Table IV shows the GPE-20 and RMSE values obtained on the three corpora using the326

proposed FSDP and four baseline methods (RAPT, PEFAC, SHR and SWIPE) at various327

noisy levels and clean condition.In addition, we consider all frames as DP frames (i.e., no328

frame selection) in Equation 5 and compute the GPE-20 and RMSE to analyze the benefit329

of frame selection in FSDP scheme. However, pitch estimation using all frames as DP frames330

results in very poor performance; hence not reported in the table. The best performance331

for each metric is indicated in bold for each corpus and SNR condition. From the table,332

it observed that the proposed FSDP performs better than baseline methods for all three333

corpora in clean and all SNR conditions except at 0dB SNR in PB corpus (GPE-20 value),334

at which PEFAC performs better than FSDP. When averaged across clean and all noisy335

conditions, FSDP achieves the least average GPE-20 and RMSE errors (2.60 and 12.49, 2.59336

and 15.31, 3.06 and 11.35) followed by SHR (3.72 and 16.67, 4.18 and 20.34, 3.63 and 13.92)337

for KEELE, CSLU and PB respectively. This implies that the strategies of SHR and SWIPE338

are complementary in nature and, when combined for computing pitch candidates and their339
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confidence-scores as in FSDP, they achieve better pitch estimation accuracy compared to340

the individual ones in most of the cases. The improvement in the performance of FSDP over341

the four baseline methods is analyzed separately in two following subsections by comparing342

with – 1) SHR and SWIPE (the variants of which have been used in FSDP) 2) RAPT and343

PEFAC (DP based methods).344

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

(a) Clean signal

P
it

c
h

 i
n

 H
z

 

 

1

2Ground truth pitch FSDP SHR SWIPE

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

(b) Noisy signal at 0dB SNR

P
it

c
h

 i
n

 H
z

Frame index

 

 

3
4

5

DP frames non−DP frames

FIG. 4. Illustrative example describing the benefit of FSDP over SHR and SWIPE in a voiced

segment. Red boxes 1, 2, 3, 4 and 5 are used to indicate the significant variations in the estimated

pitch from the ground truth pitch. Red and blue horizontal patches indicate DP and non-DP

frames respectively.

4. Comparison with SHR and SWIPE345

Figure 4a and 4b show the estimated pitch trajectories for an exemplary voiced segment346

taken from the KEELE database in clean and noisy (SNR 0dB) conditions respectively. In347
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TABLE V. Comparison of erroneous frames (%) for both DP and non-DP categories obtained from

FSDP in clean and all noisy conditions for all three corpora. All the percentages for each corpus

are computed with respect to the total number of voiced frames

estimated
EDPFs ENDPFs

EDP NDPFs

DP frames (ENDPF′s)

KEELE

clean 0.89 0.25 0.65 0.02 (0.01)

20dB 0.98 0.25 0.92 0.02 (0.01)

10dB 1.26 0.32 1.27 0.04 (0.03)

5dB 2.08 0.46 2.33 0.12 (0.10)

0dB 2.64 0.74 5.82 0.34 (0.28)

CSLU

clean 0.70 0.17 1.48 0.03 (0.02)

20dB 0.77 0.17 1.52 0.03 (0.02)

10dB 1.05 0.22 1.84 0.05 (0.04)

5dB 1.46 0.26 2.53 0.05 (0.04)

0dB 2.48 0.44 4.33 0.18 (0.13)

PB

clean 1.15 0.06 1.43 0.00 (0.00)

20dB 1.29 0.09 1.38 0.00 (0.00)

10dB 1.79 0.24 1.76 0.00 (0.00)

5dB 1.92 0.41 2.98 0.03 (0.02)

0dB 2.93 0.70 6.21 0.26 (0.22)

box-1 all methods estimate pitch correctly except the SHR. This indicates that original pitch348

could be one of the pitch candidates in SHR, but the selection criteria used in SHR has led349

to wrong estimation of the pitch. In box-2, where the ground truth pitch has large variation,350

the proposed FSDP estimates pitch more accurately compared to all other methods. The351

SWIPE estimates wrongly at most of the points, which could be due to the large amount of352

errors in SWIPE when the actual pitch has wide variations. This could be because SWIPE353

considers many pitch candidates for estimating the pitch. SHR has better pitch estimates354

than those of SWIPE but worse than those of FSDP. When ground truth pitch has wide355

variation, we observe that the estimates of the pitch candidates and their confidence-scores356

become less reliable. This causes the SHR and SWIPE to result in octave errors. We357
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also observe that such unreliable frames often get classified as DP frames using the nearest358

neighborhood strategy. Since the DP in the proposed scheme does not directly use the359

confidence-scores of the pitch candidates in DP frames and rather uses estimated pitch from360

neighboring non-DP frames to compensate the octave errors, the accuracy in the estimated361

pitch in these unreliable frames improves by using FSDP.362

From Figure 4b, it is observed that the estimation errors are more in 0dB SNR compared363

to the clean condition for all the methods. This observation is consistent with the overall364

performance degradation in Table IV from clean to 0dB SNR condition. The performance365

degradation of FSDP could be due to two reasons. The first reason is that the estimated366

DP frames are more (2 in Figure 4a and 4 in Figure 4b, as highlighted using red horizontal367

patches) in case of 0dB SNR than in the clean condition. Higher number of DP frames could368

cause a smooth pitch trajectory even in frames with large ground truth pitch variations, and369

thereby resulting in a lower performance at 0dB SNR. The percentage of such DP frames370

that cause errors in the pitch estimation, called erroneous DP frames (EDPFs), are listed in371

the fourth column of Table V across all three corpora in clean and all noisy conditions. From372

the table, it is observed that the DP frames and EDPFs increase from clean to 0dB SNR373

condition for all three corpora. This implies that more DP frames result in more EDPFs,374

and, hence, the performance could degrade from clean to 0dB SNR.375

The second reason for poor performance of FSDP in low SNR condition could be a376

large number of non-DP frames which result in pitch estimation errors at 0dB SNR, called377

erroneous non-DP frames (ENDPFs), (0 in Figure 4a and 15 in Figure 4b). In the entire378

set of ENDPFs, a subset of ENDPFs, indicated as ENDPF′ (13-th, 15-th and 31-st frames379
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in Figure 4b), introduces pitch estimation errors in the neighboring DP frames due to the380

smoothing constraint in DP. For illustration, consider the 31-st frame marked in gray circle381

in Figure 4b in the box-5. This frame is classified as a non-DP frame (but it is ENDPF)382

by the nearest neighborhood frame selection strategy. Because of this, FSDP estimates383

the pitch values incorrectly at the neighboring DP frame (32-nd) in box-5 by following a384

wrong smooth trajectory. ENDPFs and ENDPF′ are listed in the fifth and sixth column385

(in brackets) of Table V. The percentage of such DP frames that results in pitch estimation386

errors due to ENDPF′s (indicated as EDP NDPFs) are listed in the sixth column of Table387

V. From the table, it is observed that EDP NDPFs are more than ENDPF′s for all three388

corpora. This indicates that the number of frames with estimated erroneous pitch is more for389

every ENDPF′ than that for every remaining ENDPFs. From the table, it is also observed390

that ENDPFs as well as ENDPF′s gradually increase from clean to 0dB SNR for all three391

corpora. Hence the additional pitch estimation errors by the ENDPFs along with pitch392

estimation errors by the EDPFs could result in further performance degradation. These393

observations from EDPFs and ENDPFs are consistent with the performance degradation of394

FSDP in Table IV for all three corpora.395

5. Comparison with RAPT and PEFAC396

From Table IV, it is observed that the GPE-20 of RAPT varies largely from clean to397

0dB SNR condition compared to all other methods for all three corpora. This observation398

is consistent with the experimental findings by Gonzalez and Brookes12. The worst perfor-399

mance of RAPT at 0dB SNR could be due to the increase in incorrect pitch candidates by400
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NCCF. PEFAC performs worse in the clean case but better in the noisy case compared to401

RAPT. This is because it was designed specifically for noisy signal with low SNRs. However,402

FSDP performs better in both clean and noisy conditions in almost all cases. This superior403

performance could be because FSDP performs DP only in the selected frames with few pitch404

candidates (optimal K = 3) using a few parameters (K and r).405
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FIG. 5. Illustrative part of the voiced segment used in Figure 4 describing – a) the benefit of FSDP

over RAPT and PEFAC b) the benefit of DP and non-DP frames in FSDP. The segment within

red rectangular box in Figure 5a is shown in Figure 5b. The dotted black and magenta lines in

Figure 5b indicate the estimated pitch trajectories when 40-th, 41-st and 42-nd frames are all DP

frames and non-DP frames respectively.

Figure 5a shows the pitch trajectories obtained using RAPT, PEFAC and FSDP in clean406

condition for an exemplary voiced segment used in Figure 4. From Figure 5a, it is observed407

that PEFAC estimates incorrect pitch in the region, indicated by the red box in the figure,408

could be due to wrong pitch candidates in the highlighted region that result in a smooth409

trajectory away from the ground truth pitch. In the same region, RAPT estimates wrong410

pitch due to large deviations away from the ground truth pitch. However these errors are411
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compensated in FSDP by using two different strategies in DP and non-DP frames – DP412

frames (40-th and 41-st) minimize the transitions and non-DP frames (38-th, 39-th, 42-413

nd, 43-th) allow pitch transitions without any smoothness constraint. Thus, the proposed414

FSDP allows pitch transitions as well as pitch smoothness in the right proportion using415

frame selection strategy thereby achieving better pitch estimation accuracy.416

We elaborate these benefits with the help of Figure 5b, where, in addition to the pitch417

trajectory using FSDP, two other hypothetical trajectories (dotted-black and magenta) are418

shown when 40-th, 41-st and 42-nd frames are all assumed to be DP frames and non-DP419

frames respectively. It is clear that both trajectories suffer from pitch error either due to420

smoothness constraint (in 42-nd frame when all are assumed to be DP frames) or due to421

confidence-score maximization criterion (in 40-th and 41-st frames when all are assumed to422

be non-DP frames). However, providing smoothness constraint only in selected DP frames423

(as done in FSDP) results in an accurate pitch trajectory.424

6. FSDP error analysis425

Overall, pitch estimation errors using FSDP depend on the strategies used in DP and non-426

DP frames as well as the accuracy of the pitch candidates and their confidence-scores. We427

categorize these errors into three types. – 1) Absence of RPCs as pitch candidate selection428

strategy fails to detect them, 2) Estimated confidence-score associated with non-RPCs is the429

highest among all candidates (even when RPCs are present) due to the errors in candidate430

confidence-score estimation in the non-DP frames, 3) Selecting non-RPCs as the estimated431
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TABLE VI. Comparison of the number of GPE-20 frames belonging to three different types of errors

occurred with different pitch candidates in clean and all noisy conditions for all three corpora.

K = 2 K = 3 K = 4

Absence with RPCs Absence with RPCs Absence with RPCs

of
in in

of
in in

of
in in

RPCs non-DP DP RPCs non-DP DP RPCs non-DP DP

KEELE

clean 0.41 0.23 0.32 0.26 0.39 0.24 0.26 0.39 0.32

20dB 0.44 0.63 0.11 0.30 0.72 0.15 0.30 0.75 0.19

10dB 0.81 0.63 0.18 0.67 0.71 0.21 0.67 0.81 0.21

5dB 1.69 0.75 0.35 1.48 0.89 0.41 1.40 1.16 0.35

0dB 4.73 1.23 0.55 4.35 1.51 0.71 4.06 1.84 0.68

CSLU

clean 0.87 0.75 0.04 0.57 0.98 0.09 0.57 1.12 0.05

20dB 0.87 0.78 0.05 0.57 1.03 0.08 0.57 1.17 0.05

10dB 1.14 0.89 0.06 0.78 1.18 0.09 0.77 1.32 0.06

5dB 1.73 1.03 0.07 1.29 1.36 0.12 1.27 1.51 0.09

0dB 3.40 1.36 0.12 2.75 1.81 0.19 2.69 2.03 0.17

PB

clean 1.25 0.20 0.00 1.20 0.26 0.00 1.11 0.25 0.01

20dB 1.29 0.19 0.00 1.22 0.26 0.01 1.13 0.20 0.02

10dB 1.83 0.20 0.00 1.77 0.25 0.00 1.64 0.25 0.04

5dB 3.03 0.34 0.00 2.96 0.40 0.02 2.73 0.44 0.04

0dB 5.97 0.89 0.03 5.85 1.01 0.04 5.26 1.09 0.11

pitch (even when RPCs are present) because of errors due to smoothing constraint using432

DP in DP frames.433

Table VI shows the percentage of GPE-20 frames belonging to these three types of errors434

in FSDP for K =2,3,4 in clean and all noisy conditions for all three corpora. From the435

table it is observed that the errors due to the absence of RPCs are significant in most of436

the cases (especially at 5dB and 0dB SNR conditions for all three corpora). The errors437

due to the absence of RPCs are crucial in the proposed FSDP, since they determine the438

pitch estimation errors when there is no error in both frame selection strategy and pitch439

estimation strategy at DP and non-DP frames. We investigate the reason for this error in440

detail with the help of Figure 6 with K=2 using St(f) for two exemplary voiced frames from441
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the KEELE database. In the figure, the ground truth pitch frequency is indicated in green442

and the estimated pitch candidates are indicated in red. From Figure 6a, it is observed that443

the ground truth pitch frequency is closer to one of the pitch candidates. Hence, FSDP444

estimates the pitch accurately by choosing the correct pitch candidate. However in Figure445

6b, both pitch candidates are far from the ground truth pitch which implies that the pitch446

candidate selection fails to estimate the RPCs. Hence FSDP fails to estimate the correct447

pitch. This underlines the importance of the pitch candidate selection method.448
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FIG. 6. Illustrative examples describing the importance of the pitch candidate selection method

for K = 2 in which – a) the RPC is present b) the RPC is absent in the estimated pitch candidates

From Table VI, it is also observed that the errors due to the absence of RPCs reduce with449

increasing K for all SNRs and three corpora. This suggests that using more number of pitch450

candidates can reduce those errors. This could be because the search range of candidate451

selection method depends on K. Hence the RPCs which are missed with a low value of K452

can be detected with a high value of K. However, a high value of K does not guarantee a453

better pitch estimation accuracy due to increase in the second and third categories of error454

even when RPCs are present. This is also supported by the fact that the optimal K is found455

to be lower than 4 for all three corpora. Specifically, from Table VI, it is observed that456

31



the second type of errors consistently increases with K in clean and all SNR conditions for457

three corpora in almost all cases. This could be because the ambiguity in associating the458

maximum confidence-score with the RPCs increases with increasing in K. Hence, the pitch459

estimation method at non-DP frames fails to estimate the RPCs as a pitch.460

The second and third categories of errors depend on the accuracy of the frame selec-461

tion strategy and pitch estimation at DP and non-DP frames. We investigate these errors462

in the proposed FSDP considering three different choices of DP and non-DP frames – 1)463

ground truth DP and non-DP frames, 2) estimated DP and non-DP frames using the nearest464

neighborhood 3) all frames as non-DP frames (to highlight the importance of DP frames).465

We find the sum of second and third types of errors as 0.40, 1.01 and 1.04 respectively466

for the above mentioned three choices, when averaged across all five SNRs and all three467

corpora. Note that, considering all frames as DP frames results poor performance, hence468

not reported. For computing these errors, the parameters of the proposed FSDP are kept469

identical to those used in Table IV for all three corpora. It is observed that the average470

errors increase (monotonically) from the first choice to the third choice. The non-zero error471

in the first choice indicates that the errors are only due to incorrect pitch estimation at some472

of DP and non-DP frames. A higher error in the second choice compared to the fist choice473

indicates combined effect of the errors caused by the frame classification strategy and pitch474

estimation methods at DP and non-DP frames. Similarly, the highest error in the third475

choice indicates that the pitch estimation errors due to the errors in the frame selection476

strategy are less than those due to the pitch estimation strategy.477
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7. VuV classification errors478

Table IV shows the VuV classification errors computed using FSDP and four baseline479

methods for all three corpora. In the table, a bold entry for a given corpus and SNR480

combination indicates the lowest VuV classification error. From the table, it is observed481

that the proposed FSDP has the least VuV error in clean and all noisy conditions on all482

three corpora except at 20dB SNR on CSLU corpus, where RAPT has the least VuV error.483

This indicates that the proposed FSDP method performs better than the four baseline484

schemes both in the pitch estimation and VuV classification tasks. It is interesting to notice485

that no single baseline scheme has consistently performed the best among all the baseline486

schemes across all noisy conditions on three corpora.487

V. CONCLUSIONS488

Realistic pitch trajectories are typically smooth in nature, but sometime they show large489

variation in pitch values in a short span of time. In this work, we propose FSDP approach490

for pitch estimation, which allows the estimated pitch trajectory to be smooth using DP491

only in a few selected frames (called DP frames) unlike a typical DP based method which492

forces the trajectory to be smooth over an entire voiced segment. In the remaining frames493

(called non-DP frames), FSDP approach allows large variation in the estimated trajectory494

by estimating pitch using a pitch candidate confidence-score maximization criterion where495

the candidates and their confidence-scores are computed using variants of SHR and SWIPE.496

These confidence-scores are used to automatically identify DP and non-DP frames. These497
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confidence-scores are also used for VuV classification using an SVM classifier. Experiments498

with three corpora namely, KEELE, CSLU and PaulBaghsaw reveal that FSDP performs499

better than four baseline methods considered in this work for pitch estimation as well as500

VuV classification tasks.501

The performance of the proposed FSDP method depends on the percentage of missing502

RPCs, reliability in estimating the pitch candidate confidence-scores, classification accuracy503

of DP and non-DP frames and effectiveness of smoothening constraint used in DP. Among504

all the errors, the percentage of missing RPCs is found to be crucial, since these errors505

determine the lower bound on the pitch estimation errors by the proposed method. Hence,506

further investigation is required to reduce the missing RPCs with an appropriate candidate507

selection strategy. In addition to this, the frame selection strategy needs to be improved.508

Most of the errors in the nearest neighborhood based frame selection strategy is due to the509

misclassification of DP and non-DP frames. Also, the computational cost involved in the510

frame selection strategy is quite high. This is because the nearest neighborhood classifier in511

the frame selection strategy computes a distance for each frame with all training samples.512

The training set for the DP and non-DP frame classification is also found to be imbalanced513

with a ratio of 1:100. Hence, a noise robust classifier with less computational complexity514

under large imbalanced training set would be effective.515
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