SPIRE-ABC: An online tool for acoustic-unit
boundary correction (ABC) via crowdsourcing

Chiranjeevi Yarra
Electrical Engineering
Indian Institute of Science
Bangalore 560012, India
chiranjeeviy @iisc.ac.in

Abstract—Time aligned acoustic-unit (AU) boundaries are
often important for the applications related to human computer
interaction (HCI). These boundaries are typically estimated using
automatic speech recognizer (ASR). However, they are often
erroneous due to mistakes by the ASR. In general, the bound-
aries estimated using ASR are corrected manually, however,
the manual correction is cumbersome, time consuming and
costly. Crowdsourcing has been known to be effective in such
scenarios via online tool which allows an interactive interface
that can be used by a large number of annotators. Typically,
the annotators are non-expertise in speech specific knowledge
such as spectrograms. Thus, it is required a customized interface
to yield better performance from non-expert annotators. We
propose an online tool called SPIRE-ABC for correcting noisy
AU boundaries, for example, estimated using ASR. SPIRE-ABC
could be useful to operate in a crowdsourcing environment with
or without crowdsourcing platforms. This is developed using
JavaScript and a customizable audio waveform visualization
interface called WaveSurfer. Currently SPIRE-ABC is available
in two versions — 1) an online interface, in which users can do
the correction by uploading an audio file and the corresponding
noisy AU boundaries; 2) an offline (downloadable) version for
setting up into users’ web-server. We perform experiments where
annotators are asked to use SPIRE-ABC to correct the AU
boundaries (syllable and word) obtained from Kaldi ASR on
TIMIT speech data. We find improvements in the AU boundaries
following manual correction using the SPIRE-ABC and the
improvements obtained based on non-expert annotators are
similar to those based on expert annotators.

Index Terms—A coustic unit boundary correction, Crowdsourc-
ing, Manual correction, Online interface

I. INTRODUCTION

Time aligned boundaries of AUs — phonemes, syllables
and words — are useful in the applications related to human
computer interaction (HCI) and computer assisted language
learning (CALL) such as automatic foreign language pronunci-
ation tutoring [1] and automatic detection of mispronunciation
[2]. Typically these boundaries are estimated from automatic
speech recognizer (ASR) either using forced alignment or by
doing recognition [2]. However, these boundaries often suffer
from errors due to inaccuracies in the ASR systems [2]. These
errors in the boundaries are typically corrected with human
intervention. Apart from the pronunciation evaluation system
[3], the manually corrected boundaries are useful in concatena-
tive speech synthesis, phonetics [4] and in developing a quality
speech corpus with time aligned AU boundaries [5]. However,
manual correction is time-consuming and expensive [6], [7].

Crowdsourcing has been found to be a cost effective solution
in speech language applications [8]. Gao et al. have shown that

Kausthubha N K
Electrical Engineering
Indian Institute of Science
Bangalore 560012, India
kausthubhal2 @gmail.com

Prasanta Kumar Ghosh
Electrical Engineering
Indian Institute of Science
Bangalore 560012, India
prasantg @iisc.ac.in

_’H&W

Annotation Interface of the SPIRE-ABC

7

greasy

P Play / Il Pause

B Rl

Fig. 1.

the crowdsourcing workers together outperformed the experts
on word alignment tasks [9]. Typically in crowdsourcing, tasks
are distributed to a group of people for completion, such that
the costs involved in the task completion can be reduced [8].
For achieving a lower cost, crowdsourcing methods provide a
way for non-experts to complete the tasks that would normally
be reserved for experts [10]. In general, most of the crowd-
sourcing tasks are performed via online tools using specific
platforms that allow communication between requesters and
workers [10], for example Amazon Mechanical Turk (AMT)
[11]. Correction of acoustic-unit (AU) boundaries, in particu-
lar, requires development of a customized interface where the
workers can listen to the audio over any period of time by
selecting parts of the audio waveform as well as edit the AUs
and/or their boundaries. In this correction process, the cost
effective solutions can be achieved by considering the workers,
who are not necessarily having expertise in speech domain.
Thus, while developing the interface, it is not necessarily
to incorporate any speech specific visualization tool such as
spectrograms. In addition, incorporating such tools could cause
confusion to the non-expert workers. Considering these, in
this work, we develop an online tool called SPIRE-ABC to
correct the noisy AU boundaries (e.g., obtained from ASR)
via crowdsourcing and that can be operated with or without
web platforms similar to AMT.

SPIRE-ABC reads an audio (.wav format) as well as corre-
sponding noisy AU boundaries (.csv format); and creates an
audio-visual interface for AU boundary correction (ABC) by
the users. Figure 1 shows SPIRE-ABC annotation interface for
an exemplary speech segment (she had your dark suit in greasy



wash water all the year) taken from the TIMIT corpus [12].
The interface displays the audio waveform as well as noisy
AU (word) boundaries of the speech segment. The noisy word
boundaries corresponding to the speech segment are shown in
Table I. In the table, there are eleven words along with their
start and end times. All word segments are displayed with
colored rectangular boxes on top of the waveform display.
Each rectangular box is placed according to the start time of a
word with the width equals to the word duration along the time
axis. The word boundaries can be modified with the mouse
click. On a mouse click, a box with adjustable boundaries is
displayed on the waveform (gray shaded region with black
thick boundaries in Figure 1). At the same time, the words’
start, end times and transcription are displayed on top left
corner (black solid rectangular boxes in Figure 1). The word
boundaries are modified by changing the boundaries of the
gray box and saved by clicking the save button. For providing
better clarity in the annotation two zoom buttons (‘Zoom out’
and ‘Zoom in’) are provided. After complete annotation of all
word boundaries, modified word boundaries are updated into
local storage with a click on the ‘submit’ button.
TABLE 1

AN EXEMPLARY SET OF NOISY AU BOUNDARIES CORRESPONDING TO THE
SPEECH SEGMENT she had your dark suit in greasy wash water all the year.

S1| Start | End Word Sl | Start | End Word SI | Start | End Word
no | time | time no | time | time no | time | time
1]0.19/035| she || 5|1.02|1.32| suit || 9 |2.08|2.34 | water
2035|064 had || 6 |1.32|1.41| in 10]2.34 (251 | all
310.64|0.71 | your || 7 | 1.41 |1.75 | greasy || 11| 2.51 |2.78 | year
41071 [1.02 | dark || 8 | 1.75|2.08 | wash

The functional modules in the SPIRE-ABC are written in
JavaScript, developed based on WaveSurfer [13], which is
a customized audio waveform visualization JavaScript. The
WaveSurfer has been used in many audio-video interface
applications. Saiz et al. have used the same in a web platform
for introducing user interface (UI) controls to compose and
combine the audio streams [14]. Baker et al. have used it
to create an analysis platform for recordings of wild life
sounds via crowdsourcing for removing voice introductions,
identifying external noises and separating two species in the
recordings [15]. Hsu has used WaveSurfer for syncing voice-
over narrated audios and handwritten lecture videos to record
and edit the online educational lectures [16]. Wang has used
it to record and edit the audios using web platform [17]. Ma-
tuszewki et al. have used to create a set of online components
for interactive audiovisual rendering of audio signals [18].
Buffa et al. have used WaveSurfer to create online multi-track
audio player for musicians [19]. However, WaveSurfer is a
general purpose JavaScript; hence, it is required to customize
it according to the SPIRE-ABC functionalities.

WaveSurfer JavaScript is also modified to incorporate ad-
ditional functionalities required by the SPIRE-ABC. An auto-
matic script is written for creating JavaScript object notation
(JSON) file from the csv file containing noisy AU boundaries.
SPIRE-ABC, currently, can be used either in a online mode

Reference acoustic-unit regions

-

#1 #2 #3 #4

AN

~

#10 #11

Y vy

#5 #6 #7 #8 #9

YV Y

SRR-ABC
HR-ABC

HR-ABC
boundaries

Fig. 2. An exemplary figure describing the proposed annotation interface in
SPIRE-ABC

from our web sever or by downloading source script to set-up
in users’ web server. The usage of SPIRE-ABC for both cases
is provided in this report as well as available in the SPIRE-
ABC web page with the detailed instructions. Experiments are
conducted to know the effectiveness of SPIRE-ABC consid-
ering syllable and word boundaries obtained from Kaldi ASR
on TIMIT speech data in online mode. Following the manual
correction using SPIRE-ABC, the obtained AU boundaries
results in better values interms of three objective measures,
namely, mean absolute difference (MAD), correct alignment
rate (CAR) and overlap rate (OVR) compared to those values
obtained with the estimated boundaries from ASR. Further,
the improvements in all three measures are similar when the
manual correction is obtained either from non-expert or expert
annotators.

II. SPIRE-ABC

Figure 2 shows a part of the SPIRE-ABC annotation in-
terface for the exemplary speech segment used in Figure 1.
It displays two different types of region markings on the
waveform for ABC. The first type is formed by the segment
between every two consecutive boundaries and is referred to
as reference AU region, shown by eleven colored rectangular
regions in Figure 2 with corresponding serial number of the
words from Table I. The second type is created by selecting
a reference region with a mouse click and is referred as
a highlighted AU region, shown by gray shaded portion
corresponding to the 7-th word unit in the figure. Note that
in the SPIRE-ABC, the selected reference regions can not
be edited by changing the colored rectangular boxes directly
for ABC; however, it can be done via highlighted regions.
Hence, SPIRE-ABC provides separate control options to the
highlighted region for ABC (HR-ABC). On mouse click, the
audio of the HR-ABC is played by the interface. SPIRE-ABC
provides a separate zoom control to the HR-ABC for better
audio waveform visualization; and it also facilitates resizing
HR-ABC by dragging the boundaries in both directions for
correction of boundaries in an annotator-friendly manner.
When the modified HR-ABC is saved using a ‘save’ option as
shown in Figure 1, it automatically updates the corresponding
selected reference region for ABC (SRR-ABC).

The SPIRE-ABC functionalities have been developed by in-
troducing modifications as well as additions in the WaveSurfer
JavaScript. WaveSurfer JavaScript is also available with addi-



tional plug-in called region plug-in (RPI) to create reference
regions using a JSON file containing reference regions details.
The RPI also provides extra functionalities such as dragging
and resizing of the reference regions, which, however, are
required only for HR-ABC and not for SRR-ABC. So in
the case of SRR-ABC, those functions are disabled. On the
other hand, RPI, by default, creates HR-ABC for all reference
regions while it is required to create HR-ABC for only
one region corresponding to the SRR-ABC that an annotator
intends to edit. This is resolved by appropriately modifying
both the WaveSurfer and the RPI JavaScripts. Another major
challenge in WaveSurfer with RPI is the incorporation of the
save controls for updating SRR-ABC using HR-ABC. This
is because RPI always holds one UI handler corresponding
to a mouse click; i.e., the Ul handler points towards either
SRR-ABC or HR-ABC but not both at a time. Therefore,
the UI handler pointer to SRR-ABC is lost when HR-ABC is
modified. Hence using existing WaveSurfer plus RPI set-up, it
is not possible to update SRR-ABC by modifying HR-ABC.
This is resolved by adding new control variables in both the
WaveSurfer and the RPI JavaScripts.

III. COMPONENTS OF SPIRE-ABC

The components involved in the proposed SPIRE-ABC
annotation interface are described with the help of a block
diagram in Figure 3. The block diagram has two major
stages: 1) data preparation, 2) data annotation. The data
preparation stage automatically creates JSON file from the csv
file containing noisy AU boundaries (reference regions). The
data annotation stage creates interface for manual correction
and it has five components. The first component displays the
waveform of the audio and reference regions. The second
component creates HR-ABC from SRR-ABC on a mouse
click. The third component allows resizing HR-ABC to modify
its boundaries. The fourth component controls zooming and
playing of the audio segment in HR-ABC. The last component
updates SRR-ABC with the modified HR-ABC.

Audio Reference regions

1 1
+ Data preparation+
Display
Load audio JSON file | reference
file creation regions
Data annotation \ i
Update Control | _ | Modify Create
SRR-ABC [ HR-ABC [ HR-ABC [*H| HR-ABC
| A

Annotated boundaries

Fig. 3. Block diagram describing the main components in SPIRE-ABC

Figure 4 shows the detailed modifications in the proposed
SPIRE-ABC with respect to the WaveSurfer. In the figure,
solid black rectangular boxes indicate functional blocks in-
volved in each component of SPIRE-ABC. Black dotted
square box indicates the WaveSurfer and the boxes (blue)

within that dotted box are the existing functional blocks in
the WaveSurfer — Play, Zoom, Regions plug-in (RPI) and
Save regions — that are customized to the need of SPIRE-
ABC. The proposed modifications to the WaveSurfer are
indicated by the blue boxes outside the dotted square box.
The detailed description of each functional block is discussed
in the following sub-sections.

A. JSON file creation

JSON file is a light weight text-based open standard de-
signed for human-readable data interchange. It is in text
format that is typically programming language independent but
uses conventions that are familiar to programmers of the C-
language family, including C, C++, C#, Java, JavaScript, Perl,
Python etc. JSON syntax is easy to use and has wide range
of browser compatibility. WaveSurfer requires the reference
regions as well as the AU transcriptions in JSON format as
collection of objects. Each AU boundary is represented as
an object, containing values of start time, end time and the
transcription. Table II shows an exemplary conversion of AU
boundaries from csv to JSON format. From the table, it is
observed that each object is represented using the braces and
each value in the object is separated by commas.

TABLE II
AN EXEMPLARY CONVERSION OF CSV TO JSON FORMAT FOR TWO WORD
BOUNDARIES.

JSON format
[{“start”:“0.19”,“end”:“0.35”,“data”
{“word”:*she”} },{“start”:“0.35”,
“end”:“0.64”,“data”:{“word”:“had”} }]

csv format

start, end, word
0.19, 0.35, she
0.35, 0.64, had

B. WaveSurfer

WaveSurfer is a customized audio waveform visualization
built on top of Web Audio API and HTMLS canvas. The Web
Audio API provides a powerful and versatile system for con-
trolling audio on the Web, allowing to choose audio sources,
adding effects to audio and creating audio visualizations [20].
The HTMLS5 canvas is used to draw graphics via JavaScript for
real-time visualization [21]. WaveSurfer displays and plays the
audio segments associated with reference regions using RPL
The WaveSurfer and RPI update the regions according to the
annotator’s modification and register the callbacks associated
with the various UI actions such as clicking, resizing and
moving of the regions.

C. Display

SPIRE-ABC displays waveform along with reference re-
gions. These regions can’t be displayed using WaveSurfer
alone, it requires an additional RPI plug-in. In addition to
creating the regions, RPI plug-in can also displays three
additional control functions to WaveSurfer — 1) play the
audio of each region 2) resize each region by dragging its
boundaries 3) move the entire region. In SPIRE-ABC, we
obtain AU boundaries with WaveSurfer and RPI using only
the first control function and disabling remaining control
functions. This is because the reference region boundaries are
not allowed for direct changes from the annotator; updating



r 1
1 1
Play and | 1 Play WaveSurfer 1
zoom 1 !
controls : | 70 | ;
Control'HR-ABC I Rsmoving
1 | overlapping
Save 1 | of SRR-ABC
regi ' with
! adjacent
R 1 o : regions
controls : Update SRR-ABC
1 1
Display Cmmom|m - --ml
Region
Marker | | | and Marker
creation Marker controls
links

Create HR-ABC Modify HR-ABC

Fig. 4. Block diagram summarizing the modifications made on the wavesurfer
functionalities required for SPIRE-ABC

those is allowed through the changes made in HR-ABC. In
the Figure 2, it is observed that the reference regions have
lower height than the HR-ABC and are displayed above the
waveform.

D. Select boundary

SPIRE-ABC creates HR-ABC following annotator’s mouse
click on an SRR-ABC. This is done in two steps by enabling
the marker functionalities that are available in the RPIL. In
the first step, all the reference regions are highlighted using
marker enabled RPI with the three additional region control
functions — play, resize and move. The second step disables
all the reference regions except the SRR-ABC. Hence HR-
ABC is created. This is performed by passing region-id of the
selected reference region to the highlighted reference regions.

E. Adjust boundary

Region-id contains the information of only one region
(i.e.,start time, end time, transcription of region) which is
activated by the mouse click from a user. With the region-
id, the RPI allows modification and updates each region
after the modification. This, in turn, requires each region to
be separately controlled with the existing WaveSurfer and
RPI. However in the SPIRE-ABC, modifications of the SRR-
ABC are performed through the changes made in HR-ABC.
Hence, it is required to store the callbacks of SRR-ABC while
modifying the HR-ABC. But in the existing WaveSurfer and
RPI setup, the region-id can point to either SRR-ABC or HR-
ABC but not both. To overcome this, WaveSurfer and RPI
set-up is modified by defining two functions — main function
and a sub-function. The main function is activated with the
mouse click on the SRR-ABC and updates SRR-ABC through
a globally declared variables. The sub-function is a part of
the main function and it is activated with the mouse click
on the HR-ABC and the changes made in the sub-function
are updated in the global variables. Hence, the modifications
done in HR-ABC automatically update the SRR-ABC.

E. Control boundary

The annotation process may require the user to view the
waveform (or parts of the audio) at different zoom levels

in order to accurately mark the AU boundaries particularly
for finer speech units such as phonemes and syllables. It is
observed that the annotation process is more convenient with
finite number of zoom levels compared to continuous zooming
with slide bar control. However in WaveSurfer, zooming
functionality is available only with the sliding bar control. In
the SPIRE-ABC, we replace the slide bar based zooming as
in WaveSurfer with two buttons (‘Zoom In’ and ‘Zoom Out’
in Figure 1) for zooming with four discrete zoom levels (%x,

Ly, 1x and %ﬁx).

4 8

G. Save boundary

The start time of an AU is same as the end time of its
left neighboring AU. Similarly the end time of the same AU
is equal to its right neighboring AU. This indicates that the
start and end boundaries of any reference region depend on
its neighboring reference regions. Hence, the changes made in
the boundaries of any SRR-ABC would reflect in its neighbor-
ing reference regions automatically. However, implementation
with RPI saves only the SRR-ABC boundaries specified by the
region-id and this boundary information could not be passed to
its neighboring reference regions. To circumvent this problem,
we store all the reference regions information in a variable
and update the variable entries corresponding to the SRR-ABC
and its neighboring reference regions according to the changes
made in the HR-ABC.

IV. UsAGE oF SPIRE-ABC

SPIRE-ABC is available in two versions' — online and
offline (downloadable). In online mode users are requested
to upload both audio file (currently supporting .wav format)
to be annotated and noisy AU boundaries (in .csv format) in a
format similar to the sample shown Table II. The sampled files
are also available in SPIRE-ABC web page. Once both files
are successfully uploaded in the required format, SPIRE-ABC
annotation interface is activated. Using this interface, users
can modify the uploaded noisy AU boundaries by following
the instructions that are provided on the SPIRE-ABC web
page, which are also presented in the following sub-section.
Finally, the modified boundaries can be downloaded in the a
format (.csv) identical to the one in which the original noisy
boundaries are uploaded.

In offline (downloadable) mode, users can download SPIRE-
ABC JavaScript from the web page to perform the annotation
through their own web server?. In this case, users need to
place the JavaScript in their web server and update the source
paths of the audio files and the csv files® containing noisy AU
boundaries. Users also need to update the destination paths for
the output csv files containing updated ABCs as modified by
the annotator. The SPIRE-ABC automatically retrieves each
file pair (audio and csv) from the source location, activates

Uhttp://spire.ee.iisc.ernet.in/spire-abc/

2we have so far successfully tested using LAMP (Linux, Apache, MySQL,
PHP) stack on UBUNTU 14.04 operating system.

3names of both the audio and the csv files (excluding extensions) should
be identical



the annotation interface for users to modify the boundaries
and places the annotated ABCs in the destination location.

A. Instructions for ABC

The instructions involved in ABC are provided below. These
instructions are required for using the SPIRE-ABC annotation
interface (Figure 1). These instructions are identical for both
online and offline modes of SPIRE-ABC.

1) Click on play/pause button to listen the entire audio
segment.

2) Click on a reference region to be modified (SRR-ABC).
On click, SPIRE-ABC displays the corresponding HR-
ABC. It also displays the time aligned boundaries as
well as transcription of HR-ABC on the top left corner,
as indicated by black rectangular boxes in Figure 1.

3) Click on either SRR-ABC or HR-ABC to listen the
audio segments corresponding to the respective reference
regions.

4) Click on play controls to change the play speed of HR-
ABC.

5) Click on zoom controls to change the display of HR-
ABC.

6) Resize or drag the HR-ABC boundaries to modify SRR-
ABC.

7) Click the save button to update SRR-ABC with modified
HR-ABC.

8) Repeat 2nd to 7th steps for any other SRR-ABC.

9) Click submit to save the modified AU boundaries into
the output file.

V. EXPERIMENTS AND RESULTS
A. Experimental set-up

We consider three measures for computing the accuracy of
the AU boundaries corrected using SPIRE-ABC. The first mea-
sure is mean absolute difference (MAD) between the ground
truth and the corrected AU boundaries [22]. The second
measure is the percentage of AU boundaries that fall within a
tolerance of 40ms from the ground truth AU boundaries [23],
referred to as correct alignment rate (CAR). The third measure
is the overlap rate (OVR) defined in [24]. OVR measures the
amount of overlap between the corrected and ground truth
segments for all AUs in the sentences considered for ABC.
Thus, for a set of accurate AU boundaries, MAD should be
low while CAR and OVR should be high. We perform the
experiments in an online mode. The annotators are asked
to follow the instructions provided in the online portal and
during correction, the annotators are not provided with any
further instructions. We select nine annotators belonging to
three categories each containing three annotators. Annotators
in the first category have prior experience in doing correction
at various AU levels, called expert annotator (EA). Annotators
in the second category do not have any experience in the
correction task; however, they have experience in handling the
annotated speech data, called inexperienced annotator (IEA).
Annotators in the third category have experience neither in
speech data handling nor in correction, called new annotator

(NA). Each annotator is asked to correct the AUs at two levels
— syllable and word. All the chosen annotators are either post
graduate or doctoral students at the institute. For the correction
task, each annotator is given a fixed amount of cash as a token
of appreciation.

B. Results and discussions

For the correction, we use 30 phonetically balanced audio
files from the test set of the TIMIT [12] corpus. We consider
phoneme and word aligned boundaries corresponding to each
audio file from the corpus as the ground truth. We convert
the phoneme boundaries into syllable boundaries using “NIST
tsylab” syllabification software [25]. Noisy AU boundaries are
obtained from Kaldi speech recognition tool kit [26] under
two forced alignment setups using deep neural network based
acoustic models (Karels’ implementation). The first setup uses
the acoustic models learnt from the fisher English (FE) [27]
data for the forced alignment of the TIMIT data. This setup is
useful to analyze the variabilities in ABC when noisy AU
boundaries are obtained from the forced alignment with a
mismatch between the train and test sets. The second setup
considers a matched scenario in which acoustic models are
learnt from the TIMIT train data. Considering both variants of
each AU, nine annotators correct a total of 120 files — 30 files
containing word AUs aligned with FE acoustic model (denoted
by FE_W), 30 files containing syllable AUs aligned with FE
acoustic model (denoted by FE_S), 30 TIMIT_W files, and 30
TIMIT_S files. Entire set of 120 files is used to create nine
subsets, each containing 52 files for one annotator. Each of
FE_W, FE_S, TIMIT_W, and TIMIT_S groups is randomly
divided in three subsets each containing 10 files. Three non-
overlapping sets (Si, S2, S3) of 40 files are obtained by
combining one subset from each group. In addition to this,
four files from each of S, So, and S5 are randomly chosen
to construct a common set (S.) containing 12 files. S. is
combined with each of Si, Ss, and S3 to have three sets of
52 files, which are given to three EAs as well as three IEAs

and NAs separately.
[IFE_S I FE_W I TIMIT_S I TMIT_W

100, 0.04
) Soo02 g 09
3 =" © 0.5
80 0 0.8

0.04

100 O 2] 1 W#2 43 O W23
3 Soo02 g 09
3 o0 E i 3 0ss
80 0 0.8

EA IEA NA EA I‘%I)\ NA "~ EA IEA NA

Fig. 5. CAR, MAD and OVR measures obtained after manual correction for
all three annotator categories under four conditions — FE_S, FE_W, TIMIT_S
and TIMIT_W.

Figure 5a shows the CAR, MAD and OVR obtained under
FE and TIMIT setups for syllable and word boundaries after
manual correction by the EAs, IEAs and NAs. Before the
manual correction using SPIRE-ABC (i.e., boundaries from
forced alignment directly), CAR is found to be 83.02, 78.92,
86.72 & 82.35 for FE_S, FE_W, TIMIT_S & TIMIT_W
respectively. Similarly, MAD and OVR are found to be 0.0465,
0.0518, 0.0352 & 0.0394 and 0.7927, 0.8120, 0.8257 & 0.8398




respectively. From the figure, it is observed that the CAR and
OVR are higher and MAD is lower after the manual correction
using SPIRE-ABC compared to those from forced alignment
directly. This indicates the benefit of using SPIRE-ABC for
manual correction of AU boundaries by annotators from all
three categories. It is also observed that the performance
measures obtained by NAs are not significantly different from
those by EAs and IEAs. This suggests that all three type of
annotators could produce ABC with similar quality using the
SPIRE-ABC interface. From the figure, the OVRs are found
to be 0.8663, 0.8830, 0.8783 and 0.8910 for FE_S, FE_W,
TIMIT_S, and TIMIT_W respectively when averaged across
all three annotator categories. These OVR values are more than
misalignment OVR threshold (0.75) as suggested by Paulo
et al. [24]. These observations indicate that the SPIRE-ABC
interface is effective for ABC using crowdsourcing.

From Figure 5a, it is also observed that the CAR, MAD
and OVR obtained from NAs are higher (but not significantly)
compared to EAs and IEAs for some specific conditions. For
example, NAs have higher CAR than both EAs and IEAs for
TIMIT_S setup. We investigate this using the performance of
each annotator on the common set (S.). Figure 5Sb shows the
CAR, MAD and OVR obtained from each annotator of all
three categories. From the figure, it is observed that the first
annotator in EA category (EA#1) shows better performance
across all performance measures over IEAs and NAs. How-
ever, interestingly, the EA#3 has lower performance among all
EAs and across both the IEAs and NAs. This suggests that the
SPIRE-ABC is annotator-friendly irrespective of the annotator
category and the performance variabilities, as observed in
Figure 5a, mainly depend on the AU correction ability of the
annotator.

VI. CONCLUSIONS

In this work, we present SPIRE-ABC that helps in cor-
recting errors in noisy acoustic-unit boundaries using web
interface via crowdsourcing. This is developed by creating ad-
ditional functional modules as well as modifying the existing
functional modules in the WaveSurfer JavaScript. SPIRE-ABC
is available in online as well as in downloadble offline versions
along with the instructions for using ABC. Experiments on
TIMIT corpus have shown improvements in the AU bound-
aries after manual correction of those obtained from forced
alignment using SPIRE-ABC online version. Further works are
required for adding all reference acoustic-unit transcriptions
as well as displaying a 2-D representation of audio signal like
spectrogram along with the waveform for better clarity during
annotation.

REFERENCES

[1] M. Eskenazi, “Using automatic speech processing for foreign language
pronunciation tutoring: Some issues and a prototype,” Language learn-
ing & technology, vol. 2, no. 2, pp. 62-76, 1999.

[2] H. Franco, L. Neumeyer, M. Ramos, and H. Bratt, “Automatic detec-
tion of phone-level mispronunciation for language learning.” Proc of
EUROSPEECH, 1999.

[3] S. Witt and S. Young, “Performance measures for phone-level pronun-
ciation teaching in call,” Proc. of the Workshop on Speech Technology
in Language Learning, pp. 99-102, 1998.

[4]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

K. Sjolander, “An HMM-based system for automatic segmentation and
alignment of speech,” Proc of Fonetik, vol. 2003, pp. 93-96, 2003.

M. A. Pitt, K. Johnson, E. Hume, S. Kiesling, and W. Raymond, “The
Buckeye corpus of conversational speech: Labeling conventions and a
test of transcriber reliability,” Speech Communication, vol. 45, no. 1, pp.
89-95, 2005.

T. J. Hazen, “Automatic alignment and error correction of human gen-
erated transcripts for long speech recordings.” Proc of INTERSPEECH,
pp. 1606-1609, 2006.

J. Yuan, N. Ryant, M. Liberman, A. Stolcke, V. Mitra, and W. Wang,
“Automatic phonetic segmentation using boundary models.” Proc of
INTERSPEECH, pp. 2306-2310, 2013.

M.-C. Yuen, I. King, and K.-S. Leung, “A survey of crowdsourcing
systems,” Privacy, Security, Risk and Trust (PASSAT) and IEEE Third
Inernational Conference on Social Computing (SocialCom), pp. 766—
773, 2011.

Q. Gao and S. Vogel, “Consensus versus expertise: A case study of
word alignment with mechanical turk,” Proceedings of the NAACL
HLT Workshop on Creating Speech and Language Data with Amazon’s
Mechanical Turk, pp. 30-34, 2010.

G. Parent and M. Eskenazi, “Speaking to the crowd: Looking at past
achievements in using crowdsourcing for speech and predicting future
challenges.” Proc of INTERSPEECH, pp. 3037-3040, 2011.

M. Marge, S. Banerjee, and A. I. Rudnicky, “Using the amazon me-
chanical turk for transcription of spoken language,” IEEE International
Conference on Acoustics Speech and Signal Processing (ICASSP), pp.
5270-5273, 2010.

V. Zue, S. Seneff, and J. Glass, “Speech database development at MIT:
TIMIT and beyond,” Speech Communication, vol. 9, no. 4, pp. 351-356,
1990.

Katspaugh, “wavesurfer.js,” Available online: http://wavesurfer-js.org/,
2012.

V. Saiz, B. Matuszewski, and S. Goldszmidt, “Audio oriented ui com-
ponents for the web platform,” Proceedings of WAC 1st Web Audio
Conference January 26-28, Paris, France, 2015.

E. Baker, B. W. Price, S. D. Rycroft, J. Hill, and V. S. Smith,
“BioAcoustica: a free and open repository and analysis platform for
bioacoustics,” Database, pp. 1-10, 2015.

A. Hsu, “Creating and editing” Digital Blackboard” videos using Pen-
timento: with a focus on syncing audio and visual components,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2015.

J. Wang, “Pentimento: non-sequential authoring of handwritten lectures,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2015.

B. Matuszewski, N. Schnell, and S. Goldszmidt, “Interactive audiovisual
rendering of recorded audio and related data with the WavesJS building
blocks,” Proceedings of the 2nd Web Audio Conference (WAC-2016),
Atlanta, 2016.

M. Buffa, A. Hallili, and P. Renevier, “MT5: a HTMLS multitrack player
for musicians,” Proceedings of WAC 1st Web Audio Conference January
26-28, 2015-IRCAM & Mozilla Paris, France, 2015.

B. Smus, Web audio API. O’Reilly Media, Inc., 2013.

S. Fulton and J. Fulton, HTML5 canvas. O’Reilly Media, Inc., 2013.
J. Adell, A. Bonafonte, J. A. Gémez, and M. J. Castro, “Comparative
study of automatic phone segmentation methods for TTS.” IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing (ICASSP),
pp. 309-312, 2005.

S. Brognaux and T. Drugman, “HMM-based speech segmentation:
improvements of fully automatic approaches,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 24, no. 1, pp. 5-15,
2016.

S. Paulo and L. C. Oliveira, “Automatic phonetic alignment and its
confidence measures,” Advances in Natural Language Processing, pp.
3644, 2004.

B.  Fisher, “tsylb2-1.1: syllabification  software,”  National
Institute  of  Standards and  Technology, Available online:
https://www.nist.gov/itl/iad/mig/tools, last accessed on 07-09-16,

1996.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi
speech recognition toolkit,” IEEE workshop on automatic speech recog-
nition and understanding (ASRU), 2011.

C. Cieri, D. Miller, and K. Walker, “The Fisher Corpus: a resource for
the next generations of speech-to-text.” 4th international conference on
Language Resources Evaluation, vol. 4, pp. 69-71, 2004.



