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Abstract
For the benefit of spoken language training, concatenation

based articulatory video synthesis has been proposed in the
past to overcome the limitation in the articulatory data record-
ing. For this, real time magnetic resonance imaging (rt-MRI)
video image-frames (IFs) containing articulatory movements
have been used. These IFs require a visual augmentation for
better understanding. We, in this work, propose an augmenta-
tion method using pixel intensities in the regions enclosed by
the articulatory boundaries obtained from air-tissue boundaries
(ATBs). Since, the pixel intensities reflect the muscle move-
ments in the articulators, the augmented IFs could provide re-
alistic articulatory movements, when we color them accord-
ingly. However, the ATB manual annotation is time consuming;
hence, we propose to synthesize ATBs using the ATBs from a
few selected frames that have been used in synthesizing the ar-
ticulatory videos. We augment a set of synthesized articulatory
videos for 50 words obtained from the MRI-TIMIT database.
Subjective evaluation on the quality of the augmented videos
using twenty-one subjects suggests that the videos are visually
more appealing than the respective synthesized rt-MRI videos
with a rating of 3.75 out of 5, where a score of 5 (1) indicates
that the augmented video quality is excellent (poor).

1. Introduction
The pronunciation of the second language (L2) learners, espe-
cially learning English, is often effected by several factors [1–3]
that are influenced by their nativity. This happens mainly be-
cause the articulatory movements while speaking English are
dominated by the articulatory constraints from the speaker’s na-
tive language [4]. In order to overcome these constraints, a
video that shows correct articulation is used as a feedback to
the L2 learners in the applications like computer assisted lan-
guage learning (CALL). There have been several results that
shows the visualization of the correct (from native speakers, re-
ferred as experts) articulatory movements which helps in the
pronunciation training [5–10]. In most of the cases, for the
training, experts’ articulatory movements are captured using
real-time motion capture techniques simultaneously with their
audio [6, 11–13]. Further, the articulatory movements, referred
to as articulatory video, are added with an augmented reality
along with experts’ audio to obtain a final video, referred as
augmented articulatory video (AA-video) [6, 8, 14–16].

In the existing works, the AA-videos have been constructed
using one or more combinations of the articulatory data from
electro-magnetic articulography (EMA), computed tomography
(CT), ultrasound imaging and real time magnetic resonance
imaging (rt-MRI) [7–10, 14, 16, 17]. In constructing the AA-
videos, most of the existing works have used an expert from
whom both audio and articulatory motion have been recorded.
Hence, these techniques have a limitation in using an arbitrary
expert‘s audio from whom direct articulatory measurement is
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not available. In addition, the data acquisition methods used
in all of these techniques require specialized equipment, which
is time consuming and expensive [18]. However, in the recent
past, Desai et al. have proposed a concatenation based synthe-
sis approach to obtain an articulatory video for an expert audio
which does not have simultaneous articulatory recordings [19].
In their work, they have used rt-MRI videos containing image
frames (IFs) of pharyngeal structures in gray scale. We observe
that the articulators constituted in those structures do not have
a realistic view; hence, the synthesized videos are less self ex-
planatory to the L2 learners. However, we hypothesize that an
augmented reality can be added automatically to those videos.
Thus, an AA-video can be obtained for an audio of an expert
for whom direct articulatory measurement is not available.

In this work, we add augmented reality to the articulators
in each IF belonging to the synthesized articulatory videos. For
this, we propose to use pixel values in the IF regions enclosed
by the air-tissue boundaries (ATBs, blue and green colored con-
tour shown in Figure 1b) that constitute the articulators [20].
Instead of using ATBs of all the IFs in the synthesized videos,
we consider the ATBs of few IFs from a repository which are
used in a concatenation based approach [19]. This results in a
less number of IFs for the ATB annotation thereby requiring less
time. In order to obtain ATBs for all the IFs, we propose an ATB
synthesis approach in line with the concatenation based articu-
latory video synthesis approach. Further, using these ATBs, we
apply a knowledge based coloring approach to those structures,
for which we propose a set of rules. We evaluate the AA-video
quality subjectively using a set of 21 evaluators and 50 words
randomly chosen from the MRI-TIMIT data [21]. The average
quality rating is found to be 3.75 out of 5 when the evaluators
rate the AA-video quality with respect to the corresponding syn-
thesized articulatory video.

Figure 1: Exemplary rt-MRI IF indicating a) anatomical re-
gions b) ATBs C1(t) and C2(t) and respective enclosed re-
gions R1(t) and R2(t). c) sub-regions RLL-J(t), REG-T(t),
RUL(t) and RP-V(t) and the respective boundaries CLL-J(t),
CEG-T(t), CUL(t) and CP-V(t)

2. Database
MRI-TIMIT [21] is a phonetically rich database comprising rt-
MRI videos, i.e., rt-MRI data with synchronized audio. The rt-
MRI data is primarily an IF sequence of the mid-sagittal view
(contains pharyngeal structures) of a speaker speaking an utter-
ance. The rt-MRI data was captured at a frame rate of 23.18
frames per second with an image resolution of 68×68 pixels
in gray scale. The data was collected from two male and two
female speakers of American English speaking 460 TIMIT sen-
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tences. Among these four speakers, we consider data from one
female speaker for our experiments and extract audio from the
rt-MRI video of each utterance using FFmpeg [22]. Following
the work proposed by Pattem et al. [20], on each IF in the IF se-
quence, we annotate two ATBs C1(t) & C2(t) that pass through
different anatomical regions in the mid-sagittal plane, namely,
1) Upper lip (UL), hard palatte (HP) and Velum (V) 2) Jaw (J),
Lower lip (LL), Tongue (T) and Epiglottis (EG) as shown in
Figure 1a.

3. Background and motivation
In a concatenation based video synthesis using rt-MRI data,
the utterance of an expert audio is represented as a sequence
of smaller acoustic units (AUs) which are, in general, context
dependent phonemes [19]. For each AU, an IF sequence is se-
lected from a repository containing many IF sequences and its
length is interpolated according to the AU duration. Further,
all the selected IF sequences of the AUs are stitched together
sequentially and are combined with the expert audio to obtain
a synthesized video. In order to ensure a smooth transition at
AU boundaries, two boundary IFs of two consecutive AUs are
merged into one IF to represent the boundary between those
AUs.

In the augmented reality, often, the muscle movements in
the soft tissues have been considered to obtain realistic like mo-
tions [23]. These movements, in general, are captured using
rt-MRI techniques [24], that reflect in the pixel values of the
captured rt-MRI images. Hence, considering the pixel values in
the synthesized video IF could provide realistic like articulatory
movements. In the existing works on AA-video synthesis, in
order to augment these movements, articulators have been con-
sidered separately. Hence, the boundaries between those articu-
lators are required. However, we observe that automatic estima-
tion of those boundaries in the synthesized IFs is a difficult task.
We, in this work, show that those boundaries can be obtained
automatically using manually annotated ATBs. Typically, the
manual annotation of the ATBs takes approximately 6-10 min
per IF [20]. Since the ATBs vary across the frames, the total
time required to annotate is proportional to the number of IFs in
a synthesized video. However, when we synthesize the articu-
latory videos corresponding to the test words considered in the
work proposed by Desai et al. [19] with an IF sequence repos-
itory proposed by them, it is observed that a total of 1359 IFs
are selected from the repository to synthesize videos containing
2123 IFs. This suggests the annotation of the ATBs for those
few selected IFs would be sufficient and less time consuming.

However, it is to be noted that the IFs in the synthesized
videos are not directly replaced with the IFs belonging to the
selected IF sequences. Instead, the selected IFs are modified
based on the methods proposed in the concatenation based ap-
proaches [19]. Hence, the ATBs belonging to the IFs in the
selected IF sequences need to be synthesized according to the
synthesis process, which is a challenging task. In this work,
we consider the problem of automatic augmentation of the syn-
thesized articulatory videos considering pixel values in those
video IFs and the ATBs belonging to the selected IF sequences.
In addition, the proposed method with the conacatenative based
synthsis method, an AA-video can be obtained automatically
for an expert‘s audio for which articulatory measurements are
not available.

4. Proposed approach
Block diagram in Figure 2 shows the three major stages in the
proposed method. The first stage (boundary preparation) has

two steps. In the first step, we estimate the two ATBs C1(t) and
C2(t) : 1 ≤ t ≤ T , where T is the number of IFs in the synthe-
sized video. In the second step, we split the two tissue regions
R1(t) and R2(t) enclosed within C1(t) and C2(t) into four sub
regions containing: 1) the lower-lip and the jaw RLL-J(t), 2) the
epiglottis and the tongue REG-T(t), 3) the upper-lip RUL(t) 4)
the palete and the velum RP-V(t) and indicate the respective
boundaries as Cr(t), r ∈ {LL-J,EG-T,UL,P-V} as shown
in Figure 1c. In the second stage (boundary smoothing), we
represent Cr(t);∀r, t uniformly with fixed N points and obtain
smoothed boundaries Ĉr(t) in two steps. In the first step, we ap-
ply a low-pass filtering across the frames separately on x and y
coordinate values of each location in the Ĉr(t) to obtain smooth
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Figure 2: Block diagram illustrating the stages involved in the
proposed approach for video synthesis.

temporal transitions in the resultant contour C̃r(t). In the sec-
ond step, for every region r, we construct a gray-scale image
deduced from C̃r(t) and apply an edge-preserving smoothen-
ing technique on the image to remove jagged edges. The resul-
tant edges in each image are converted as the boundaries Ĉr(t)
for every region r. In the third stage (visual augmentation), we
blend a background image and IF obtained following masking
and coloring operations on the synthesized IF to obtain an aug-
mented IF. For the coloring, we propose a set of rules specific
to each region enclosed by Ĉr(t). Finally, we incorporate the
audio to obtain augmented articulatory video.

4.1. Boundary preparation

ATB synthesis: In the concatenation based synthesis, for each
AU, an IF sequence of TAU length is selected from an IF se-
quence repository and is interpolated to obtain an IF sequence
of T̂AU length. Considering these T̂AU many IFs, the IF stitch-
ing is performed on two boundary IFs (source IFs) of two con-
secutive AUs to obtain one IF representing the boundary IF (tar-
get IF) between those AUs. These operations are applied on a
sequence of AUs belonging to an expert’s audio to obtain a syn-
thesis video of T length. In order to augment the T many IFs in
the synthesized video, we first obtain the ATBs of T̂AU length
for the altered AU IF sequence by synthesizing the ATBs be-
longing to the selected AU IF sequence. For this, we consider
TAU values of x and y coordinates corresponding to each point
on the ATBs of selected AU IF sequence and interpolate those
points to T̂AU values of x and y coordinates respectively to ob-
tain the same location on the ATBs in IF sequence of length
T̂AU . This is done to achieve smooth temporal variations in the
ATBs [25]. Following this, in order to achieve smooth transi-
tions in the ATBs at the AU boundaries, we propose to synthe-
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size the ATBs for the target IF, such that the entire tissue regions
are enclosed by the ATBs in both the source IFs.

However, it is to be noted that ATBs consist of discrete
points with a varying inter-point distance [20]. Hence the an-
notated points do not represent the same location on the ATB
across the IFs except the start and the end points of the ATBs.
In addition, the number of annotated points are not the same
across the IFs [20]. These together could cause error in the pro-
posed ATB synthesis. In order to circumvent these problems,
we interpolate the points on the ATBs to obtain K equidistant
points using a contour interpolation [26] with linear interpola-
tion technique [20]. Further, by choosing a large K value, we
assume that the inter-point distance could be similar across the
IFs. Hence, each interpolated point would represent a spatially
similar location across the frames, which, in turn, could mini-
mize the errors in the synthesized ATBs.

ATBs splitting: The tissue color of the articulators varies
according to its type and also their rate of movements. Hence,
we propose to segment the articulatory region into four parts –
1) RLL-J(t), 2) REG-T(t), 3) RUL(t) 4) RP-V(t) and augment
each region according to the properties of their respective en-
closed articulators. For this, we divide the regions R1(t) and
R2(t) into those four sub-regions by manually marking fol-
lowing five locations on the ATBs of every IF – 1) Upper lip
base (ULba) 2) start of the hard palate (HPs) 3) hard palate
end (HPe) 4) tongue base (Tba) 5) epiglottis end (EGe). The
yellow colored points in Figure 3a indicate these on the two
ATBs C1(t) and C2(t) of an exemplary IF. In order to divide
R1(t), we join the points Tba,EGe with a contour approxi-
mately parallel to the part of the ATB belonging to Jaw anatom-
ical region and indicate the respective boundaries as CLL-J(t)
and CEG-T(t).

Figure 3: Illustration of the steps in the proposed approach with
an exemplary IF. a) Synthesized IF with marked and estimated
points on the ATBs – C1(t) (blue color), C2(t) (green color). b)
IF with the boundaries after ATB splitting. c) Modified IF for
edge-preserving smoothening. d) Masked IF with the Cr(t).

Similarly, we obtain RUL(t) and RP-V(t) from R2(t) us-
ing the points ULba(t),HPs(t),HPe(t),Ve(t) in two steps.
In the first step, we estimate the point (red colored in 3a)
P̂1(t) = {xULba(t)+ l, yULba(t)}, where we found the l value
empirically. In the second step, we join the points P̂1(t) &
HPs(t) and HPs(t) & HPe(t) with straight lines. While the
annotated ATB exists in between the points HPs(t) & HPe(t),
we do not consider it because we hypothesize a fixed contour
between those points varies due to the errors in the annotation.
We indicate the region enclosed by the contours joined by the
points P̂1(t),ULba(t),HPs(t),HPe(t) and P̂1(t) as RP-V(t)
and the region enclosed by the contours joined by the points
ULba(t),HPs(t), P̂1(t) and ULba(t) as RUL(t) and the re-
spective boundaries as CP-V(t) and CUL(t)

4.2. Boundary smoothening

In general, the manual annotation of the ATBs is performed
independently across the frames without ensuring the smooth

transitions across the IFs. Typically, these transitions have been
observed to be low-pass in nature and depends on the type of the
articulators [25]. Thus, we obtain smooth transitions in each
boundary Cr(t), r ∈ {LL-J,EG-T,UL,P-V} across the IFs
in two steps, referred as temporal smoothening. In the first step,
we interpolate the discrete boundary points of the Cr(t) to a
fixed set ofN points in every IF for all r using the contour inter-
polation technique [26]. In the second step, we apply a low-pass
filter separately on the x and y coordinates of each interpolated
point across all IFs. We denote the boundary of r region after
the temporal smoothening as C̃r(t).

After the temporal smoothening, we remove the rough spa-
tial variations in the boundaries which could be due to error ac-
cumulated by temporal smoothening, ATB synthesis and anno-
tation. For this, at each frame, we construct a gray-scale image
assigning intensity value 1 to the pixel locations correspond-
ing to the boundary points in C̃r(t) and 0 for the remaining
pixel locations as shown in 3c. Following this, we apply an
edge-preserving smoothening filter on the gray-scale image and
consider the locations of the edges in the resultant image as the
points on the smoothed boundaries Ĉr(t). We perform this op-
eration for each boundary of r region separately.

4.3. Visual augmentation

In the synthesized IF sequence, the regions not covered by the
articulators do not convey any information, and hence, are fixed
across the frames. In order to obtain better augmentation, we
overlay these fixed regions with the corresponding regions taken
from a realistic image belonging to a side view of a human
face using an image blending technique [27]. We, in this work,
consider a empirically chosen female face, back-ground image,
which correctly matches the pharyngeal structures in the con-
sidered rt-MRI data. In order to perform the image blending,
first, we mask the region that are not covered by the articula-
tors. Figure 3d shows an exemplary masked IF along with the
smoothed boundaries Ĉr(t), where the masked region is ob-
tained empirically.

Table 1: RGB color combinations used to construct the color
image for the different regions R̂r(t)

Region Red (R) Green (G) Blue (B)

R̂LL-J(t) & R̂UL(t) 235 213 208

R̂P-V(t) 254 254 254

R̂EG-T(t) 238 169 184
Remaining 248 128 112

Next, we color the regions (R̂r(t)) enclosed by Ĉr(t) us-
ing the pixel values in those regions of the masked IFs. In order
to color every r region, we define the values for R-G-B color
combinations in Table 1 and scale them based on the intensi-
ties computed at each pixel location (denoted by L) in that re-
gion. The intensity at the L-th pixel location is computed as

max
(

Mr(t)−SL
r (t)

Mr(t)
, 1
)

, where Mr(t) and SL
r (t) are the max-

imum and L-th pixel location intensities in the r region of t-th
synthesized IF. In the table, the R-G-B combinations for the re-
gions r ∈ {EG-T,P-V} are found empirically, however, for
the regions r ∈ {LL-J,UL} are found based on the R-G-B
combinations belonging to the skin color in the template im-
age. Following this, we apply mean filtering on the each r re-
gion separately. Finally, considering the colored masked IF and
the back-ground image we perform image blending to obtain an
augmented IF.
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5. Experimental results
5.1. Experimental setup
We evaluate the quality of the AA-videos with its respective
synthesized articulatory videos in a subjective manner. In the
augmentation, we consider 2-d savitsky-golay filter for edge-
preserving smoothening [28] and spatial mean filter of size 3 ×
3. We perform the image blending following the work proposed
by Perez et al. [27]. For the temporal smoothening, we consider
the cut-off frequency Fc following the work proposed by Ghosh
et al. [25] corresponding toα= 0.95, which denotes the total per-
centage of energy retrieved after low-pass filtering. In order to
consider one Fc for the entire r region covered by many articu-
lators, we use maximum value among all the Fcs belonging to
those articulators. For the evaluation, we add the augmentation
to the same test set of synthesized articulatory videos, which
belongs to the expert‘s audio of 50 stimuli, considered by De-
sai et al. [19]. Following their work, we consider the AUs as
phonemes and obtain their durations as well as corresponding
selected IF sequence for each stimuli.

Figure 4: Graphical user interface (GUI) used in the subjective
evaluation.
5.2. Subjective evaluation
We conduct the subjective evaluation using a set of 21 evalu-
ators (15 males and 6 females). The evaluators are in the age
group of 20 to 32 years with an average age of 22.61 years
(±3.60). The evaluators are undergraduate and graduate en-
gineering and science students. None of the evaluators has any
vision problems. All the evaluators can read, write and speak
English fluently.
5.2.1. Description of the evaluation set-up
In the evaluation, we present the AA-video and its respective
synthesized articulatory video for each stimuli. The average du-
ration of the videos used for evaluation is found to be 1.29 sec-
onds (±0.39) and all the evaluators are found to be comfortable
with the duration of the words used in the evaluation. Before the
evaluation, we made them familiar with the articulators that are
augmented in the AA-videos. We ask each evaluator to rate the
visual quality of the articulatory movements in the AA-video in
five categories – 1) poor 2) Fair 3) better 4) significantly better
5) excellent; compared with those in the synthesized articula-
tory video, when there is no significant degradation in those
movements. In the case of any significant degradation compare
to synthesized video, we ask them to rate the video quality as
poor. In addition, we also ask them to indicate the articulators
that have significant improvement in the visual appearance in
following six categories – 1) all 2) velum 3) tongue 4) upper lip
5) lower lip 6) none. For this, we allow them to choose one or
more categories.

This evaluation is done using a graphical user interface
(GUI) developed using MATLAB R2015a as shown in Figure
4. It allows the evaluators to play the synthesized articulatory
video and the AA-video separately as many times as they want.

The GUI displays the audio transcription and it provides radio
buttons for obtaining the evaluator ratings as well as for indi-
cating the articulators that have significant improvement. The
GUI also displays the progress of the evaluation. To know the
consistency of the evaluator, we randomly repeat 5 synthesized
videos. All the evaluators are found to have more than 60%
matching in the ratings of the repeated words.
5.2.2. Results and discussion
From the evaluator ratings, it is found that the quality of the AA-
videos is 3.75 (±1.03) when averaged across all the 20 evalu-
ators and all 50 stimuli. This indicates that the visual quality
of the articulators in the AA-videos is significantly better than
those in the synthesized video1. The highest and least ratings
are found to be 4.14 and 2.62 when averaged across the rat-
ings belonging to each word. Those ratings belong to the words
“criss-crossed” and “subdued” consists of 9 and 7 AUs respec-
tively. Further, it is also found that the average rating of the
words “dessert”, “tycoons” and “eleven” is 4.10 and the word
“accomplish” is 2.95, which are close to the highest and the
lowest ratings respectively. These words consists of a total of
6, 6, 7 and 8 AUs respectively. Moreover, we observe that there
is no significant pattern between obtained average ratings and
the number of AUs. This indicates that the AA-video quality is
independent of number of AU boundaries in the stimuli.

Considering the total of 1050 (50×21) combinations of
videos evaluated by all the 21 evaluators across 50 words, it
is interesting to observe that the evaluators rate the AA-video
quality as poor only in 38 number of comparisons. This in-
dicates that the articulatory movements in AA-videos are not
significantly degraded compared to the synthesized videos in
most of the cases. Similarly, comparing the evaluation on ar-
ticulator’s visual appearance across these 1050 comparisons, it
is found that all the articulators in AA-videos are significantly
more visually appealing in 555 comparisons. Moreover, in only
28 number of comparisons all the articulators are chosen to im-
prove the visual appearance to a significant level. In the re-
maining cases, a subset containing the combination of the artic-
ulators are found to be visually more appealing at a significant
level. Among all the articulators, the upper lip has been selected
in the least number of comparisons, which is 174. This could be
because, for the upper lip, the number of annotated ATB points
are a few; hence, a large percentage of its boundary is estimated.
Thus, this causes more boundary errors leading to poor quality
in the visual appearance.

6. Conclusion
We propose a method to augment a concatenation based syn-
thesized articulatory video of an audio, for which the articu-
latory data is not available. The proposed method augments
the videos considering synthesized IF’s ATBs and the pixel val-
ues in the selected IF regions consists of articulators. While
the ATBs are not directly available for the synthesized IF, we
propose to synthesize those from the ATBs belonging to an IF
sequence repository used in the concatenation based synthesis.
Experiments with synthesized articulatory videos deduced us-
ing MRI-TIMIT containing rt-MRI videos, following subjective
evaluation, reveal that the quality of articulatory movements in
the augmented videos are significantly more visually appealing
than the synthesized videos. Further investigations are required
to develop better techniques for ATB synthesis to generalize
well without considering the ATBs repository.

1Videos are available at https://spire.ee.iisc.ac.in/spire/software.php
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