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ABSTRACT

With the availability of large data, ASRs perform well on na-
tive English but poorly for non-native English data. Training non-
native ASRs or adapting a native English ASR is often limited by
the availability of data, particularly for low resource scenarios. A
typical HMM-DNN based ASR decoding requires pseudo-likelihood
of states given an acoustic observation, which changes significantly
from native to non-native speech due to accent variation. In order to
improve the performance of a native English ASR on non-native En-
glish data, we, in this work, propose a DNN-based pseudo-likelihood
correction (PLC) technique, in which a non-native pseudo-likelihood
vector is mapped to match its native counterpart. Instead of cor-
recting all elements of a non-native pseudo-likelihood vector, a loss
function is proposed to correct only top few of them. Experiments
with one native and multiple Indian English corpora show an im-
provement of WER by ∼12% and ∼5% using the proposed PLC tech-
nique over unadapted and adapted native English ASR respectively,
when recognition is performed on an Indian English corpus differ-
ent from that used for both PLC and adaptation. Experiments with
upto 2 hours of parallel native and non-native English data reveal
that, PLC performs better than adaptation for all unseen cases con-
sidered.

Index Terms— Adaptation, Pseudo-likelihood Correction
Technique, LF-MMI

1. INTRODUCTION

With the advent of deep learning, automatic speech recognition
(ASR) technology has received a boost in its performance. Presently,
state-of-the-art ASR systems, based on the dataset and benchmark
test sets, are known to achieve 90 - 95 % word level accuracy [1].
However, performance of these ASR systems drastically degrades
for non-native users, thereby limiting the use of the technology.
Studies have shown that even the most advanced ASR systems show
two times more word error rate (WER) for non-native speakers
compared to that for native speakers [2, 3, 4]. If we assume the
read speech scenario, then the factors that majorly contribute to poor
performance of ASR could be 1) absence of pronunciation variations
in the lexicon 2) high confusion in the posteriors obtained from the
native acoustic model due to unseen accent variations. In this work,
we mainly focus on acoustic modelling approaches to improve the
ASR performance for non-native speakers. One of the most com-
mon approaches for acoustic modelling is to adapt acoustic model
through techniques including MAP, MLLR [5, 6, 7]. In [8, 9, 10],
a DNN based acoustic model adaptation is used in which hidden
layers are shared and accent specific output layers are trained to
learn the parameters of the model for non-native speech. When a
small amount of data is available for adaptation, then variability for
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only limited number of senones is observed. As a result, adapta-
tion techniques tend to overfit the data distribution and thus cannot
generalize well. Experiments by Ghahremani et al. [11], showed
that weight transfer is effective for small amount of target corpus.
Moreover, for tiny target corpus as small as 5hours as in MGB-3
challenge, transferring weights of the whole network including final
layer was found very useful [9]. Furthermore, to prevent over-fitting,
regularization techniques such as drop out or adding additional loss
terms such as KL divergence between the outputs of the original
and adapted model were introduced [12]. All the above adapta-
tion approaches require transcription to provide ground truth labels.
Recently, the teacher/student (T/S) based adaptation was proposed
which utilizes the parallel data instead of the transcription [13, 14].
In this approach, posterior probabilities or soft labels generated by
the teacher (source) model are used instead of the labels from the
transcription to train a student (target) model with the parallel data
from the target domain. This approach is found to be useful in the
scenarios where huge amount of parallel data is available.

Typically for the HMM-DNN based ASR models, the conven-
tional approaches for adaptation, as described above, modify the
source model parameters such that the output distribution becomes
close to the target’s ground truth distribution. As a result, all the state
posterior values need to be corrected and are given equal weights.
However, in the ASR decoding process, only top few state score
values per frame contribute in obtaining the optimal hypothesis [15].
This suggests that top few state score values should be more accurate
than the remaining values, and, hence, the objective function used for
the adaptation, should consider this information. In this work, we
propose to optimize only top L values for adaptation. Our approach
is similar to the T/S based adaptation using parallel data, except that
instead of using KLD as the objective function, we use mean squared
error (MSE). This is because the output of the Lattice-free Maximum
Mutual Information (LF-MMI) based source neural network model,
used for decoding, is interpreted as pseudo likelihood [16] and not,
the state posterior probability. Hence in this paper, we propose DNN
based pseudo-likelihood correction (PLC) mapping that is trained to
correct top L values of the non-native pseudo-likelihoods to be as
close as the native pseudo-likelihoods. We experimented with two
objective functions: 1) one that minimizes MSE defined using top
few pseudo-likelihood values from both input (non-native) and out-
put (native) and 2) another that minimizes MSE defined using top
few pseudo-likelihood values from the output only.

Two hours of parallel data from native and non-native speakers
is used for training the proposed PLC scheme. In addition, 3 dif-
ferent unseen test sets with different recording conditions are used
to investigate the robustness of the proposed approach. Experiments
reveal that the proposed PLC approach yields significant improve-
ment in word error rate (WER) compared to an unadapted native
ASR system. Experiments on unseen test set indicate the robustness
of PLC to different recording conditions.
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Fig. 1. Block diagram summarizing the steps of the proposed
pseudo-likelihood correction (PLC) approach.

2. DATABASE

In our experiments, Librispeech dataset is used for training base
native model [17]. In order to learn PLC, parallel data set is created
using native speakers’ utterances from TIMIT dataset and Indian
English utterances from Indian-TIMIT (iTIMIT) dataset [18]. For
robustness related experiments, Indian English speakers’ recordings
from Voxforge (VOX) [19], Common Voice (MOZ) [20] and Indic
Mobile (iMob) dataset are used. All the three datasets iMob, VOX
and MOZ are collected through crowd sourcing. Hence, the record-
ings in these datasets have variable background noise as opposed
to the recordings from TIMIT and iTIMIT which are collected in
less noisy lab environment. The details of iTIMIT and iMob are
described below.

Indic TIMIT (iTIMIT) Indic TIMIT is a database of spoken utter-
ances in English by Indian speakers from different native language
backgrounds. The data is collected in our laboratory from a to-
tal of 80 subjects, each providing recordings of all 2342 unique
sentences from the TIMIT corpus. The speakers in this collected
corpus are chosen to have L1 such that it is spoken by majority of
the population. More details regarding distribution of the speakers
per language as well as per geographical region is provided in [21].
For the recording, a total of 16 subjects from each of the 5 groups
as described in [21] with equal males and females are considered in
order to maintain uniformity across the groups. The speech samples
were collected at a sampling rate of 48kHz with 16bit PCM format,
in clean read speech condition. The recordings were later downsam-
pled to 16kHz, to be used for our experiments.

Indic Mobile (iMob) Indic Mobile dataset was collected by us
through mobile application with a support of an industry partner.
The corpus consists of 100 hours of read speech from 827 Indian
speakers from several regions in India. The speakers were asked to
read set of sentences that appear on their application in various en-
vironments including home, school and market. The prompts were
selected to be phonetically balanced. In addition, certain prompts
were forced to have Nouns in order to capture pronunciation diver-
sities from a large group of Indian speakers. The audio recordings
are dual channel, collected at a sampling rate of 16kHz with 16-bit
PCM format.

3. PROPOSED METHOD

Given a sequence of acoustic feature vectors O, the correspond-
ing sequence of words W, in an ASR, is obtained using following
equation[15]:

W∗

= argmax
W

logP(W ∣O). (1)

It can be shown that the eq(1) can be reformulated as:

W∗

= argmax
W

log
Pθ(O ∣Q)P(W)

∑W′ Pθ(O ∣Q′)P(W′
)

. (2)

where Q is the sequence of states and θ are the set of parameters
of the HMM-DNN model, estimated using Maximum Mutual In-
formation (MMI) criterion[16]. Given a set of training utterances
{Ou,Wu}

U
u=1 and Qu being the state sequence corresponding to

Wu, it is shown that, for both LF-MMI and conventional MMI
training, Pθ(Ou ∣ Qu) is a function of the final layer output of
DNN y(u, t) at time frame t and utterance u [22, 23]. Specifically
for LF-MMI as shown in [16, 23], the DNN output is interpreted
as pseudo-likelihood, therefore, y(u, t) is the DNN output without
softmax activation and is directly used as acoustic score during de-
coding.

When a same sentence is spoken by a native and a non-native
speaker, the acoustic features obtained from their speech signals of-
ten differ significantly. This change in acoustic observations, in turn,
changes the Pθ(O ∣ Q) (or y(u, t) in case of LF-MMI), during de-
coding, which accounts for an increase in WER [2, 3, 4]. For the
native ASR to perform well on the non-native speech, one possible
way is to learn the mapping between native and non-native acoustic
features. However, the way the acoustic characteristics in non-native
differ from those in native recording could be complex and how it,
in turn, impacts the ASR performance may not be straightforward
to understand. Instead we hypothesize to learn a corrective mapping
between native and non-native pseudo-likelihood vectors (i.e., final
layer output of DNN), which directly contribute to the required mod-
ification of the acoustic score, and in turn, could improve the WER.

The block diagram of the proposed approach (PLC) is shown in
Fig. 1. It involves mainly three components. Each of the blocks are
explained in detail below.
Parallel pseudo-likelihood computation: Given non-native and
native speech signals for the same sentence, 40-dimensional mel-
frequency cepstral coefficients (MFCC) and 100- dimensional iVec-
tors are extracted. The pseudo-likelihood vector, for each MFCC
vector is computed using a pre-trained native English model M.
In general, the rate of the non-native and native speech signals
are different [24]. Hence, to time align the native and non-native
pseudo-likelihood vector sequences, we use dynamic time warping
(DTW) with Pearson correlation coefficient.
DNN-based pseudo-likelihood correction: Let {Xn, Yn}Nn=1 be
the set of K-dimensional time-aligned non-native (Xn) and native
(Yn) pseudo-likelihood vectors. We propose to map Xn to Yn by
learning a frame-level mapping using a DNN.
Objective Function: MSE could be a typical choice for DNN
based PLC mapping. However, it is well known that, in every frame,
only a fraction of the elements in the pseudo-likelihood vector con-
tribute to the decoding process [15]. Therefore, in each frame, we
consider only the states with top L pseudo-likelihood values in the
native pseudo-likelihood vector. We hypothesize that correcting the
pseudo-likelihood values corresponding to these L states in the non-
native pseudo-likelihood vector is sufficient to obtain reduced WER
for non-native speech. To this end, we modify the MSE objective
function as follows:

JtopL =

N

∑

n=1

( ∥ w(Xn, Yn)
T
(Yn − Ŷn) ∥

2
2 +

∥ (1 −w(Xn, Yn))
T
(Ŷn −Xn) ∥

2
2 )

(3)

where Ŷn is the estimated pseudo-likelihood vector at the nth frame
and w(Xn, Yn) is the weighting vector function and 1 is a K-
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dimensional vector of all ones. w(Xn, Yn) is a vector of ones and
zeros, which determines for what states, the MSE between Ŷn and
Yn is computed. For the remaining states, the MSE between Ŷn
and Xn is reduced, which regularizes Ŷn to match Xn. Based on
how we determine the top L states, we experiment with two kinds
of objective function (TopL(X,Y ) and (TopL(Y ))), the details of
which are presented in Table 1. L is a hyper parameter and when
L = K, both the objective functions reduces to MSE between Ŷn
and Yn only. Thus, MSE is a special case of our proposed objective
function.

4. EXPERIMENT AND RESULTS

The first experiment is conducted to select the optimum parameters
corresponding to the minimum WER. These parameters are the value
of L and the objective function to be used for training the PLC map-
ping. In the second experiment, we investigate the robustness of PLC
on unseen test sets. Furthermore, the performance of PLC is com-
pared against baseline systems adapted on iTIMIT, MOZ, VOX and
iMob for unseen scenarios. We have also investigated the effect of
the amount of training data on the performance of PLC against the
baseline systems. In the following subsection, details of the source
model , baseline along with experiments and results are described.

4.1. Native English model

Base native model (M) is trained on 960 hours of Librispeech
dataset. The acoustic model is based on sequence-trained time delay
neural network (TDNN) with lattice-free maximum mutual informa-
tion (LF-MMI) objective function. The input features to TDNN are
40-dimensional Mel-frequency cepstral coefficients (MFCC), with-
out cepstral truncation, along with 100-dimensional iVector. The
output of TDNN is a 5183-dimensional pseudo-likelihood vector
which is used directly for decoding as described in [16]. Further
details about the architecture are available in [16].

4.2. Baseline System

As discussed in section 1, for tiny data (5hours), updating the whole
network without re-initializing the output layer is found to be ben-
eficial in [9]. Hence, in this paper, we use transfer learning method
/ model adaptation as described in [9, 11] as the baseline scheme
(WAS , S denotes the dataset used for adaptation). The weights of the
TDNN network trained on Librispeech is transferred and is further
fine-tuned on the non-native datasets with the output layer trained at
a relatively higher learning rate. The initial effective learning rate is
set to 0.005 and final effective learning rate to 0.0005. Furthermore,
the learning rate factor for all the layers is kept 0.25 times the learn-
ing rate factor of the output layer. Further implementation details
can be found in [9].

4.3. Experiment 1

Parallel Data Preparation: For PLC, we use parallel dataset con-
sisting of a set of utterances spoken by both native English and
Indian English speakers. The utterances corresponding to unique
2342 sentences from both TIMIT and iTIMIT datasets are used to
create parallel dataset, the steps for which are as follows: 1) From
TIMIT dataset utterances corresponding to 2342 unique sentences
are sampled from 6300 utterances, such that maximum number of
sentences per speaker are obtained and also all the speakers are
covered. 2) Further, we split the 2342 utterances into two non-
overlapping subsets. Subset-1 contains 1636 (∼ 2 hours) utterances

TopL(X,Y ) TopL(Y )

wi(Xn, Yn) = {
1 i ∈ TopL(Xn, Yn)

0 else
wi(Xn, Yn) = {

1 i ∈ TopL(Yn)

0 else

TopL(Xn, Yn): union of the set of indices corresponding TopL(Yn): set of indices corresponding
to the top L values of Xn and Yn to the top L values of Yn

Table 1. Details of the two objective functions used for DNN map-
ping, where wi(Xn, Yn) is the ith component of the weighting vec-
tor w(Xn, Yn).

from 437 speakers and is used for learning the PLC mapping.
Subset-2 contains 706 utterances from 193 speakers and is used for
testing the ASR on M. 3) We assume that the ASR on non-native
English using PLC mapping would benefit, if we cover maximum
speaker and accent variability from iTIMIT dataset, in the training
set (i.e. subset-1) of parallel data. Hence, corresponding to 1636
sentences, utterances from 63 speakers comprising 12-13 (among
16) randomly selected speakers from each of the 5 groups are cho-
sen. Utterances from remaining speakers corresponding to 706
sentences are used for subset-2.
Experimental Details: The DNN based PLC mapping is learnt
based on two objective functions separately. During testing, non-
native pseudo-likelihood vector is obtained from the model M,
which is given as input to PLC to estimate native pseudo-likelihood
vector, on which decoding is performed to get the best hypothesis.
The DNN network consists of 5183-dimensional input layer, 3 hid-
den layers and 5183-dimensional output layer. Each hidden layer
has 4096 number of units. ReLU is used as activation function along
with batch normalization and dropout. In the output layer, linear ac-
tivation is used. Training of DNN is done using subset-1 of the paral-
lel dataset. On the other hand, the testing is done using iTIMIT part
of the subset-2 of the parallel data. For experiments different values
of L i.e., {1,5,10,20,50,100,200,500,1000,2000,4000,5000,
5183} have been used. Finally, the objective function and the value
of L that yields the minimum WER are chosen for further experi-
ments.
Results & Discussion: The results for experiment 1 are presented in
Figure 2. We obtain 12 % and 31% WER on the TIMIT and iTIMIT
part of subset-2 respectively, using M. The results are indicated by
magenta and black dotted line respectively in Figure 2. This indi-
cates that the performance of M on the same set of sentences reduces
by 19% (absolute) under accent mismatch conditions, i.e., between
the Librispeech (training set) and the non-native iTIMIT test set.
Furthermore, in Figure 2, WER on iTIMIT part of the subset-2 using
PLC is compared across different values of L for both the objective
functions. From Figure 2, it can be seen that the performance of both
the proposed objective functions at L = K = 5183 (≈ 212) is similar
to MSE based PLC mapping. It can be observed that WER using
MSE based objective function is 14% (absolute) more than that with
M. This implies that the non-native to native PLC mapping with
MSE as objective function is not effective, rather it is detrimental.
However, as we start reducing L, WER reduces drastically for both
the objective functions. The objective function TopL(X,Y ) yields
the minimum WER at L = 20 (≈ 24). Moreover, TopL(Y ) yields
the minimum at L = 1000 (≈ 210) as indicated by filled circles in the
figure. Interestingly, even for L = 1, the WER for both the objective
functions, is less than WER obtained using M. This demonstrates
the significance of correcting few values of pseudo-likelihoods in
improving the performance of the ASR for non-native test data. The
best performance of the proposed approach, i.e., WER 23.9%, is
obtained when DNN is optimized by TopL(Y ) objective function
for L = 1000 (≈ 210).
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Fig. 2. Comparison of WER for different values of L for two dif-
ferent objective functions. Filled circles indicate the value of L for
which the minimum WER is achieved.

4.4. Experiment 2

Data Preparation: In this experiment, we investigate the robustness
of the PLC mapping and baseline scheme (adaptation) for unseen
recording conditions as well as under varying amount of non-native
data. We develop adaptation model on all the datasets, i.e., iTIMIT,
MOZ, VOX and iMob as opposed to PLC mapping for which par-
allel dataset is used. For adaptation on iTIMIT subset-1 of parallel
dataset is used. For adaptation on 3 other datasets we randomly
select 1636 utterances (∼ 2 hours) from each of the corpora such that
speaker to gender ratio is maintained. Furthermore, 706 utterances
were randomly chosen for testing for each of the 3 other datasets
such that the speakers and utterances do not overlap with those in
the set used for adaptation.
Experimental Details: We train four different WA models, WAMOZ ,
WAiTIMIT , WAV OX , WAMob. The performance of these four
models is compared with PLC mapping corresponding to the op-
timal parameters obtained in Experiment 1. We also assess the
performance of these models as well as PLC mapping under varying
amount of training data . WA and PLC models are, thus, trained
using {1636 1000, 750, 500, 250, 100, 75, 50} training utterances.
For MOZ, VOX and iMob, the varying amount of adaptation data
is obtained by randomly sampling the respective sets of 1636 ut-
terances. For iTIMIT, subset-1 is sampled such that approximately
equal number of utterances per group are obtained. Each of these
models is tested using the same test sets i.e., 706 utterances from
iTIMIT (subset-2) and the test sets obtained from the iMob, VOX
and MOZ. To clarify further, for all the schemes, one set is seen and
other 3 sets are unseen.
Results & Discussion: Figure 3, presents the results of experiment
2. In Figure 3, each subplot indicates the performance of specific test
set using different WA models (i.e., WAiTIMIT , WAiMob, WAV OX ,
WAMOZ ) and PLC, when the duration of training/adaptation data
is reduced from 120 minutes (1636 utterances) to 4 minutes (50
utterances). Moreover, in each subplot the performance of the test
set using M is indicated by grey line. It is clear that using M the
highest WER of 60% is obtained for iMob test set, while the least
WER of 31% is obtained for iTIMIT test set. This suggests that
the acoustic characteristics of iMob is significantly different from
that of Librispeech. Following are the observations from Figure 3:
1) As the amount of data is reduced from 120 minutes to 4 min-
utes, WER values for all the test sets show increasing trend for all
schemes. 2) For the highest amount of data, 1636 utterances (120
minutes), the domain matched case adaptation performs the best
with lowest WER, followed by PLC for almost all the cases except
for iMob database. This indicates the robustness of proposed PLC
scheme. 3) Among all the WA models, WAiTIMIT seems to be
the least generalizable model as it shows the worst performance in
terms of WER among all other WA models on unseen test case. The
possible reason could be highly mismatched recording conditions of
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Fig. 3. Comparison of WER for amount of training utterances (Nt)
for different databases. The title of the plot shows the test-set. WAm
indicates the adapted model using database m.

iTIMIT (i.e., clean lab environment) as opposed to other datasets.
4) On the contrary PLC which is also trained on clean iTIMIT set,
shows comparable performance to that of WAMOZ on the unseen
test cases. Furthermore, for lower number of training data points,
PLC outperforms WAMOZ . This indicates that PLC is robust to
highly mismatched recording conditions. 5) For very small amount
of data, i.e., as low as 4 minutes, PLC has the least WER compared
to other schemes for all test sets. For iMob test set, PLC always
performs better than M, even for as low as 4 minutes of train data.
In addition, 6 - 8 minutes of training data is sufficient for PLC, to
surpass the performance of the native model M for not only iTIMIT
set (matched case) but also for all other test sets. 6) The performance
of PLC saturates beyond 60 minutes of training data across all tests,
which indicates that the proposed PLC approach doesn’t over-fit the
training data. However, WA models shows a decreasing WER trend
with increase with training data for matched test case, which can be
indicative of over fitting.

5. CONCLUSIONS

In this paper, we experimented with DNN based PLC mapping to
improve the performance of ASR for Indian English speakers with
varied mother tongue. We proposed novel objective function to learn
the parameters, that optimizes only top L values of the pseudo-
likelihood vector. The experiments reveal that optimizing PLC map-
ping using standard MSE objective function is detrimental for the
non-native ASR performance. On the contrary, the proposed ob-
jective function showed significant improvement in WER compared
to native model performance, as L value is reduced from K, indi-
cating significance of using top L for PLC mapping. With limited
amount (2 hours) of training data, the best performance gives 7%
relative improvement over native ASR system (M). Even though the
relative improvement is 5% less than the baseline, PLC generalizes
well across different unseen datasets. For very small amount of data,
i.e., as low as 4 minutes, PLC has the least WER compared to other
schemes for all test sets. From the results, it can be clearly seen
that PLC shows consistent improvements over seen and unseen test
sets compared to WA models obtained on different datasets for even
small amount of training data which is 20 minutes and less. Thus
using top L PLC can generalize well in low resource conditions. In
future, we will like to experiment on the robustness of this approach
for unseen accents. Furthermore, we would like to investigate if the
performance of PLC is specific to the choice of data used in the ex-
periments or not and moreover, how this approach can be applied to
a new accent in low resource scenarios.
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