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A B S T R A C T

Typically, automatic syllable stress detection is posed as a supervised classification problem, for which, a
classifier is trained using manually annotated (existing) syllable data and stress labels. However, in real testing
scenarios, syllable data is estimated since manual annotation is not possible. Further, the estimation process
could result in a mismatch between the lengths of the estimated and the existing syllable data causing no one-
to-one correspondence between the estimated syllable data and the existing labels. Hence, the existing labels
and estimated syllable data together cannot be used to train the classifier. This can be avoided by manually
labeling the estimated syllable data, which, however, is impractical. In contrast, we, in this work, propose a
method to obtain labels for estimated syllable data without using manual annotation. The proposed method
considers a weighted version of the well-known Wagner–Fisher algorithm (WFA) to assign the existing labels
to the estimated syllable data, where the weights are computed based on a set of three constraints defined in
the proposed algorithm. Experiments on ISLE corpus show that the performance obtained on the test set for
four different types of estimated syllable data are higher when the assigned labels and estimated syllable data
are used for training compared to those when existing labels and existing syllable data are used. Also, the
label assignment accuracy using the proposed method is found to be higher than that using a baseline scheme
based on WFA.
1. Introduction

Automatic detection of syllable stress has been shown to be useful
for evaluating pronunciation (Chandel et al., 2007; Zhao et al., 2011;
Verma et al., 2006) in several applications including computer assisted
language learning (CALL). It is also useful in providing feedback to the
second language (L2) learners by automatically identifying localized
pronunciation errors (Ferrer et al., 2015; Tepperman and Narayanan,
2005). Typically, the stress detection task is performed as a classifi-
cation problem in a supervised manner (Tamburini, 2003; Tepperman
and Narayanan, 2005; Verma et al., 2006; Deshmukh and Verma, 2009)
using a set of features representing a syllable and the respective stress
labels (stressed and unstressed). In most of the existing works, the labels
are obtained from a manual annotation process and the syllable data
(both the syllable transcriptions and their time-aligned boundaries) is
estimated using forced-alignment (Ferrer et al., 2015; Shahin et al.,
2016, 2014; Deshmukh and Verma, 2009; Li et al., 2011). Hence, the
reliability of the stress detection task depends on the features and the
quality of the syllable data. In few works, manually corrected syllable
data has been used to reduce errors due to forced-alignment (Tep-
perman and Narayanan, 2005; Shahin et al., 2016). However, in real
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testing scenarios, the syllable data is obtained mostly using forced-
alignment process, where no manual correction is possible. The model
used in the forced-alignment determines its accuracy. The accuracy
of a forced-alignment scheme, in turn, determines its suitability for
obtaining syllable data.

Forced-alignment is performed either with traditional Gaussian mix-
ture model based hidden Markov models (GMM-HMM) (Tepperman
and Narayanan, 2005; Shahin et al., 2016; Tamburini, 2003) or with re-
cently proposed deep neural network based HMM (DNN-HMM) acous-
tic models (Povey et al., 2011), which yield more accurate forced-
alignment results. When the speech data from non-native speakers
are considered, the reliability of the acoustic models depends on the
pronunciation lexicon used in the automatic speech recognition (ASR)
training. Further, the lexicon also plays a critical role in the forced-
alignment process. A pronunciation lexicon containing all pronuncia-
tion variants of L2 learners could result in a better quality syllable data
from the forced-alignment. However, availability of such lexicons is
limited and identification of such pronunciations is also challenging.
Thus, different combinations of acoustic model and lexicons could
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Fig. 1. An illustration of (a) non-parallel data and label scenario for an exemplary word ‘‘Present’’ and (b) mismatched and matched train & test scenarios.
cause variations in the quality of the syllable data in terms of the
forced-aligned phonetic transcriptions as well as their boundaries. In
addition, a syllable data with readily available labels, in general ob-
tained using manual annotation process, might not be preferable when
a better quality forced-aligned syllable data is obtained. As ASR for
non-native speech continues to become more accurate with better
acoustic model and/or lexicon, the quality of the syllable data from
forced-alignment using a state-of-the-art ASR would be better than that
obtained with an ASR in the past. Further, it is to be noted that the
number of syllables in a word could also vary among the syllable data
obtained from different forced-alignment processes.

Hence, available manual (existing) labels for one set of syllable data,
referred to as existing syllable data (either manually transcribed or
estimated from forced-alignment process), cannot be mapped directly
to another set of syllable data, referred to as estimated syllable data, for
which labels have to be estimated. This could be because the existing la-
bels do not have one-to-one correspondence with the estimated syllable
data, referred to as non-parallel data and label condition. For example,
among different models and lexicons used for forced-alignment of the
utterances in the ISLE corpus (Menzel et al., 2000), we observe that up
to 19.92% of the poly-syllabic words have different number of syllables
compared to those available in the corpus. Fig. 1a shows exemplary
syllable transcriptions of a spoken word ‘‘Present’’ from existing and
estimated syllable data. In the figure, we also indicate existing labels
on the syllables from the existing syllable data. From the figure, it is
observed that there is mismatch between the existing and estimated
syllables in terms of number of syllables as well as their transcriptions.
This suggests that the label identification for the estimated syllables is
a non-trivial task.

Under this non-parallel condition, a classifier could not be trained
with existing labels and estimated syllable data for the stress detec-
tion task. However, it is possible to estimate the stress labels on a
test set using estimated syllable data and a classifier (Classifier-1 in
Fig. 1b) trained with existing syllable data and existing labels. But, the
mismatch in the data could degrade the stress detection performance
under estimated syllable data conditions in the test phase. In order to
avoid this, it is necessary to repeat the manual annotation to obtain
stress labels for the estimated syllable data, which is cumbersome, time-
consuming and also impractical for different sets of syllable data from
different forced-alignment conditions. To circumvent these problems,
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in this work, we propose a stress label assignment method to assign
the existing labels to an estimated syllable data. We hypothesize that
the classifier (Classifier-2 in Fig. 1b) trained with the assigned labels
and estimated syllable data would perform better on estimated syllable
data in the test phase. This is because the proposed method establishes
matched train and test conditions by training the classifier with the
respective estimated syllable data for which testing is performed.

We perform automatic syllable stress detection using the syllable
data obtained from four different combinations of acoustic models and
lexicons in the forced-alignment set-up. We obtain stress labels for the
estimated syllable data from the existing labels in two steps. In the
first step, we pair each phoneme in the existing syllable data with
either a phoneme in the estimated syllable data or empty string and
vice versa. In order to obtain the pairs, we formulate a string matching
problem by defining the constraints similar to the rules used in stress
label annotation (Deshmukh and Verma, 2009; Menzel et al., 2000).
For this purpose, based on Wagner–Fisher algorithm (WFA) (Wagner
and Fischer, 1974), we propose a weighted Wagner–Fisher algorithm
(wWFA), in which, weights are computed based on the constraints con-
sidered in this work. In the second step, we map the existing labels on
the phonemes belonging to syllable nuclei in the existing syllable data
to the respective paired phonemes in the estimated syllable data. We
use a support vector machine (SVM) classifier for the stress detection
using the assigned stress labels and acoustic features (AFs) computed
using the work proposed by Yarra et al. (2017).

Experiments are performed on ISLE (Menzel et al., 2000) cor-
pus containing polysyllabic words separately from German and Italian
non-native speakers. Stress detection results show that the proposed
approach on the estimated syllable data under all four forced-alignment
set-ups yields better performance compared to that under the mis-
matched train-test scenario where existing labels and AFs from the
existing syllable data are used for training. Further, in order to know
the effect of label assignment on the stress detection, we conduct
the experiments on entire data from ISLE corpus, for which manually
annotated ground truth stress labels are available for the estimated
syllable data from one (among four) forced-alignment set-up considered
in this work. The proposed wWFA based label assignment achieves
100% accuracy, while a baseline scheme based on WFA achieves a
lesser accuracy of 97.2%.
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Fig. 2. Block diagram illustrating the steps involved in the proposed approach using a three syllabic word. The gray colored rectangular blocks indicate the proposed inclusions
o perform stress detection task in real testing scenarios by estimating the syllable data. The white colored rectangular blocks indicate the components that are considered from
he work in the literature (Yarra et al., 2017).
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The rest of the paper is organized as follows: Section 2 discusses
he proposed approach including stress label assignment, constraints
nvolving stress labeling, proposed wWFA, weights computation based
n the constraints, Section 3 describes the corpus details, Section 4
ncludes the experimental setup, results and discussion on both the
tress label assignment and stress detection tasks. The conclusions are
ummarized in Section 5.

. Proposed approach

Block diagram in Fig. 2 shows training and testing stages involved
n the proposed approach for stress detection task. There are a total
f five steps. The first and the second steps are identical for both the
tages. In the first step, forced-alignment is done on a speech signal
sing its word transcription to estimate phoneme transcriptions as well
s aligned phoneme and word boundaries. Further, we syllabify the
honeme transcriptions, from which we obtain syllable transcriptions
nd its time aligned boundaries, referred to as estimated syllable data.
n the second step, AFs proposed by Yarra et al. (2017) are computed
or each syllable in the estimated syllable data. In the third step, we
erform label assignment and map the existing labels to each syllable
egment using existing and estimated phoneme transcription as well
s word boundaries from forced-alignment. In the fourth step, SVM is
rained in the training stage using assigned stress labels & AFs in order
o obtain a model for classification. In the testing stage, we classify
ach syllable segment as stressed or unstressed with the trained SVM
odel using AFs. In the last step, decision scores from SVM classifier

re used to post-process the estimated stress markings to ensure that
ach polysyllabic word has only one stressed syllable.

Stress label assignment involves two sub-steps – (1) Phoneme se-
uence alignment (PSA), and (2) Stress label transfer. In the PSA, the
xisting phoneme sequence (𝐴) is aligned with an estimated phoneme
equence (𝐵) obtained from forced-alignment. In the label transfer, we
ap the existing stress labels on phonemes indicating syllable nuclei

n 𝐴 to those in 𝐵 that are paired with the respective nuclei in 𝐴
from the PSA. We describe these steps in detail in Sections 2.1 and 2.2
respectively.

2.1. Phoneme sequence alignment (PSA)

For the PSA, we propose a string matching algorithm, from which,
each phoneme in 𝐴 paired with either a phoneme in 𝐵 or empty
string (𝛬) and vice-versa. The pairing between the sequences 𝐴 and

is denoted using a trace (𝑇 ) from 𝐴 to 𝐵, where, in its graphical
epresentation, paired phonemes are connected using a straight line
nd the remaining phonemes are left unconnected. In general, there are
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many possible traces from 𝐴 to 𝐵. Fig. 3 shows two exemplary traces
between the phoneme sequences 𝐴 = {f, ao, r} and 𝐵 = {f, r, er}. The
trace in Fig. 3a shows that the phonemes ‘f, ao, r’ in 𝐴 are paired with
the phonemes ‘f, r, er’ in 𝐵 respectively and are indicated as follows: f
→ f, ao → r and r → er. Similarly, the trace in Fig. 3b shows that the
phonemes ‘f, ao’ in 𝐴 are paired with the phonemes ‘f, er’ in 𝐵 and the
honeme ‘r’ in both 𝐴 and 𝐵 is left unconnected and these are indicated
s follows: f → f, 𝛬 → r, ao → er and r → 𝛬. Empty string 𝛬 is used in
efining the trace because, in a typical string matching, cross-over of
hese lines are not allowed.

.2. Stress label transfer

In general, among all the phonemes in a syllable, stress is mainly
aptured by its nuclei and typically only one syllable nuclei in a word
s primarily stressed, referred to as primary stress. The data in ISLE
orpus, used in this work, was labeled accordingly. In order to map the
xisting stress labels on phonemes indicating syllable nuclei in 𝐴 to the
honemes of syllable nuclei in 𝐵, we consider only syllable nuclei pairs
mong all the paired phonemes between 𝐴 and 𝐵 obtained from the
SA. In case a syllable nucleus in 𝐵 is not paired with a syllable nucleus
n 𝐴, we propose to consider its label as unstressed. For example, in
ig. 3, the syllable nuclei are ‘ao’ and ‘er’ in 𝐴 and 𝐵 respectively
nd their respective ground-truth labels are stressed (marked with ‘1’).
rom the trace in Fig. 3a, it is observed that the stress label on ‘ao’
annot be transferred to ‘er’ directly since it is not paired with ‘ao’.
hus, the stress label on ‘er’ is proposed as unstressed (marked with

0’), which does not match with its ground-truth. However, considering
he trace in Fig. 3b, the stress label on ‘ao’ is transferred to ‘er’ as ao

er, which results in a label matched with its ground-truth.
Hence, in the PSA, it is necessary to ensure that the label transfer

appens across the nuclei in 𝐴 and 𝐵. Also, the transfer should ensure
nly one primary stress within the phoneme sub-sequence in 𝐵 corre-
ponding to one word. Therefore, we propose the following constraints
o a typical string matching algorithm to obtain PSA.

1. All the stress labels within a sub-sequence in 𝐴 representing
a word must not cross the boundaries of a sub-sequence in 𝐵
representing the same word, because, the labels are typically
assigned by comparing prominence of the syllables belonging to
each word (Deshmukh and Verma, 2009; Menzel et al., 2000).

2. At least 𝑁 syllable nuclei in 𝐴 and 𝐵 must be paired, where 𝑁
is the smaller number of syllables between 𝐴 and 𝐵.

3. The syllable nucleus belonging to a primary stress label of a sub-
sequence in 𝐴 representing a word must be paired with a syllable
nucleus of a sub-sequence in 𝐵 belonging to the same word. This
ensures only one primary stress label for a word following PSA.
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In this work, for the PSA, we consider Wagner–Fisher algorithm
(WFA) (Wagner and Fischer, 1974) and propose modifications to the
algorithm, referred to as weighted WFA (wWFA), so that it can incorpo-
rate the above constraints. Below, we discuss the steps of the proposed
wWFA including the computation of its weights.

2.3. Wagner–Fisher algorithm

This algorithm yields the best alignment between two sequences
𝐴 = 𝐴(1 ∶ 𝑛) = {𝑎1, 𝑎2,… , 𝑎𝑛} and 𝐵 = 𝐵(1 ∶ 𝑚) = {𝑏1, 𝑏2,… , 𝑏𝑚}
y minimizing the cost 𝐶𝑇 given as:

𝑇 (𝐴,𝐵) =
∑

(𝑖,𝑗)∈𝑇
𝛾(𝑎𝑖 → 𝑏𝑗 ) +

∑

𝑖∈𝐼
𝛾(𝑎𝑖 → 𝛬) +

∑

𝑗∈𝐽
𝛾(𝛬 → 𝑏𝑗 ) (1)

here 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑛 & 𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑚 are the phonemes in the respective
equences 𝐴 & 𝐵. 𝑇 denotes a trace from 𝐴 to 𝐵. It has been shown that
he trace is sufficient to know the alignment between 𝐴 and 𝐵 (Wagner
nd Fischer, 1974). Formally, the trace is defined as any set of ordered
airs of integers (𝑖, 𝑗) satisfying – (1) 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚; (2) for
ny two distinct pairs (𝑖1, 𝑗1) and (𝑖2, 𝑗2) in 𝑇 , (a) 𝑖1 ≠ 𝑖2 and 𝑗1 ≠ 𝑗2; (b)

𝑖1 < 𝑖2 iff 𝑗1 < 𝑗2 (Wagner and Fischer, 1974). In (1), the pair (𝑖, 𝑗)
describes a pair between 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵. 𝐼 and 𝐽 are the sets
of positions in 𝐴 and 𝐵 respectively paired with empty string 𝛬. For
the exemplary trace shown in Fig. 3a, the values of (𝑖, 𝑗), 𝐼 and 𝐽 are
{(1,1),(2,2),(3,3)}, {𝜙} and {𝜙}, where {𝜙} is an empty set, while for
the trace in Fig. 3b the respective values are {(1,1),(2,3)}, {3} and {2}.
The 𝛾 in (1) is a cost function which assigns, to each pair 𝑎 → 𝑏, a non-
negative real number satisfying following properties: (1) 𝛾(𝑎 → 𝑎) = 0;
(2) 𝛾(𝑎 → 𝑏) + 𝛾(𝑏 → 𝑐) ≥ 𝛾(𝑎 → 𝑐). The optimal cost 𝐶∗

𝑇 to the
function in (1) is obtained using two steps – (1) initialization, and (2)
forward pass, as defined below. This is done by computing a matrix
𝐷𝑛×𝑚 such that its (𝑖, 𝑗)th element 𝑑𝑖,𝑗 = min 𝐶𝑇 (𝐴(1 ∶ 𝑖), 𝐵(1 ∶ 𝑗));
hence, 𝐶∗

𝑇 = 𝑑𝑛,𝑚. The trace corresponding to the cost 𝐶∗
𝑇 is obtained

using back-tracking algorithm from 𝑖 = 𝑛, 𝑗 = 𝑚 to 𝑖 = 1, 𝑗 = 1
implementing the back-tracking step defined below.

1. Initialization: 𝑑0,0 = 0; 𝑑𝑖,0 =
∑𝑖

𝑟=1 𝛾(𝑎𝑟 → 𝛬) and 𝑑0,𝑗 =
∑𝑗

𝑟=1 𝛾(𝛬 → 𝑏𝑟) ∀ 1 ≤ 𝑖 < 𝑛 and 1 ≤ 𝑗 ≤ 𝑚.
2. Forward pass: 𝑧1 = 𝑑𝑖−1,𝑗−1 + 𝛾(𝑎𝑖 → 𝑏𝑗 ), 𝑧2 = 𝑑𝑖−1,𝑗 + 𝛾(𝑎𝑖 →

𝛬), 𝑧3 = 𝑑𝑖,𝑗−1 + 𝛾(𝛬 → 𝑏𝑗 ); 𝑑𝑖,𝑗 = min1≤𝑙≤3 𝑧𝑙.
3. Back-tracking: 𝑥 = argmin1≤𝑙≤3 𝑧𝑙; 𝑖𝑓 𝑥 = 1 or 2 ⟹ 𝑖 = 𝑖 − 1

and 𝑖𝑓 𝑥 = 1 or 3 ⟹ 𝑗 = 𝑗 − 1.

In WFA, 𝛾(𝑎 → 𝑏) = 0 if 𝑎 = 𝑏, 1 otherwise. We observe that, with
the cost function, 𝛾, the optimal trace could pair a nucleus in 𝐴 to a
non-nucleus in 𝐵, as illustrated in Fig. 3a, where, nucleus ‘𝑎𝑜’ in 𝐴 pairs
with non-nucleus ‘𝑟’ in 𝐵. This indicates that the trace does not obey
the second and third constraints of the PSA. However, Fig. 3b shows a
desirable trace, which satisfies all the PSA constraints.

2.4. Proposed weighted Wagner–Fisher algorithm

The modified cost function of trace 𝑇 from 𝐴 to 𝐵 in the proposed
wWFA is given as:

𝐶𝑇 (𝐴,𝐵, 𝛼) =
∑

𝛾𝛼(𝑎𝑖 → 𝑏𝑗 ) +
∑

𝛾𝛼(𝑎𝑖 → 𝛬) +
∑

𝛾𝛼(𝛬 → 𝑏𝑗 ) (2)
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(𝑖,𝑗)∈𝑇 𝑖∈𝐼 𝑗∈𝐽
where, we define 𝛾𝛼(𝑎 → 𝑏) = 𝛼𝑎𝑏𝛾(𝑎 → 𝑏), 𝛼𝑎𝑏 is a non-negative
weight associated with the operation 𝑎 → 𝑏 and satisfies the property
𝛼𝑎𝑏 + 𝛼𝑏𝑐 ≥ 𝛼𝑎𝑐 . Thus, the proposed 𝛾𝛼 also satisfies the properties: (1)
𝛾𝛼(𝑎 → 𝑎) = 0; (2) 𝛾𝛼(𝑎 → 𝑏)+𝛾𝛼(𝑏 → 𝑐) ≥ 𝛾𝛼(𝑎 → 𝑐). Further, the optimal
trace to 𝐶𝑇 (𝐴,𝐵, 𝛼) is obtained by replacing 𝛾 with 𝛾𝛼 in the three steps
f WFA described in Section 2.3. It is easy to see that the solution of
2) is identical to that of (1) when all weights are one.

.5. Proposed weights computation for wWFA

We modify wWFA in (2) to incorporate the constraints proposed in
ection 2.2 and compute the weights for wWFA. We discuss the mod-
fications and the weights computation for each constraint separately
elow.
Constraint 1: In order to ensure this constraint, it is necessary

o estimate the trace that avoids pairing of two phonemes belonging
o two sub-sequences in 𝐴 and 𝐵 representing two different words.
nder such constraint on trace, from the work proposed by Wagner and
ischer (1974), we observe that the overall sentence based weighted
ost function in (2) can be written as a sum of word based weighted
ost functions as follows:

𝑤
𝑇 (𝐴,𝐵, 𝛼) =

𝑛𝑤
∑

𝑘=1
𝐶𝑇 (𝐴𝑘, 𝐵𝑘, 𝛼) (3)

here, 𝐴𝑘 and 𝐵𝑘 are the respective 𝑘th word sub-strings in 𝐴 and
. 𝑛𝑤 is the total number words in either 𝐴 or 𝐵. Thus, solving the
ost function in (2) for trace automatically ensure the first constraint.
urther, we also observe that the trace, denoted as 𝑇𝑤, belonging to
he optimal cost 𝐶𝑤∗

𝑇 in (3) is obtained by concatenating the traces,
1, 𝑇2,… , 𝑇𝑛𝑤 , sequentially, where 𝑇𝑘 is the trace corresponding to the
ptimal cost 𝐶∗

𝑇 (𝐴𝑘, 𝐵𝑘, 𝛼) of the 𝑘th word.
Constraint 2: We split the second constraint into three

sub-constraints based on the |

|

|

S𝐴𝑘
|

|

|

and |

|

|

S𝐵𝑘
|

|

|

, where S𝐴𝑘
and S𝐵𝑘

are the sets of syllable nuclei indices in 𝐴𝑘 and 𝐵𝑘 respectively and |.|
indicates the cardinality of the set. The three sub-constraints are given
as:

1. |

|

|

S𝐴𝑘
|

|

|

< |

|

|

S𝐵𝑘
|

|

|

⇒ 𝛼𝑎𝑖𝛬, 𝛼𝑎𝑖𝑏𝑗 = ∞ ∀ 𝑖 ∈ S𝐴𝑘
, 𝑗 ∉ S𝐵𝑘

. 𝛼𝑎𝑖𝛬, 𝛼𝑎𝑖𝑏𝑗
are denoted by 𝛼𝑖𝛬, 𝛼𝑖𝑗 for brevity, from now onward.

2. |

|

|

S𝐴𝑘
|

|

|

> |

|

|

S𝐵𝑘
|

|

|

⇒ 𝛼𝛬𝑗 , 𝛼𝑖𝑗 = ∞ ∀ 𝑖 ∉ S𝐴𝑘
, 𝑗 ∈ S𝐵𝑘

3. |

|

|

S𝐴𝑘
|

|

|

= |

|

|

S𝐵𝑘
|

|

|

⇒ both first and second sub-constraints are

satisfied.

The first sub-constraint is active when 𝑁 = |

|

|

S𝐴𝑘
|

|

|

and it ensures that
a syllable nucleus in 𝐴𝑘 is neither deleted nor paired with a phoneme
other than syllable nucleus (denoted by POSN) in 𝐵𝑘. If it does so, the
cost becomes ∞; hence, a finite cost can be obtained only when all
syllable nuclei in 𝐴𝑘 are paired with one of the syllable nuclei in 𝐵𝑘.
Similarly, the second sub-constraint ensures that all the syllable nuclei

in 𝐵𝑘 are paired with one of the syllable nuclei in 𝐴𝑘 and the third
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sub-constraint ensures that no syllable nucleus in 𝐴𝑘 or 𝐵𝑘 is paired
with a POSN.

Constraint 3: Let 𝑖𝑝 and 𝑗𝑝 be the primary stress label indices in
𝐴𝑘 and 𝐵𝑘 respectively. Then, in order to ensure this constraint, the
syllable nucleus at 𝑖𝑝 and that at 𝑗𝑝 should be paired with neither 𝛬 nor
any other nucleus of syllable and a POSN. Hence 𝛼𝛬𝑗𝑝 , 𝛼𝑖𝑝𝛬 = ∞, 𝛼𝑖𝑝𝑗 =

∞ ∀ 𝑗 ≠ 𝑗𝑝 and 𝛼𝑖𝑗𝑝 = ∞ ∀ 𝑖 ≠ 𝑖𝑝. However, 𝑗𝑝 is unknown but we assume

that it can be estimated as follows – (1) consider 𝑗th element in S𝐵𝑘
s having primary stress label and compute the cost 𝐶𝑇 (𝐴𝑘, 𝐵𝑘, 𝛼); (2)

consider the 𝑗 that results in the minimum 𝐶𝑇 (𝐴𝑘, 𝐵𝑘, 𝛼) as 𝑗𝑝.
The remaining weights are considered as 1, when those are not

assigned after incorporating the second and third constraints.

2.6. Proposed PSA algorithm

Algorithm 1 shows the steps for PSA using proposed wWFA consid-
ering the weights described in Section 2.5.

Algorithm 1 PSA using proposed wWFA. Input: 𝐴𝑘 =
{𝐴𝑘(1), 𝐴𝑘(2),… , 𝐴𝑘(||𝐴𝑘

|

|

)}, 𝐵𝑘 = {𝐵𝑘(1), 𝐵𝑘(2),… , 𝐵𝑘(||𝐵𝑘
|

|

)}; ∀1 ≤
𝑘 ≤ 𝑛𝑤 and output: 𝑇𝑤 = {𝑇1, 𝑇2,… , 𝑇𝑛𝑤}

1: Initialization: 𝑇𝑤 ← {∅}
2: for each word 𝑘 from 1 to 𝑛𝑤 do
3: Initialization: 𝛼𝑖𝑝𝛬 = ∞,S𝐴𝑘

,S𝐵𝑘
4: for each frame 𝑗𝑝 ∈ S𝐵𝑘

do
5: Weight initialization: (1) 𝛼𝛬𝑗𝑝 = ∞,

(2) 𝛼𝑖𝑝𝑗 = ∞; 1 ≤ 𝑗 ≤ |

|

𝐵𝑘
|

|

& 𝑗 ≠ 𝑗𝑝,
(3) 𝛼𝑖𝑗𝑝 = ∞; 1 ≤ 𝑖 ≤ |

|

𝐴𝑘
|

|

& 𝑖 ≠ 𝑖𝑝.
6: if ||

|

S𝐴𝑘
|

|

|

≤ |

|

|

S𝐵𝑘
|

|

|

then
𝛼𝑖𝛬 = ∞; 𝑖 ∈ S𝐴𝑘
𝛼𝑖𝑗 = ∞; 𝑖 ∈ S𝐴𝑘

and 1 ≤ 𝑗 ≤ |

|

𝐵𝑘
|

|

& 𝑗 ∉ S𝐵𝑘
7: end if
8: if ||

|

S𝐴𝑘
|

|

|

≥ |

|

|

S𝐵𝑘
|

|

|

then
𝛼𝛬𝑗 = ∞; 𝑗 ∈ S𝐵𝑘
𝛼𝑖𝑗 = ∞; 𝑗 ∈ S𝐵𝑘

and 1 ≤ 𝑖 ≤ |

|

𝐴𝑘
|

|

& 𝑖 ∉ S𝐴𝑘
9: end if

10: Cost computation: 𝑑0,0 = 0;
11: 𝑑𝑖,0 = 𝑑𝑖−1,0 + 𝛼𝑖𝛬.𝛾(𝐴𝑘(𝑖) → 𝛬); 1 ≤ 𝑖 ≤ |

|

𝐴𝑘
|

|

12: 𝑑0,𝑗 = 𝑑0,𝑗−1 + 𝛼𝛬𝑗 .𝛾(𝛬 → 𝐵𝑘(𝑗)); 1 ≤ 𝑗 ≤ |

|

𝐵𝑘
|

|

13: for each 𝑖 from 1 to |

|

𝐴𝑘
|

|

do
14: for each 𝑗 from 1 to |

|

𝐵𝑘
|

|

do
𝑧1 = 𝑑𝑖−1,𝑗−1 + 𝛼𝑖𝑗 .𝛾(𝐴𝑘(𝑖) → 𝐵𝑘(𝑗))
𝑧2 = 𝑑𝑖−1,𝑗 + 𝛼𝑖𝛬.𝛾(𝐴𝑘(𝑖) → 𝛬)
𝑧3 = 𝑑𝑖,𝑗−1 + 𝛼𝛬𝑗 .𝛾(𝛬 → 𝐵𝑘(𝑗))
𝑑𝑖,𝑗 = min

1≤𝑙≤3
𝑧𝑙; 𝐿(𝑖, 𝑗) = argmin

1≤𝑙≤3
𝑧𝑙

15: end for
16: end for

D(𝑗𝑝) = 𝑑
|𝐴𝑘|,|𝐵𝑘|

; L (𝑗𝑝) = 𝐿
17: end for
18: Back tracking: 𝑖 = |

|

𝐴𝑘
|

|

; 𝑗 = |

|

𝐵𝑘
|

|

; 𝑇𝑘 ← {𝑖, 𝑗}
19: 𝜂 = argmin

𝑗𝑝
D(𝑗𝑝); 𝐵𝑜𝑝𝑡 = L (𝜂)

20: while 𝑖 ≠ 0 & 𝑗 ≠ 0 do
21: if 𝐵𝑜𝑝𝑡(𝑖, 𝑗) == 1 then 𝑖 = 𝑖 − 1; 𝑗 = 𝑗 − 1;
22: else if 𝐵𝑜𝑝𝑡(𝑖, 𝑗) == 2 then 𝑖 = 𝑖 − 1;
23: else 𝑗 = 𝑗 − 1;
24: end if
25: 𝑇𝑘 ← 𝑇𝑘 ∪ {𝑖, 𝑗}
26: end while

𝑇𝑤 ← 𝑇𝑤 ∪ 𝑇𝑘
27: end for
84
3. Database

We use ISLE (Menzel et al., 2000) corpus in all our experiments in
this work. The corpus contains utterances from 46 non-native speak-
ers (23 German (GER) and 23 Italian (ITA)) learning English. Each
speaker uttered approximately 160 sentences. For each utterance in
the data, phoneme transcriptions were available, which were obtained
from forced-alignment with GMM-HMM based acoustic models learnt
from ISLE data using HTK toolkit (Young et al., 2002). We refer to
these phoneme transcriptions and the GMM-HMM based model as
ISLE_GMM-estimated phoneme sequences and ISLE_GMM respectively.
Following this, the ISLE_GMM-estimated phoneme transcriptions were
corrected manually to reflect the speakers’ pronunciation by a team
of five linguists. In addition to these, in the data, the stress labels
on the syllable nuclei were available for both ISLE_GMM-estimated
and manually corrected phoneme sequences, which were obtained
manually from the same team of linguists by assuring only one stressed
syllable, referred to as primary stress, in each word. Also, we refer
to the annotated stress labels on the syllable nuclei in the manually
corrected data as existing labels. Further, we convert both the manually
corrected and ISLE_GMM-estimated phoneme transcriptions to sylla-
ble transcriptions using P2TK syllabifier (Tauberer, 2018) and obtain
their respective time-aligned boundaries using phoneme specific time-
aligned boundaries. We refer to the respective syllable transcriptions
and its time-aligned boundaries together as ISLE_GMM-estimated and
manually corrected syllable data, respectively. Further the manually
corrected syllable data is referred to as existing syllable data as it
contains existing labels.

4. Experiments and results

The stress detection performance depends on the quality of the
labels obtained from the proposed stress label assignment. Thus, we
discuss performance of the stress label assignment task followed by
its effectiveness in the stress detection task. For both the tasks, all
the weights in the proposed wWFA method are set to one except the
weights, that satisfies the constraints 2 & 3, which are set to ∞.

4.1. Stress label assignment

4.1.1. Experimental setup
We consider unweighted accuracy (Tepperman and Narayanan,

2005; Yarra et al., 2017) and F-score as objective measures for evaluat-
ing the proposed stress label assignment approach. For comparison, we
implement a baseline scheme, referred to as WFA-baseline, as follows:
(1) compute a trace using WFA (2) considering the paired phonemes
in the trace, estimate the stress labels for each syllable nuclei. In this
process, the syllable nuclei are marked as unstressed when they do
not obtain any stress label. Table 1 summarizes the syllable data and
annotated labels used for the experiments. We consider the existing
labels to assign onto the ISLE_GMM-estimated syllable data using the
existing and ISLE_GMM-estimated phoneme sequences. In order to
evaluate the assigned labels, we consider the annotated stress labels
on ISLE_GMM-estimated syllables as the ground truth.

4.1.2. Results and discussions
We estimate the stress labels using the proposed stress label assign-

ment and the WFA-baseline, from which, the respective unweighted
accuracies (F-score in brackets) are shown in column 2 and 3 of Table 2.
Higher accuracy and F-score with the proposed method indicates the
effectiveness of the proposed stress label alignment method compared
to the baseline scheme. We analyze the effectiveness of each of the
proposed constraints and their combinations in the label assignment
task. The values in column 4–7 in Table 2 shows the accuracies and
F-scores obtained separately with the proposed label assignment con-

sidering constraint 1, constraint 2, constraint 1 & 2 and constraint 1
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Fig. 4. An exemplary trace that results in incorrectly assigned labels on the ISLE_GMM-estimated phonetic transcriptions considering only constraint 1 in the proposed label
ssignment approach.
Table 1
Syllable data and annotated labels used (indicated by �) for assignment and evaluation
in the stress label assignment experiments.

Assignment Evaluation

Input Output

Existing (manually Syllable data �
corrected) Annotated labels �

ISLE_GMM
Syllable data �
Assigned labels �
Annotated labels �

Table 2
The label assignment accuracies and F-scores obtained separately WFA-baseline, the
proposed approach and the proposed approach with constraint 1, constraint 2, con-
straint 1 & 2 and constraint 1 & 3. It is required to consider constraint 3 in conjunction
with constraint 1; hence, the performance with constraint 3 and constraint 2 & 3 are
not reported.

WFA Proposed Proposed with constraint

1 only 2 only 1&2 only 1&3 only

Accuracy 97.92% 100% 98.12% 99.22% 99.66% 99.61%

F-score 0.9734 1 0.9759 0.9898 0.9956 0.9949

& 3 respectively. In the table, the performance with constraint 3 and
constraint 2 & 3 are not reported, since, constraint 3 by itself cannot
be used as it requires to be in conjunction with constraint 1. From the
table, it is observed that all the accuracies and F-scores obtained with
different constraints considered in the proposed approach are higher
than the WFA-baseline accuracy and F-score (97.92% and 0.9734).
This suggests the significance of the proposed constraints in the label
assignment task. It is also observed that the accuracies and F-scores
obtained by considering constraints 2 and 1 & 2 are higher than those
with constraint 1 and 1 & 3 respectively. This indicates that constraint
2 is the most critical one among all the proposed constraints. It is also
interesting to observe that none of the accuracies and F-scores are 100%
and 1, which is achieved with the proposed method only when all three
constraints are considered together. This indicates that using all three
constraints together is required to achieve the highest performance in
the proposed label assignment scheme.

Fig. 4 shows an exemplary trace obtained using the proposed la-
bel assignment considering only constraint 1. From the figure, it is
observed that the labels are assigned incorrectly on the ISLE_GMM-
estimated phonetic transcriptions. This could be because the syllable
nuclei belonging to the primary stress label in the existing phoneme
transcriptions is not paired with any syllable nuclei in the ISLE_GMM-
estimated phoneme transcriptions. However, when all three constraints
are considered in the proposed label assignment task, it results a
trace that corrects above label assignment error. This suggests the
significance of the three constraints proposed in this work.

Further, we analyze, using Table 3, the percentage of words that
have incorrectly been assigned labels by WFA-baseline separately based
on syllable count in a word. From the table, it is observed that the
highest incorrect assignment happens in the six syllable words fol-
lowed by three syllable words, while the least incorrect assignment
85
Table 3
The percentage of words with incorrectly assigned labels by WFA-baseline separately
based on syllable count in a word.

Syllable count in a word

1 2 3 4 5 6

WFA-baseline 0.71 0.76 1.39 0.89 0.00 5.56

is found in the five syllable words followed by one syllable words.
This indicates that there is no trend in the assignment errors made
by the WFA-baseline based on their exact syllable count. However,
assignment errors of 0.74% and 1.96% are found when averaged across
the words containing one to two syllables and three to six syllables,
respectively. This indicates that, on average, the WFA-baseline makes
more assignment errors when the words have relatively higher number
of syllables. This suggests that the baseline scheme tends to make more
errors in pairing of syllable nuclei in the existing syllable data with
those in the ISLE_GMM-estimated syllable data when the number of
syllables is large. However, the proposed label assignment approach
eliminates such errors effectively.

4.2. Stress detection performance

4.2.1. Experimental setup
We consider unweighted accuracy (Tepperman and Narayanan,

2005; Yarra et al., 2017) and F-score as the objective measures for
evaluation in the stress detection task too. Following the work by Yarra
et al. (2017), we obtain the AFs for each syllable and estimate its
respective stress label using an SVM classifier. The AFs are computed
based on prominence measures such as intensity, duration and pitch
along with sonority cues. These AFs have been shown to be effective
compared to the features computed based on only prominence mea-
sures. The SVM classifier is implemented with RBF kernel with the
complexity parameter (𝐶) equal to 1.0 and with kernel coefficient (𝛾)
equal to the inverse of the number of features. The SVM classifier is
implemented using Scikit-learn (Pedregosa et al., 2011). In addition, we
implement their post processing method, where, when the number of
estimated stressed syllables in a word is different from one, the syllable
with the highest decision score from the SVM classifier is declared as
the stressed syllable.

Following their work, we use a speaker disjoint train and test set
split considering 1st–12th & 1st–13th speakers’ data for training and
13th–23rd & 14th–23rd speakers’ data for testing for GER & ITA,
respectively. We consider groups of the data from GER and ITA non-
native speakers containing only polysyllabic words. This results in a
total of 7586 & 7791 and 8586 & 4648 words in the train and test
data, respectively, for GER & ITA speakers. There are a total of 3322
(4264) and 3723 (4863) stressed (unstressed) labels in the train and
test data for GER speakers. Similarly, there are a total of 3411 (4380)
and 2057 (2507) stressed (unstressed) labels in the train and test data
for ITA speakers. In order to show the effectiveness of the proposed
stress label assignment in the stress detection task, we use AFs from

estimated syllable data in the test set to predict stress labels using
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Table 4
Syllable data and annotated/assigned labels considered (indicated by �) for mismatched
nd matched stress detection experiments. The train and test splits for GER and ITA
peakers are identical to those described in Para 2 of Section 4.2.1. The evaluation
Eval) measures are computed considering annotated labels on the subset of test splits
or GER and ITA speakers as described in Para 2 of Section 4.2.2.

Mismatched Matched

Train Test Train Test

Data Eval Data Eval

Existing Syllable data �
Annotated labels � � �

ISLE_GMM, Syllable data � � �FE_DNN,

LS_DNN, Assigned labels �WSJ_DNN

two classifiers trained separately as follows: (1) trained using AFs as
similar to the work by Yarra et al. (2017) from the existing syllable data
and existing labels, referred to mismatched train-test scenario, (2) AFs
from the estimated syllable data and its respective labels obtained using
the proposed stress label assignment, referred to as matched train-test
scenario. Further, in order to show the effectiveness of the proposed
method compared to WFA-baseline in the matched scenario, stress
detection is performed using the labels obtained using WFA-baseline
scheme.

In the experimentation, we consider four different sets of esti-
mated syllable data obtained from forced-alignment considering one
GMM-HMM and three different DNN-HMM based acoustic models. The
GMM-HMM based estimated syllable data was available in the ISLE
corpus i.e., ISLE_GMM-estimated syllable data. In order to obtain DNN-
HMM based estimated syllable data, we use Kaldi speech recognition
tool-kit (Povey et al., 2011) and a lexicon combining the following four
lexicons – CMU (Weide, 1998), TIMIT (Zue et al., 1990), Beep (Robin-
son, 1996) and the lexicon used in preparing ISLE data. The phonemes
in the combined lexicon are mapped to a set of 39 phonemes (Weide,
1998) following the phoneme mapping1 available in the Kaldi tool-kit.
Three DNN-HMM models are learnt by following the Daniel Povey’s
(Dan’s Cosi, 2015) implementation (Povey et al., 2014) available in
the Kaldi tool-kit using the three speech corpora respectively – (1)
Fisher English (Cieri et al., 2004) (FE) (2) Libri-speech (Panayotov
et al., 2015) (LS) (3) Wall street journal (Paul and Baker, 1992) (WSJ).
We refer the DNN-HMM models based on FE, LS and WSJ as FE_DNN,
LS_DNN and WSJ_DNN, respectively. We have not learnt a DNN-HMM
acoustic model using ISLE corpus due to its limited amount of data. The
labels for the three estimated syllable data is obtained by assigning the
existing labels considering existing phoneme sequences and estimated
phoneme sequences from the respective models. Table 4 summarizes
the syllable data and annotated/assigned labels considered for the
stress detection experiments for all the four types of the estimated
syllable data under mismatched and matched conditions.

4.2.2. Results and discussions
In order to compare the accuracies and F-scores across all four sets

of estimated syllable data, it is required to have identical number of
syllables in the test set, while it is not guaranteed for all test cases. We
summarize the mismatch between the syllables in the existing syllable
data and those in each of the four sets of estimated syllable data in
Table 5. The table shows the percentage of polysyllabic words in the
test set that have the same and different number of syllables compared
to those in the existing syllable data, for all four sets of estimated
syllable data. From the table, it is observed that a significant percentage

1 https://github.com/kaldi-asr/kaldi/blob/master/egs/timit/s5/conf/
hones.60-48-39.map.
86
Table 5
Percentage of polysyllabic words that has difference of −3, −2, −1, 0 and 1 when the
number of syllables in each of the four estimated syllable data subtracted from that in
the existing syllable data.

Acoustic model for estimated data −3 −2 −1 0 1

ISLE_GMM 0.00 0.29 14.98 84.68 0.05
FE_DNN 0.00 0.30 15.23 84.35 0.12
LS_DNN 0.00 0.41 18.11 81.40 0.08
WSJ_DNN 0.01 0.43 19.39 80.08 0.09

Table 6
Stress detection accuracies and F-scores obtained for the estimated syllable data under
matched and mismatched conditions under WoPP & WPP for GER and ITA respectively.
Also, when the stress detection is performed using AFs from the existing syllable data
and label for both train and test conditions, stress detection accuracies (F-scores in
brackets) are found to be 92.47% (0.8883) & 93.17% (0.8941) and 92.20% (0.8812)
& 94.40% (0.9172) under WoPP & WPP for GER and ITA respectively.

Mismatched Matched

Proposed wWFA WFA-baseline

WoPP WPP WoPP WPP WoPP WPP

Accuracy

ISLE_GMM GER 77.80 84.75 90.19 91.39 89.99 91.21
ITA 73.12 78.79 90.71 92.42 90.07 91.72

FE_DNN GER 80.00 85.18 91.30 92.36 90.56 91.63
ITA 78.51 83.72 92.63 94.50 91.80 93.53

LS_DNN GER 76.37 83.04 91.20 92.81 90.55 92.24
ITA 73.94 79.24 91.42 93.12 90.66 92.36

WSJ_DNN GER 78.85 85.33 91.01 92.48 90.08 91.50
ITA 75.46 80.84 91.51 93.52 90.64 92.64

F-score

ISLE_GMM GER 0.8100 0.8653 0.8657 0.8820 0.8611 0.8808
ITA 0.7807 0.8303 0.8663 0.8873 0.8655 0.8879

FE_DNN GER 0.8058 0.8609 0.8809 0.8966 0.8716 0.8877
ITA 0.7960 0.8457 0.8898 0.9177 0.8801 0.9051

LS_DNN GER 0.7741 0.8436 0.8810 0.9029 0.8734 0.8961
ITA 0.7300 0.7949 0.8713 0.8977 0.8625 0.8880

WSJ_DNN GER 0.7971 0.8574 0.8766 0.8986 0.8658 0.8868
ITA 0.7511 0.8078 0.8740 0.9025 0.8639 0.8913

of the words has different number of syllables and that varies across the
four sets. This indicates that the stress detection performance computed
on the test set is not comparable directly across all four sets of estimated
syllable data.

In order to circumvent this, we select a subset from the test data to
ensure uniform test condition across all four sets considering existing
syllable data as follows: (1) number of the syllables in a word in
the existing syllable data is identical to that in the estimated syllable
data from FE_DNN, LS_DNN, WSJ_DNN and ISLE_GMM (2) the existing
labels on the syllables are identical to the assigned labels from the
proposed wWFA based label assignment. This results in a subset of 5711
and 3941 words for GER and ITA speakers respectively. However, the
training data varies across all four sets of estimated syllable data, in
which, we consider all the syllables belonging to all the words in the
entire train set.

Table 6 shows the accuracies and F-scores obtained using estimated
syllable data from FE_DNN, LS_DNN, WSJ_DNN and ISLE_GMM. For
each set of data, we compute the accuracies and F-scores with and with-
out post processing (WPP and WoPP) under matched and mismatched
scenarios. From the table, it is observed that the performance in the
mismatched conditions are lower than those in the matched condition
under WoPP and WPP for all four sets of estimated syllable data. This
could be because of the fact (as observed in Table 5) that the variability
in the number syllables could cause different time aligned boundaries
between estimated syllable data and existing syllable data. Hence, the
characteristics of AFs in the estimated syllable data would not be
identical to those in the existing syllable data. Thus, the difference

https://github.com/kaldi-asr/kaldi/blob/master/egs/timit/s5/conf/phones.60-48-39.map
https://github.com/kaldi-asr/kaldi/blob/master/egs/timit/s5/conf/phones.60-48-39.map
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in the characteristics of AFs could degrade the performance in stress
detection task under mismatched scenario. This indicates that the stress
detection performance degrades when the classifier is trained with
existing syllable data and tested on estimated syllable data. Hence, in
real test scenarios, it is useful to train a classifier for stress detection
task using estimated syllable data and its respective labels obtained
using the proposed stress label assignment.

It is also observed that the accuracies and F-scores under matched
scenario are more when the estimated syllable data is obtained from
three DNN-HMM based models (FE_DNN, LS_DNN and WSJ_DNN) com-
pared to that from GMM-HMM based models (ISLE_GMM). This in-
dicates that the features derived by considering DNN-HMM models
perform better in stress detection task compared to those from GMM-
HMM models. Further, it suggests that a better ASR model could result
in better stress detection performance. It is interesting to observe that
the accuracies and F-scores obtained with the proposed stress label
assignment are higher than those obtained using the labels estimated
with WFA-baseline for all four sets of estimated syllable data. Among
all the four sets, the highest absolute improvements with the proposed
wWFA are found to be 0.94% & 0.99% and 0.87% & 0.88% under WoPP
& WPP on GER and ITA speakers, respectively, compared to WFA-
baseline. We believe that these improvements are significant as those
are comparable to the improvements (−1.28% & 1.72% and 1.16% &
3.09% under WoPP & WPP on GER and ITA speakers respectively)
reported in the work by Yarra et al. (2017) on the same train and
test splits. Also, the absolute improvements are comparable to the
improvement of 1.4% reported in the work by Shahin et al. (2016) irre-
spective of speakers and WoPP when the baseline of single hidden layer
multi-layer perceptron (MLP) is considered. These together suggest the
benefit of the proposed stress label assignment algorithm.

Further, we perform stress detection similar to the work by Yarra
et al. (2017) using AFs from existing syllable data and label for both
train and test conditions. From this, we obtain accuracies (F-scores in
brackets) of 92.47% (0.8863) & 93.17% (0.8941) and 92.20% (0.8812)
& 94.40% (0.9172) under WoPP & WPP for GER and ITA, respectively.
We compare these accuracies and F-scores with those in Table 6 in
the matched scenario to examine the effectiveness of the AFs from the
estimated syllable data. From the table, it is observed that a comparable
accuracy (F-score) of 94.50% (0.9177) is achieved under WPP for
ITA speakers using estimated syllable data from FE_DNN, where DNN-
HMM based models are used. This indicates that the performances in
stress detection task are comparable between the syllable data from
DNN-HMM based models and manual annotation.

5. Conclusions

We propose a method to assign existing stress labels on the exist-
ing syllable data to an estimated syllable data obtained from forced-
alignment to avoid time-consuming manual labeling. As there is no
one-to-one correspondence between the estimated syllable data and
existing labels due to mismatch between the number of syllables in
them, we develop an algorithm by adding weights to the edit distances
involved in Wagner–Fisher algorithm and compute those weights by
defining a set of three constraints. Experiments on ISLE corpus show
that the performance obtained on a test set for four different types of es-
timated syllable data are better when the assigned labels and estimated
syllable data are used for training compared to those when existing
labels and existing syllable data are used. Further investigations are
required to analyze the benefit of the proposed method on different
non-native corpora.
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