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Abstract

Second language learners of British English (BE) are typically
trained to learn four intonation classes — Glide-up, Glide-down,
Dive and Take-off. We predict the intonation class in a learner’s
utterance by modeling the temporal dependencies in the pitch
patterns with gated recurrent unit (GRU) networks. For these,
we pre-train the GRU network using a set of synthesized pitch
patterns representing each intonation class. For the synthesis,
we propose to obtain pitch patterns from the tone sequences rep-
resenting each intonation class obtained from domain knowl-
edge. Experiments are conducted on speech data collected from
experts in a spoken English training material for teaching BE
intonation. The absolute improvements in the unweighted aver-
age recall (UAR) using the proposed scheme with pre-training
are found to be 4.14% and 6.01% respectively over the proposed
approach without pre-training and the baseline scheme that uses
hidden Markov models (HMMs).

Index Terms: intonation classification, computer assisted lan-
guage learning, LSTM with pre-training, synthetic pitch for in-
tonation

1. Introduction

In spoken communication, intonation refers to the modulation
of pitch that gives meaning to an utterance [1] and it acts as an
emotional indicative of the speaker [2]. In addition, for second
language (L2) learners, intonation is an important prosodic as-
pect in learning, because an incorrect intonation can result in
miscommunication. Hence, in spoken L2 training, for example
in learning British English (BE), L2 learners require to learn BE
intonation for a better spoken communication. Though the into-
nation of BE varies across different geographic regions [3], L2
learners are initially trained to learn four different patterns of
BE intonation in the received pronunciation [4-6] — Glide-up,
Glide-down, Dive and Take-off [4, 7], referred to as intonation
classes. Later, they are trained to add finer changes to those pat-
terns [4] to produce more detailed intonation variations. In this
work, we propose models to classify those four classes in the BE
expert’s intonation. Thus, these models could be useful in the
L2 training similar to the work proposed by Witt [8, 9], where
the quality of phonemes in L2 learner’s utterance has been as-
sessed using a model built from expert’s data.

In general, intonation is defined by a sequence of discrete
patterns called tones [3—7,10-12]. Although the last tone in the
sequence, called nuclear tone [3, 4], plays a critical role in the
intonation class, all tones in the sequence together convey the
meaning [4,7,12]. For example, the nuclear tone in Glide-up
and Take-off are the same, but these classes are discriminated
based on the entire tone pattern. Most of the existing works
have studied the variations of intonation among different na-
tivities [13—18] and variations of BE intonation across the na-
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tivities [3, 10, 11]. However, a few works have addressed the
problem of intonation assessment of L2 learners [19, 20] and
the problem of intonation classification [21-23]. Most of the
works on intonation assessment and classification have consid-
ered temporal structures in either pitch or the tone sequence in
an utterance [22,23]. This is because intonation of an utterance
depends on the entire sequence of tones and each tone in the
sequence depends on pitch variations within the tone [4,7,12].

Li et al. [21] have used two tones at the end of the utter-
ance and performed intonation classification using deep neu-
ral network (DNN) models. Instead of only last two tones, Ke
et al. [19] have considered tone duration based features from
all the tones for assessing the L2 learners’ intonation. Yarra et
al. [23], have modelled the temporal dependencies in the tone
sequence of an utterance for the intonation classification task.
However, in these tone based modeling a small error in esti-
mating tone sequence could cause large degradation in the clas-
sification [22,23]. On the other hand, Arias et al. [20] have
assessed the L2 learners using pitch contours from learners and
experts. Further, the temporal dependencies in the pitch pat-
terns have been used in the intonation classification task [22].
Among these works, the works considering the temporal de-
pendencies in pitch patterns have been shown to be effective in
the intonation classification task. Yet, most of these approaches
do not consider any deep learning based sequential modelling
techniques such as recurrent neural networks (RNNs). In this
work, for the intonation classification task, we use RNNs to cap-
ture the temporal dependencies in both the pitch pattern and the
tone sequences. However, in order to avoid the degradation due
to the errors in estimating tones from the pitch, which typically
happens in typical tone sequence based modelling, we construct
the tone sequence from the domain knowledge belonging to the
intonation classes.

Typically, RNN based modelling requires large amount of
data [24]. However, annotating the intonation class labels re-
quires highly skilled experts thereby limiting the data size. In
order to obtain better model under this low resource scenario,
it requires memory units in RNN with less number of param-
eters and a good initialization point for training. These can
be achieved respectively by considering gated recurrent unit
(GRU) as the RNN unit [25] and by pre-training the model us-
ing artificial data that closely matches the distribution of the
training data.

In general, each intonation class is characterized by a set of
tone sequences, which can be obtained by domain knowledge.
For example, the intonation class Take-off always ends in a ris-
ing tone that may span multiple segments, and it is preceded by
a sequence of low level tones. Considering this, a set of repre-
sentative samples of Take-off class can be designed with a rise
tone at the end preceded by a sequence of low tones of different
lengths. Similarly, such sets can be designed for the other into-
nation classes as well. Considering these knowledge based tone
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sequences, we show that the pitch patterns can be synthesized
and used for pre-training. Hence, this pre-training setup allows
us to model the temporal dependencies in the tone sequences
without actually estimating them from test utterances as done
in a typical tone based modelling pipeline.

Pitch may have unwanted variations which may not be
present in the intonation class specific pattern. In this work,
we hypothesized that a time-distributed neural network layer
(TDL) that performs transforms on the pitch pattern would sup-
press such unwanted variations when jointly trained with GRU.
Experiments are performed on the speech data collected from a
spoken English training material for teaching BE intonation [7].
We consider the work proposed by Yarra et al. [22] as the base-
line scheme. The absolute improvement in unweighted aver-
age recall (UAR) [26] is found to be 6.01% with the proposed
method compared to that with the baseline scheme. The high-
est average UAR is also found to be 4.14% more than the UAR
obtained without pre-training indicating the benefit of the pro-
posed pre-training.

2. Database

In this work, the speech data is considered from a spoken En-
glish training material [7] used for teaching BE. The speech
recordings selected for our experiments contain all the utter-
ances of intonation phrases belonging to intonation lessons. The
entire speech recording is manually segmented into individual
speech files belonging to every utterance. Further, the annotated
text transcriptions are obtained along with the respective intona-
tion class label and the tone sequence for each utterance. In the
speech data, the total number of utterances is 233 out of which
50, 68, 82 and 33 belong to Glide-up, Glide-down, Dive and
Take-off intonation classes respectively. The entire speech data
considered in this work has been spoken by one male and one
female native BE speaker. To the best of our knowledge, there is
no larger speech data that has these four intonation class labels
annotated by experts. This could be because recording and la-
beling of such corpora require highly trained specialists, which,
in turn, limits the size and the availability of such corpora.

3. Proposed approach

Figure 1 shows the three major stages involved in the proposed
approach. In the first stage, a 3-dimensional (3D) feature se-
quence (f(t), 1 <t < T)is computed from the speech signal,
where T is the total number of frames in the signal. In the
second stage, we perform pre-training to obtain parameters for
initializing the GRU network in the classifier in three steps. The
first step derives the tone sequence (7(n), 1 < n < N) con-
taining discrete symbols of an arbitrary length /V for each into-
nation class using the class specific knowledge. The second step
synthesizes a 2D artificial feature sequence (f(t), 1 <t < T)
from the tone sequence of length N, where T is the number
frames obtained based on the range of typical syllable duration
and N. The third step trains the GRU network with f(¢) and ob-
tains parameters for the initialization. In the third stage, we clas-
sify the feature sequence (f(¢)) into one of the four intonation
classes with a classifier containing a TDL and a GRU network.
The first step estimates the posterior probability of each class
given f(t) by jointly training TDL and GRU network. The TDL
is used to obtain a 2D sequence from 3D f(¢) and the GRU net-
work is initialized with parameters from the pre-training. With
the joint model, we believe that the TDL could suppress the un-
wanted variations in f(¢) that are not present in 2D f(¢). The
second step estimates the class with highest probability as the
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Figure 1: Block diagram summarizing the stages involved in the
proposed approach.

3.1. Feature computation

Following the work by Yarra et al. [22], we consider a 3D fea-
ture sequence f(t) = [fi(t), fa(t), f3(t)]". f(t) is an esti-
mated pitch contour in Mel scale with mean and range normal-
ization over every utterance. f2(t) is the derivative of fi(t).
f3(t) is a sequence of confidence score in estimating f1(¢). It
has been observed that the score values are lower when there
are pitch estimation errors and vice versa. Thus, by having the
score sequence in f(t), it has been hypothesized that the clas-
sifier trained with f(¢) could model the dependencies between
the score sequence and the estimated pitch contour and mini-
mizes the inaccuracies caused due to the estimation errors. In
this work, using f(t), we propose a classifier that would learn
transformations representing those dependencies more explic-
itly using TDL with the help of pre-training.

3.2. Pre-training

RNNSs have large number of parameters compared to a standard
MLP network when both the networks are considered with the
same number of units. This is due to the multiple internal gating
functions present in each RNN unit. Hence, ideally, a large set
of training data samples is required to learn the parameters for
better generalizability of these networks [24]. However, a good
initialization could reduce a need for large data size. It has been
shown that pre-training with artificial data set allows a better
initialization of the classifier [27]. In this work, we pre-train
the classifier by synthesizing a 2D artificial feature sequence
and explore its benefit in minimizing the inaccuracies due to
the pitch estimation errors.

3.2.1. Tone sequence fetching

A tone sequence (7(n)) comprises of discrete symbols called
tones. Typically, the tone is associated with a syllable and there
are four tones — rise (R), fall (¥), low (L) and high (H). In
some cases, a fifth tone is also considered, which is mid (M)
tone. In R and F tones, pitch changes from a low to a high
value and from a high to a low value respectively. In L, M and
H tones, the pitch is at a low, an average and a high value of
the normalized pitch contour respectively. It is observed that
the temporal dependencies in the tone sequence are the rep-
resentative of each intonation class. However, the utterances
with the same number of syllables (/V) could have different
tone sequences. For example, two exemplary utterances of
Take-off class with N = 4 from the corpora considered have
the following two different tone sequences — {L, L, L, R} and
{L, L, R, R}. However, the temporal pattern of a low (L) tone
followed by a rise (R) tone is sufficient to identify the Take-off
class. Similarly, this holds for other class as well.

In the corpora, the total percentage of such different tone se-
quences are found to be 64.00%, 66.18%, 45.12% and 75.76%
across all N in Glide-up, Glide-down, Dive and Take-off classes



respectively. The percentages below 100% in all four classes in-
dicate that different spoken texts within a class have the same
tone sequence. In addition, we also observe that the same spo-
ken text is uttered in the tone sequences belonging to different
intonation classes. From these three observations, we assume
that the tone sequence is a supra-segmental information that is
embedded onto a spoken text. Thus, we hypothesize that the
tone sequences of each intonation class can be collected irre-
spective of the spoken text but based on the knowledge of rela-
tion between the temporal dependencies in tone sequences and
the intonation classes. Considering this hypothesis, we propose
to synthesize feature sequences f(¢) that approximately resem-
ble f(t) derived from the tone sequences independent of the
spoken text. Further, using f (t), we pre-train the GRU network
and propose to initialize the classifier which takes f(t) as the
input.

3.2.2. Feature synthesis

In order to obtain f (t), first, we synthesize its 1-st dimension
sequence (f1(t)) which is of similar nature as that of fi(t).
Later, we compute derivative on fl(t) and consider it as the
2-nd dimension sequence (fa(t)) of f(¢). With this, we hy-
pothesize that the two dimensions of f(t) would have charac-
teristics similar to that of f1(¢) and f2(¢). Let a tone sequence
be {r;,1 <i < N }, where 7; € {L, M, H, R, F'} is the tone
of i-th syllable with duration d;. The d; is chosen randomly be-
tween the minimum and maximum duration (d,i» and dpaz),
where drmin and dma, are computed using the range of sylla-
ble rate in the corpora considered and it is found to be 1.26
to 6.47 syllables per second. Thus, 155ms and 793ms are as-
signed to dmin and dmqa respectively. Further, in the synthesis
of f1(t), we propose to use the following parameters — pr., pu
and pyp = %(pL + pu ), where p, and py are computed by av-
eraging the least and highest fi(t) values across all utterances
considered in the corpora. The values of pr,pr and pys are
found to be -0.57, 0.44 and -0.06 respectively. Considering
these values, we synthesize fi(t) for a tone sequence as fol-
lows:

1. Divide N syllable segments into K, where K < N, sub
segments where each sub-segment consists of consecu-
tive syllable segments that belong to the same tone.

2. fi(t)is assigned with pL, pM and pH in a sub-segment,
when the tone in that sub-segment is equal to L, M, and
H respectively. If the current sub-segment has either 2
or F tone, the f1(t) in this sub-segment is obtained by
linearly interpolating the f1 (£) values at the previous and
next sub-segments. If either the previous or the next sub-
segment is absent, for interpolation, the f1(t) at the be-
gin and end of the current sub-segment are considered as
pL(pH) and pH (pL) respectively when the tone in the
current sub-segment is R(F').

3. Add a white Gaussian noise at 20dB SNR to the synthe-
sized f1(t) obtained from steps 1 and 2.

It is to be noted that the step 3 is used for better generalizability
of the classifier, since real data mostly contains small variations
around the ground-truth pitch values.

Figure 2 shows the f1(t), f1(t) and f3(t) for an exemplary
tone sequence, {L, L, L, R}, belonging to Take-off class from
the corpora. From the figure, it is observed that the pattern in
f1(t) and f1(t) are having similar trend except in the black rect-
angular box, where a sudden variation is observed in f1(¢) from
the typical trend in the tone sequence. It is also observed that the
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Figure 2: Original and synthesized normalized pitch for an ut-

terance belonging to Take-off

confidence score values (f3(t)) are lower in the box compared
to those in other locations. This suggests that the variation is
due to an estimation error. However, it is to be noted that, we
propose to minimize such unwanted variations using TDL be-
fore applying to GRU network.

3.3. Classifier
3.3.1. Time-distributed layer (TDL)

We transform the 3D input feature sequence of length 7" to 2D
output sequence of the same length using many to many TDL.
We consider TDL with one input layer and one hidden layer
with two units. Each unit is considered without any activation
function.

3.3.2. GRU network

In general, GRU network is similar to the typical RNN, where
the hidden layers containing memory cells are considered with
GRU [28]. Compared to LSTM unit cell in an LSTM network,
a GRU employ a few number of parameters. Thus, with in-
crease in the number of hidden units the computational burden
in the GRU network is reduced compared to that in the LSTM
network. Further, we observe that the accuracy obtained with
GRU network is better than that with LSTM network for the
intonation classification task. In this work, the GRU network
takes 2D sequence from the TDL and produces a 4D sequence
at its output. The GRU network is composed of one layer with
four GRU units. Further, the output at the last time step from the
GRU network is fed to a softmax layer containing four units to
obtain class posterior probabilities for four intonation classes.

4. Experimental results
4.1. Experimental setup

We consider unweighted average recall (UAR) as the perfor-
mance measure to evaluate the classification accuracy. We con-
duct the experiments in a 10-fold cross validation setup where
eight folds are used for training, one fold for development (dev)
and one fold for testing in a round robin fashion. We use SWIPE
algorithm to estimate pitch and to obtain confidence scores [29].
We implement TDL and GRU networks using Theano [30] and
Keras [31]. For the comparison, we consider the work proposed
by Yarra et al. [22] as the baseline. While a domain expert
can provide illustrative tone sequence for an intonation class
irrespective of the utterances in the training data, we did not
use such for pre-training due to unavailability of such tone se-
quences provided by experts. Rather, we use tone sequences
from the training data as annotated by the experts.

4.2. Results and discussion

Table 1 shows the the average (standard deviation (SD)) of
UARs on the test and dev sets with the baseline and the pro-
posed approach. From the table, it is observed that the average
UAR obtained using the baseline is 6.01% and 5.41% lower
than those using the proposed approach with TDL and pre-
training on test and dev sets respectively. This indicates that
the proposed approach is better than the baseline for intonation
classification task. In the table, we also show the average UAR



Table 1: Average (SD) of UARs obtained with the baseline and
the proposed approach with the combination of with & without
(w/o) TDL and with & without pre-training

Proposed approach
Baseline| with pre-training w/o pre-training
with TDL |w/o TDL | with TDL |w/o TDL
test 61.77 67.78 63.64 63.54 60.45
(8.6) (9.8) (6.9) (5.4) (7.3)
dev 62.32 67.73 62.67 63.59 60
(7.2) (8.5) (5.5) (6.6) (6.0)

obtained using proposed approach for each combination of with
and without TDL as well as with and without pre-training. In
the case when TDL is not used, there is no transformation from
3D to 2D feature sequence, thus we modify the GRU network
so that it accepts directly 3D f(¢). In order to match model
parameters with this modified GRU network and those from
pre-trained model, we modify the pre-training setup so that it
is trained with a 3D artificial feature sequence. We deduce the
3D feature sequence from 2D f(t) by adding the 3-rd dimen-
sional feature sequence as confidence score and it is chosen as
one throughout the sequence length. This is because we assume
that there is no error in the tone sequence thus in the synthesized
feature sequence.

From the table, it is observed that the average UARs ob-
tained using the proposed approach are higher than that with
the baseline for all combinations except the that without TDL
and without pre-training on both the test and dev sets. This in-
dicates the benefit of the deep network based models for intona-
tion classification task compared to the traditional HMM mod-
els. From the table, it is also observed that all the average UARs
obtained with the proposed approach are higher when the clas-
sifier is pre-trained compared to those when the classifier is not
pre-trained on both the test and dev sets. This indicates the ben-
efit of the proposed pre-training approach using synthetically
generated feature sequence from the tone sequences. Similarly,
it is observed that all the average UARs obtained with proposed
approach are higher than when the TDL is considered. This
indicates the benefit of the TDL that performs the transforma-
tion on the feature sequence. It is interesting to observe that the
highest and least UARs are obtained using proposed approach
with pre-training & with TDL and without pre-training & with-
out TDL respectively. This suggests the benefit of the proposed
pre-training and TDL.
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Figure 3: Illustrative example showing the benefit of TDL

Further, we analyse the benefit of the proposed pre-training
and TDL with an illustrative example belonging to the Dive
class taken from the corpora, which has the ground-truth tone
sequence { F, R}. As per the tone sequence, it is expected that
the pitch contour begins from a high value and decreases to a
low value then again it increases to a high value. Figure 3 shows
f1(t), 1-st dimension of the TDL output sequence and f3(t)
for the utterance. It is to be noted that the considered utter-
ance is correctly classified by the proposed approach with TDL
and with pre-training combination and incorrectly classified by
all other combinations of TDL and pre-training. In addition,
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we enclose the variations f1(t) that deviate from the expected
ground-truth variations using the black rectangular box. From
the figure, it is observed that f5(t) values are lower within the
box compared to those at the outside the box. This indicates that
the deviated f1 () values could be due to the pitch estimation er-
rors. However, it is interesting to observe that the TDL output
sequence does not have such unwanted values. This suggests
the benefit of the proposed TDL in suppressing the unwanted
variations based on f5(¢).

Table 2: Confusion matrix obtained for the baseline and pro-
posed approach with TDL and with pre-training. The rows and
the columns represent the estimated and ground-truth classes
respectively. Each cell entry is the average percentage across
all the ten folds.

Baseline Proposed
#1 | #2 | #3 | #4 || #1 | #2 | #3 | #4
Glide-up (#1) [62.50| 5.00 [30.00| 2.50 |{15.00/10.00/70.00| 5.00
Glide-down (#2)[22.14(61.67|14.52| 1.67 || 3.17 |82.54|14.28| 0.00
Dive (#3)  |22.22|17.22|54.58| 5.97 || 2.44 |14.63|78.05| 4.88
Take-off (#4) | 0.00 | 6.67 |25.00|68.33|| 5.71 | 0.00 |17.14|77.14

Finally, we analyse the class specific performance of the
baseline and the proposed approach with TDL & with pre-
training combination using confusion matrix computed on the
test set. From the confusion matrices shown in Table 2, it is ob-
served that there is a significant improvement and decrement in
the diagonal entries and off-diagonal entries respectively with
the proposed approach compared to the baseline in all classes
except Glide-up. This could be due to better ability of the pro-
posed approach in handling the pitch estimation errors com-
pared to the baseline. However, in the proposed method, Glide-
up class mostly got confused with Dive, which is not the case
with the baseline. This indicates that the baseline captures com-
plementary information from the proposed approach that can
discriminate well between these classes. These together sug-
gest that a modelling technique that incorporates complemen-
tary characteristics of the baseline and the proposed approach
could result in a better discrimination between the classes, thus
the overall classification accuracy.

5. Conclusion

GRU network is used for the BE intonation classification task
considering a pre-training with synthesized pitch contours and
input from a time-distributed layer (TDL). For pre-training, we
consider the tone sequences belonging to each intonation class
obtained from domain knowledge. Experiments with the spo-
ken English training material with four intonation classes re-
veal that the proposed scheme improves the UAR compared to
the baseline scheme, which shows the benefit of the pre-training
and TDL for GRU network in the intonation classification task.
Further investigations are required to combine complementary
properties of the proposed and the HMM based schemes for bet-
ter discrimination between the Glide-up and Dive classes. Fu-
ture works also include the use of linguistic features for better
intonation classification.
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