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Abstract
Estimating articulatory representations (ARs) from acoustic
features is known as acoustic-to-articulatory inversion (AAI).
Various factors of input acoustic features impact the perfor-
mance of AAI. In this work, we investigate the effect of un-
seen language on the AAI performance in both seen and un-
seen speaker conditions. We further perform experiments to
analyze how these AAI predictions in unseen language and un-
seen speaker conditions, in turn, impact the articulatory speech
synthesis, i.e., articulatory-to-acoustic forward mapping (AAF).
We hypothesize that this investigation enables the exploration of
alternative approaches to voice conversion across unseen lan-
guages using ARs. Experiments are performed on the AAF
model trained using English ARs and evaluated on ARs from
unseen speakers speaking different native Indian languages,
namely, Hindi, Kannada, Telugu, and Tamil. Experiments re-
veal that, for AAI, there is a drop in performance due to the
mismatch in language in both seen and unseen speaker eval-
uations. For AAF, subjective evaluations reveal that the syn-
thesized speech quality of non-native (mismatched language)
speech is comparable with that of English (matched language).
Index Terms: articulatory speech synthesis, acoustic-to-
articulatory inversion, articulatory-to-acoustic forward mapping

1. Introduction
Speech production involves movements of various articulators
including, lips, tongue, and velum [1]. Estimating the positions
of these articulators from speech acoustics is known as acoustic-
to-articulatory inversion (AAI) [2]. On the other hand, esti-
mating acoustic representations from articulatory movements
is known as articulatory-to-acoustic forward mapping (AAF).
Both these systems, AAI and AAF have been shown to bene-
fit various speech technologies. Various factors like language,
speaking rate [3], mode of speaking (neutral and whispered
speech) [4], and emotional state affect the movement of articu-
lators thereby impacting the acoustic features. The changes in
articulatory and acoustic spaces impact the AAI and AAF map-
pings.

In [5], it is shown that speaker independent AAI (SI-AAI)
trained using data from a particular language could predict ar-
ticulatory features from acoustics in another language but with
a drop in performance. However, in these SI-AAI experiments
along with language, the speaker is also unseen. Further inves-
tigation is needed to factor out speaker characteristics with a
speaker dependent AAI (SD-AAI) where there is a mismatch in
language while the speaker is seen. On the other hand, in [6],
a speaker dependent AAF model trained with a particular lan-
guage showed a drop in performance when evaluated on an un-
seen language. However, the experiments in [6] are performed
using directly measured articulatory representations (ARs) and

are limited to two multilingual speakers. The findings in [5, 6],
indicate that both SI-AAI and SD-AAF performances are af-
fected when evaluated on the unseen language. However, the
impact on the performance of AAF is not clear when both the
speaker and language are unseen. Also, it would be interesting
to investigate how the estimated ARs from SI-AAI would in-
fluence AAF in comparison with direct ARs, since direct ARs
are not readily available. In [7], an investigation on the per-
formance of AAF is performed using estimated and direct ARs
in an unseen speaker evaluation. Experimental results with un-
seen speakers revealed that the synthesized speech from AAF
preserves the linguistic information while carrying the voice
characteristics of the seen speaker on which the AAF model
is trained. Interestingly, it is shown that AAFs trained with es-
timated ARs using SI-AAI perform better than the direct mea-
sured ARs. However, the experiments carried out in [7] focused
only on the English language which is used for both training and
testing. In this work, we aim to investigate the impact of unseen
language evaluation on the performance of AAI and AAF under
seen and unseen speaker conditions.

The objectives of this work are as follows: 1) To study
the impact on the performance of AAI when evaluated using
an unseen language in both seen and unseen speaker setups,
2) Performance comparison between AAFs trained using direct
and estimated ARs, under an unseen language and seen speaker
setup, 3) To assess the quality of speech synthesized from AAF
driven with estimated ARs obtained from SI-AAI when evalu-
ated using a language and speaker unseen to both the AAI and
AAF. This study will help us understand the effect of language
and speaker factors on ARs estimated using AAI, and its cor-
responding impact on the quality of speech synthesized using
AAF. We believe that this investigation enables us to explore al-
ternative directions to perform voice conversion across different
unseen languages using ARs. In voice conversion, the goal is to
modify a source speaker’s voice to sound as if it is produced by
a target speaker. The advantage of the current approach is that
it does not require any parallel data from the source and target
speakers for training, and only demands acoustic data from the
target speaker. The hypothesis is that the articulatory represen-
tation from SI-AAI preserves the linguistic message and nor-
malizes speaker characteristics. In this work, the source speak-
ers are unseen to both SI-AAI and AAF while training. We
use the target speaker’s ARs estimated using SI-AAI to train
the AAF models. Experimental results revealed that estimated
ARs of source speakers obtained using SI-AAI have been able
to drive the target speaker’s AAF model, and synthesize speech
in the target speaker’s voice in a language unknown to the target
speaker.
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2. Background
Acoustic to Articulatory Inversion: The mapping from acous-
tics to articulatory movements is known to be complex and
non-linear. Neural networks are known to learn complex and
non-linear functions well, and it has been shown that recur-
rent neural network namely bi-directional long short term mem-
ory (BLSTM) achieves the state-of-the-art performance in AAI
[8, 2]. Typically, these mappings are learned in a speaker depen-
dent manner (SD-AAI), where training and testing data belongs
to the same speaker. For a speaker-independent AAI model (SI-
AAI), in general, data from multiple speakers are pooled to train
the model [2]. When data from a large number of speakers are
used for training, these SI-AAI models are shown to general-
ize well and are able to predict articulatory movements for an
unseen speaker. We deploy BLSTM networks for both SD-AAI
and SI-AAI, where the initial layers are BLSTM layers followed
by a linear regression layer.
Articulatory-to-Acoustic Forward mapping: The AAF map-
ping function estimates the acoustic representations from the ar-
ticulatory movements. Several statistical techniques have been
proposed in literature for modeling the AAF mapping, including
Gaussian mixture models [9], Hidden Markov models (HMM)
[10], and neural network based models [11]. A comparison of
their performance has shown that the BLSTM performs the best
among all these techniques [12]. Hence, similar to AAI, we use
BLSTM network to predict acoustic features (Mel-cepstrum)
from ARs.
Proposed Approach: In this work, the preliminary investiga-
tion is to determine the impact of language mismatch on the
performance of AAI and AAF. The primary interest is to assess
the quality of speech synthesized using an AAF mapping whose
inputs are estimated ARs obtained from an AAI under unseen
language and unseen speaker conditions. To carry out the ex-
periments, we propose the following approach as shown in Fig.
1.

WORLD
Analysis

WORLD
synthesis

AAF

MCEP

Aperiodicity

Pitch

PM

MCEP
AAF

SpeechSource
speaker

EMA 

Target
Speech

SI-AAI
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Figure 1: Illustration of articulatory-to-acoustic forward map-
ping setup based on the proposed approach.

We first train an SI-AAI model with multiple reference
speakers’ acoustic-articulatory data. This SI-AAI model could
predict articulatory movements (ARs) for an unseen speaker.
An AAF model is trained in a speaker-specific manner (from
target speakers list) for whom we are interested to synthesize
the voice in a language unknown to the target speakers. The
ARs for target speakers are either predicted using the SI-AAI
model or measured directly using EMA. As an input to the AAF
model, we provide ARs from the target speakers, to estimate
acoustic representations in target speaker space. Both the SI-
AAI model and the AAF model are trained on English data.
During evaluation, a cross speaker’s (source speaker unseen for
both SI-AAI model and AAF model) speech acoustics are uti-

lized to synthesize speech in the target speaker’s voice via the
articulatory domain. Speech acoustic features from the cross
speaker are fed to the SI-AAI to estimate ARs. The estimated
ARs are fed to the AAF model to obtain the acoustic representa-
tions. For speech synthesis, we utilize WORLD vocoder [13] to
extract pitch and aperiodicity from the cross speaker’s speech.
We transform original pitch from a source to the target speaker
statistics using a linear function [7], indicated as pitch modifi-
cation (PM) in Fig. 1. The estimated acoustic features from
AAF, transformed pitch and aperiodicity are passed through the
WORLD synthesizer to synthesize the target speaker’s speech.

3. Data collection
For this work, we recorded acoustic-articulatory data using
Electromagnetic articulograph AG501 [14]. The EMA record-
ing procedure, speaker details, and speech stimuli used for this
work are described below.
EMA recording procedure and post-processing: The EMA
recording set-up captures synchronous acoustic and articula-
tory movements. A t.bone EM9600 shotgun [15], unidirectional
electret condenser microphone was used to record the speech
data. Articulatory movements were captured using EMA [14].
We recorded six articulatory movements, namely, upper lip
(UL), lower lip (LL), jaw (Jaw), tongue tip (TT), tongue body
(TB), and tongue dorsum (TD). For head movement correction,
we also used two sensors behind the ears [16]. The sensors on
the articulators were glued following the guidelines provided in
[17]. We considered articulatory movements in the horizontal
(X) and vertical (Y) directions in the midsagittal plane, which
resulted in a 12-dimensional ARs, which are indicated by ULx,
ULy , LLx, LLy , Jawx, Jawy , TTx, TTy , TBx, TBy , TDx,
TDy .

The recorded acoustic-articulatory data was further post-
processed. It is known that the energy of the articulatory trajec-
tories primarily lies below 25Hz, and the movements are slowly
varying in nature [18]. Hence, we low-pass filtered the articula-
tory trajectories at 25Hz to avoid high-frequency noise incurred
because of EMA measurement error. The articulatory data was
down-sampled from 250Hz to 100Hz. Further, we performed
mean and variance normalization for every utterance to remove
the effect of sensor average position change across recording
and morphological variations across speakers. On the other
hand, the acoustics of speech recordings were down-sampled
from 48kHz to 16kHz. As an acoustic feature, for AAI ex-
periments, we computed Mel-Frequency Cepstral Coefficients
(MFCC) [19], for every 20ms with a shift of 10ms. For AAF
models, we decomposed speech signal into their spectral enve-
lope, pitch and aperiodicity using WORLD vocoder [13], and
from the spectral envelope we performed mel-scale frequency
wrapping and the discrete cosine transform to obtain 36-dim
mel-cepstrum (MCEP).
Speech stimuli and Speakers details: For recording with En-
glish (EN), we have chosen 460 phonetically balanced English
sentences from the MOCHA-TIMIT corpus [20] as the speech
stimuli. While for recordings with Indian native languages
(NL), namely, Hindi (HN), Kannada (KA), Tamil (TA) and Tel-
ugu (TE), we selected 1000 sentences from the text corpus from
each language. From these 1000 sentences, we selected a subset
of 300 sentences1 which have phonetically rich coverage using

1The sentences in languages other than English were lengthy. In or-
der to keep the duration of the recordings in English and other languages
in a similar range, we chose 300 for other languages.
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Festivox toolkit [21]. Festivox utilizes greedy selection tech-
niques to select sentences and ensure that the maximum num-
ber of different word-word pairings in the corpus are covered
by maximizing the bi-gram coverage.

We recorded acoustic-articulatory data from 37 speakers for
this work in an age group of 20-28 years. We recorded 460 En-
glish sentences from 29 speakers, out of which 25 speakers were
used as reference speakers (M1–M13 and F1–F12) to train SI-
AAI model and 4 speakers as the target speakers (TM1, TM2,
TF1, TF2). From the remaining 8 speakers, we recorded stim-
uli in native Indian languages with one male and one female in
each of the four languages. We refer to them by CF-HI, CM-HI,
CF-KA, CM-KA, CF-TA, CM-TA, CF-TE, and CM-TE, where
‘C’ indicates cross speaker, F/M for gender, HI/KA/TA/TE for
language. We also recorded English sentences from all cross
speakers except for CM-TE. The following acronyms are used
in the paper with respect to AAF and AAI models. SI-AAI –
Speaker Independent AAI, SD-AAI – Speaker Dependent AAI,
AAF – Speaker Dependent AAF. Note that, we have considered
4 target speakers whose native Indian languages are Bengali and
Malayalam. For the unseen condition, we train AAF models us-
ing target speakers’ English utterances, and cross speakers (ut-
terances from Hindi, Kannada, Tamil, and Telugu) were used
as test speakers to evaluate AAF models. This ensures that the
target speaker’s native language is different from those of cross
speakers’ native languages.

4. Experimental setup
From all the speakers and languages, 80% of the recorded
acoustic-articulatory data is used for training, 10% for valida-
tion and 10% for testing.

In experiments with AAI, we investigate the impact of un-
seen language on AAI in both seen and unseen speaker condi-
tions. In seen speaker condition, we train SD-AAI with cross
speakers in their native and English languages, separately. For
unseen speaker condition, we train SI-AAI model with refer-
ence subjects in English language, and evaluate on cross speak-
ers’ data. For both SD-AAI and SI-AAI models, we choose the
first three layers as BLSTM layers with 256 units followed by a
linear regression output layer with 12 units to predict ARs.

We perform experiments with AAF in seen and unseen
speaker conditions. In seen speaker experiments, language im-
pact on AAF is investigated with respect to estimated (using SI-
AAI) vs direct ARs (measured with EMA). So, we choose cross
speakers and train language dependent AAF models with ARs
measured directly and estimated using SI-AAI, separately. In
the unseen speaker condition, we train AAF models using tar-
get speakers with estimated ARs from SI-AAI model. For AAF
model, 12-dimensional ARs are fed as an input and we chose
the first three layers as BLSTM layers with 256 units followed
by a linear regression output layer.

For evaluating AAI models, we use the Pearson correlation
coefficient (CC) as an evaluation metric [18, 2]. In matched case
evaluation of AAF, where training and testing is performed with
the same target speaker, we use Mel-cepstral distortion (MCD)
[7] as an objective measure, which is computed between the
original MCEP and predicted MCEP. For unseen speaker and
language evaluations, listening tests are carried out.

Listening tests are performed to assess the performance of
the proposed approach in terms of (1) naturalness (2) voice sim-
ilarity and (3) content consistency. The listening tests are con-
ducted with synthesized audio files of 4 Target Speakers using
2 Cross Speakers (Pairs of 1 Male and 1 Female) from the 4

native languages (HN, KA, TA and TE), and English. The tests
are conducted in an intra-gender manner i.e., Male to Male and
Female to Female. Four listeners volunteered to take part in
the test for each native language. For each listener, we present
28 audio files to assess the naturalness comprising 16 files from
the target speakers’ native language (4 samples x 4 target speak-
ers), 8 files in English (2x4) and 4 files repeated for consistency
check. To judge for voice similarity, the listeners listen through
28 pairs of audio files. Each pair is presented with a reference
audio file of the target speaker and asked to respond to “are the
voices in the two audios from the same speaker?”. Finally, to
assess content consistency, the listeners listen through 28 pairs
of audio files. Each pair is presented with a reference audio file
of the cross speaker and the listener is asked to respond to “are
the two speakers saying the same words?”. In all the three lis-
tening tests, listeners rate the audio files on a 5-point scale (5:
excellent, 4: good, 3: fair, 2: poor, 1: bad). And all the listening
tests were conducted using a web interface.

Figure 2: CC averaged across all articulators for each cross
speaker (Evaluation of test sentences from native and English
in the top and bottom rows, respectively. In legends “NL/EN”
indicates test set language, followed by “NL/EN(SD/SI)” rep-
resents the language used to train SD-AAI or SI-AAI model.)

5. Results and Discussion
In this section, we first present the impact of unseen language
on AAI and then on AAF.

5.1. Impact of unseen language on AAI:

In Fig. 2, the top row box-plot reports the results for the native
languages (HI, KA, TA and TE) in terms of average CC values
for each cross speakers, where the three boxes indicate SD-AAI
(matched language), SD-AAI (mismatched language) and SI-
AAI (mismatched language and speaker), respectively. Simi-
larly, the second row indicates evaluations on English language.
While comparing SD-AAI results in matched and mismatched
conditions (NL-NL(SD) vs NL-EN(SD)), there is a drop in per-
formance in NL-EN(SD) compared to NL-NL(SD). The same
holds for the English test set. This indicates that in the SD-AAI
models, there is a significant drop (ρ < 0.05)2 in AAI perfor-
mance with language mismatch even though the speaker is seen.
Also, we observe that with respect to the matched speaker and
language evaluation (EN-EN(SD)/NL-NL(SD)) drop in per-
formance with the unseen speaker is large if there is a mis-
match in test-language (NL-EN(SI)) when compared with the

2all statistical tests in this work are done by t-test [22]
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Table 1: Subjective evaluation results of AAF models trained with ARs from SI-AAI. AAF models are trained with target speakers ARs
in English and tested with cross speakers ARs.

Language HINDI KANNADA TAMIL TELUGU AVG(INDIAN) ENGLISH

Naturalness 3.25
(0.67)

3.29
(0.64)

3.16
(0.75)

3.55
(0.81)

3.12
(0.71)

3.57
(0.6)

Voice similarity 3.62
(0.63)

3.44
(0.68)

3.28
(0.66)

3.52
(0.62)

3.46
(0.64)

3.39
(0.68)

Content consistency 3.73
(0.59)

3.85
(0.68)

3.73
(0.63)

3.76
(0.78)

3.76
(0.67)

3.75
(0.53)

matched case (EN-EN (SI)). To quantify this for cross speak-
ers, we compute the percentage drop in correlation (PDCC) as
follows: PDCCL= CCm−CC∗

CCm
× 100, where CCm indicates

the matched speaker and language with SD-AAI, and CC∗ in-
dicates the EN/NL language with SI-AAI model. Across all
cross speakers, we observe that for native languages PDCCNL

is found to be 15.66%(±4.87%), while for English PDCCEN

is found to be 5.02%(±2.64%). The results with AAI exper-
iments indicate that there is a significant drop (ρ < 0.05) in
AAI performance when there is a mismatch in language both in
seen and unseen speaker condition. Next, we will investigate
how this performance drop in the predicted ARs from SI-AAI
impacts the speech synthesis quality of AAF models.

CF-HI CM-HI CF-KA CM-KA CF-TA CM-TA CF-TE

5

6

7
EN (EMA) NL (EMA) EN (SI-AAI) NL (SI-AAI)

Figure 3: MCD values of cross speakers obtained by the
matched and mismatched language case evaluation on the AAF
model trained with English. In legend ‘NL/EN’ indicates the
test set language, followed by ‘(EMA/SI-AAI)’ indicates ‘direct
ARs’ or ‘estimated ARs from SI-AAI’ used for training and test-
ing AAF.

5.2. Impact of unseen language on AAF:

We first present the results of AAF trained with cross speakers
followed by objective and subjective evaluation of AAF trained
with target speakers.
Comparison of direct and estimated ARs: With cross speakers’
data from native languages and English, we investigate on com-
paring direct and estimated ARs, when there is a mismatch in
language during training and testing of AAF. Fig. 3, reports
evaluation results of cross speakers on AAF model trained with
English and tested with NL/EN using direct or estimated ARs.
We observe that there is a drop in AAF performance when there
is a mismatch in language compared to the matched case in both
direct and estimated ARs. Further, we observe that the relative
drop between matched and mismatched language evaluation in
the case of direct ARs is more (6.4%) as compared to the es-
timated ARs from SI-AAI (3.4%). These results indicate that
although there is a drop in CC while obtaining ARs from SI-
AAI due to speaker and language mismatch, interestingly these
estimated ARs have less relative drop compared to direct ARs
in matched speaker AAF evaluations.
Impact of unseen language on AAF with estimated ARs : In
these experiments, we assess the speech quality of the target
speaker’s AAF, when ARs from cross speakers are used as the

input with a language unknown to the target speaker. The sub-
jective results of AAF models with mismatched (both speaker
and language) evaluations from cross speakers are reported in
Table 1. We observe that the average scores of the listening tests
from all native languages (second last column in Table 1) is on
par with English subjective evaluations. This could suggest that
the synthesized speech from AAF is not degrading due to un-
seen native languages when compared with English. These re-
sults suggest that we can utilize ARs from an unknown speaker
to synthetically generate speech in an unknown language for a
given target speaker. Sample synthesized files from this work
are available online3.

In this work, we have shown that the AAI performance
drops when there is a mismatch in language while evaluation.
This further needs phone level or bi-gram level analysis to get
more insights. This holds for AAF models as well, our future
work will focus on understanding the quality of synthesized
speech at the sub-set of phonemes in native Indian languages
which are absent in English.

6. Conclusions
In this work, we have performed experiments with 37 speakers’
acoustic-articulatory data. Experimental results with AAI mod-
els during mismatched language evaluations reveal that there is
a drop in performance in both seen and unseen speaker eval-
uations. However, experiments with AAF trained with cross
speakers indicate that ARs estimated using SI-AAI perform bet-
ter than the directly measured ARs. Also, experiments with
AAF trained with target speaker reveal that the synthesis quality
of non-native (mismatched) speech is comparable with that of
English (matched). This indicates that ARs from AAI in unseen
speaker and language can be utilized to drive AAF to synthesize
speech for a target speaker in an unknown language.
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