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Dysarthria in ALS Dataset
A Dysarthria due to Amyotrophic Lateral Sclerosis (ALS) critically impairs 4 All in-house data collections were performed at NIMHANS, Bengaluru, India.
speech production. 4 The mode of the dysarthria severity ratings given by three SLPs was
4 Regular monitoring of the disease condition is essential for effective disease considered as the final severity score.
management. Subject demography and recorded speech data duration
A Speech-Language Pathologists (SLPs) assess dysarthria severity of an ALS Auxiliary data
- - Dataset ALS data HC data  Indic TIMIT TIMIT
patient following the speech measure of ALSFRS-R scale. ata _Indic
_ Severity class Severe (S) Mild (M) Normal (N) Healthy Healthy Healthy
Condition Score ALSFRS-R 0 1 2 3 4 ] _ )
Normal speech processes 4 #M:#F 9:13 126 155 119  27:13 67:21 39:41 438:192
Intelligible with repeating 5 of asgpee(;/::rs) (1.14) (1.20) (1.08) (1.04)  (0.76) (9.13) (6.05) (8.09)
Speech needs to be combined with nonvocal communication 1 duration 053 0681 070 066 143 590 234 47 5 a3
Loss of useful speech 0 (hours)
Drawbacks: Speech task Spontaneous Spontaneous Read Read
» Tedious and highly time—consuming 1 o i Hindi. Tamil. Tel K 9 ?_eng_lalll’_ II_Ide’ Indian American
» Prone to subjective biases anguage ehgail, Findl, famil, fefugu, Rahnaca ar;;;mchu’ English English

Accurate and consistent automatic dysarthria severity prediction systems
are the need of the hour.

State Of the Art

L Speech-based automatic methods are primarily restricted to the classification
of ALS patients and Healthy Controls (HC).

4 Only a few efforts have been reported in the domain of speech-based

Results

Mean balanced classification accuracies in % (SD in bracket) obtained over 10-folds of random
validation using different network training schemes; here, * indicates the approaches which
outperform STDL at 1% significance level and # indicates that FR outperforms GC as the auxiliary
task at 1% significance level (Wilcoxon signed-rank test is performed for all comparisons)

Auxiliary data Auxiliary task STDL
automatic dysarthria severity prediction for ALS. _ ) 69.08 (3.66)
4 Major Challenge - Scarcity of data resources FT MTL MTLp1 MTLp2
» Collecting speech data from patients with speech impairments is a delicate and laborious ] FR /7.14 (6.53)* 75.50 (3.91)* 77.66 (3.47)" -
task. GC 74.30 (5.82) 75.44 (5.46) 73.17 (6.32) -
» Getting the collected data clinically annotated for dysarthria severity further adds to the HC data FR 7/6.82 (4.98)* 74.88 (5.61) 76.28 (4.47)* 76.56 (6.37)
difficulty. GC 74.58 (4.39)* 73.70 (3.69)* 74.23 (7.16) 74.41 (4.78)*
A Transfer learning approaches have been explored for severity classification of indic TIMIT FR - 78.60 (6.52)" 75.88 (4.68)" 77.38 (3.75)" 75.41 (3.96)™
dysarthria specific to Cerebral Palsy and Parkinson’s Disease but not ALS. Gc 7122 (6.59) 7545 (4.58) 71.56 (4.38) 71.02(5.79)
VI FR 75.75 (5.34)* 78.72 (6.89)* 75.75 (6.79)* 80.11 (3.80)*
GC 77.19 (4.26)* 77.52 (5.51)* 75.34 (3.66)* 76.60 (5.48)*

Proposed Transfer Learning Approaches

Confusion matrices (in %) averaged over 10-folds of random validation for STDL and the best

MFCC e ) mrcc MFCC TR MECC performing configurations of the transfer learning approaches
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Predicted { ! ! ! ! !
sl;evell?it; Auxiliary Predicted Predicted  Auxiliary Auxiliary Auxiliary  Predicted (@) STDL (b) FT (c) MTL (d) MTLp1 (e) MTLp2
\__ output /  severity severity output \_output output severity
Pre-training Pre-training C oncC I Uus i ons
Single Task . . . L
Direet oarming (b) Fine-Tuning (FT) () Ml ey < e O retraining (MTTo) " - - , :
(STDL) A All transfer learning schemes achieve higher mean accuracies than STDL.
Task Loss A Transfer learning approaches significantly improve the performance on

classifying the mild class.

3-class (Normal vs. Mild vs. Severe) _ , , _ _
A Average accuracies achieved using feature reconstruction tasks are higher

dysarthria severity classification

Primary Normal (N) : ALSFRS-R 4 Cross-entropy than those obtainec.i using_gender_ classificatiop tasks in a!rTmst all cases.
Mild (M) : ALSFRS-R 2-3 | Perff>rr_nances _ob:[alned with or without employing the auxiliary datasets are
Severe (S) : ALSFRS-R 0-1 statlstlcaIIyIS|m|I.ar. .
Auxiliary MFCC Feature reconstruction (FR) MSE ) For any conflguratlo_n of auxiliary task and dataset, the p?rfc?rmanc?s .of all the
Gender classification (GC) Cross-entropy our transfer learning approaches are found to be statistically similar.
A Transfer learning is performed with and without using auxiliary healthy Future Work
datasets.

A To explore wider varieties of auxiliary tasks and network architectures

4 For MTLp, two further sub-conditions are considered. , , L
A To perform 5-class dysarthria severity classification

Condition Pre-training Network adaptation
MTLp1 ALS/auxiliary data ALS data References
MTLp2 auxiliary data ALS + auxiliary data
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